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Deep-learning-based ciphertext-only attack on
optical double random phase encryption
Meihua Liao1†, Shanshan Zheng2,3†, Shuixin Pan1, Dajiang Lu1,
Wenqi He1, Guohai Situ2,3,4* and Xiang Peng1*

Optical cryptanalysis  is  essential  to  the  further  investigation  of  more  secure  optical  cryptosystems.  Learning-based at-
tack of optical encryption eliminates the need for the retrieval of random phase keys of optical encryption systems but it is
limited for  practical  applications since it  requires a  large set  of  plaintext-ciphertext  pairs  for  the cryptosystem to  be at-
tacked. Here, we propose a two-step deep learning strategy for ciphertext-only attack (COA) on the classical double ran-
dom phase encryption (DRPE). Specifically, we construct a virtual DRPE system to gather the training data. Besides, we
divide  the  inverse  problem  in  COA  into  two  more  specific  inverse  problems  and  employ  two  deep  neural  networks
(DNNs) to respectively learn the removal of speckle noise in the autocorrelation domain and the de-correlation operation
to retrieve the plaintext image. With these two trained DNNs at hand, we show that the plaintext can be predicted in real-
time from an unknown ciphertext alone. The proposed learning-based COA method dispenses with not only the retrieval
of random phase keys but also the invasive data acquisition of plaintext-ciphertext pairs in the DPRE system. Numerical
simulations and optical experiments demonstrate the feasibility and effectiveness of the proposed learning-based COA
method.
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Introduction
Optical  encryption  has  captured  growing  attentions  in
the  past  two  decades  owning  to  its  inherent  advantages
such  as  parallel  signal  processing  and  high  dimensional
operation1,2.  When irradiating  a  two-dimensional  image
vertically with parallel  light,  all  points on the image will
be  modulated by  light  simultaneously.  Besides,  inherent
parameters  of  the  optical  system  (e.g.,  the  amplitude,
phase, wavelength, polarization and diffraction distance)

can  be  designed  as  the  security  keys  of  an  optical
cryptosystem for multi-dimensional encryption2. Most of
optical encryption  techniques  are  based  on  the  tech-
nique  proposed  by  P.  Refregier  and  B.  Javidi,  and  are
known  as  double  random  phase  encryption  (DRPE)3,
which  uses  two  statistically  independent  random  phase
masks (RPMs) as the security keys to scramble an origin-
al plaintext  image into a  stationary white  noise.  Follow-
ing  this  pioneering  work,  a  variety  of  modifications  of 
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DRPE  have  been  developed  in  other  linear  canonical
transform domains  such  as  the  fractional  Fourier  do-
main4,5,  Fresnel  domain6 and  wavelet  domain7.  In  the
meantime, random  phase  encoding  has  been  incorpor-
ated with typical optical signal processing or imaging ar-
chitectures, such as digital holography8,9, joint transform
correlator10,  interference11,  diffractive imaging12, compu-
tational  ghost  imaging13 and  ptychography14.  Note  that
the security performance of a cryptosystem is one of the
major concerns. A cryptosystem can be considered suffi-
ciently secure  if  and  only  if  it  can  endure  safety  assess-
ment  by  cryptanalysis.  Cryptanalysis  refers  to  the  study
on cryptosystems that aims to identify any defect in them
that will permit retrieval of the plaintext from the cipher-
text, without necessarily knowing the secret key15. On the
other  hand,  a  variety  of  attacks  on  existing  optical
cryptosystems can facilitate the development of security-
enhanced optical cryptosystems16−18. As fueled by the ad-
vancement of  optical  cryptography,  many optical  crypt-
analysis  methods  have  been  proposed  as  well,  ranging
from  the  chosen  plaintext  attacks  (CPA)19,20,  known
plaintext  attacks  (KPA)21,22,  and  ciphertext-only  attacks
(COA)23−25.  Among  these  optical  cryptanalysis  methods,
CPA and  KPA  require  attackers  to  access  more  re-
sources and more control of the encryption system, and
COA is  usually  considered  as  the  most  critical  yet  chal-
lenging problem since only a minimum resource is avail-
able  to  break  the  cryptosystem.  In  the  existing  optical
cryptanalysis  methods,  the  COA  problem  is  usually
transferred to  a  phase  retrieval  problem  with  single  in-
tensity measurement.  The  iterative  phase  retrieval  al-
gorithm26−34 has been employed to solve this problem by
exploiting  an  estimated  signal  domain  support26 and  a
given frequency domain constraint. However, it  is time-
consuming since it usually needs thousands of iterations
to  converge  to  a  feasible  solution.  It  has  also  been
demonstrated  that  speckle  correlation  techniques  are
feasible  for  COA due to  the  high similarity  between the
autocorrelations  of  the  ciphertext  and  the  plaintext35.
However, for the coherent DRPE system, the autocorrel-
ation of ciphertext or the energy spectral density is usu-
ally contaminated by speckle noise produced by the RPM
at the input plane, which is actually shown in a way sim-
ilar to the “shower-curtain effect”36. One of the methods
to remove this kind of speckle noise is spatial averaging,
which is  done  by  dividing  a  ciphertext  image  into  a  se-
quence of  sub-images37.  But there is  a  trade-off  between
the number and the size of sub-images, which limits the

spatial resolution of the recovered image.
Over the past few years, deep learning has attracted in-

creasing  attentions  and  found  to  be  highly  flexible  in
solving various types of ill-posed inverse problems in op-
tical  sensing  and  imaging38−53 such as  optical  tomo-
graphy41,  computational  ghost  imaging42,43, visual  track-
ing44,  digital  holography45,46,  lensless  phase  imaging47−49,
as well as imaging through scattering media50−53. For op-
tical  cryptanalysis,  deep  learning  has  demonstrated  its
capability  of  attacking  on  several  optical  cryptosystems
such as DRPE and triple random phase encoding54, inter-
ference/diffraction  encryption55−57 and  computer-gener-
ated  hologram  encryption58. However,  all  of  the  afore-
mentioned learning-based attack methods  belong to  the
category of CPA, which requires a large set of plaintext-
ciphertext  pairs  of  a  cryptosystem  under  analysis.  This
will  be  challenging  because  it  is  unlikely  for  an  attacker
to have access to the cryptosystem for such a long time.

Here,  we  demonstrate  methodologically,  numerically
and experimentally  for  the first  time,  to  our knowledge,
that the use of deep learning can solve the inverse prob-
lems in COA against  the classical  DRPE. To be specific,
we develop a two-step deep learning framework that re-
trieves  the  plaintext  from  an  intercepted  unknown
ciphertext alone. For acquiring the training data, we con-
struct a virtual DRPE system that includes different ran-
dom phase keys to provide the statistically ergodic prop-
erty of the speckle pattern. We note that the autocorrela-
tion of the ciphertext in DRPE contains the information
of  the  autocorrelation  of  the  plaintext,  only  that  the
former one is with some additive speckle noise. Inspired
by the principle of speckle correlations, we divide the in-
verse problem in COA into two inverse problems: one is
the removal  of  the  speckle  noise  from  the  autocorrela-
tion of the ciphertext, and the other is the retrieval of the
plaintext from  the  noise-free  autocorrelation.  Accord-
ingly,  two  cascaded  deep  neural  networks  (DNNs)  are
employed  to  respectively  solve  the  two  specific  inverse
problems.  With  appropriate  training,  the  two  trained
DNNs  can  be  easily  used  to  predict  the  plaintext  image
from  the  unknown  ciphertext  without  knowing  the
phase keys. 

Principle and method
 

Learning-based COA approach
In DRPE, a plaintext can be encrypted into a white noise-
like  distribution  by  employing  an  optical  4f system,
where  two  RPMs  serving  as  the  keys  are  placed  at  the
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input  plane  and  Fourier  plane,  respectively.  The  optical
structure of DRPE is shown in Fig. 1(a). The encryption
process can be mathematically expressed as 

C(x, y) = FT−1{FT{P(x, y) ·M(x, y)} · N(u, v)} , (1)

FT{·} FT−1{·}
(x, y)

(u, v)
P(x, y) C(x, y)

M(x, y) =
exp[i2πr1(x, y)] N(u, v) = exp[i2πr2(u, v)]

r1(x, y) r2(u, v)

(0, 1]

where  and  represent the  Fourier  trans-
form  and  inverse  Fourier  transform,  respectively; 
and  represent the  coordinates  of  the  spatial  do-
main and Fourier domain,  and  denote the
plaintext  and  the  ciphertext  respectively; 

 and  represent
the two RPMs, where  and  are the statistic-
ally  independent  uniform  distribution  in  the  range  of

. The decryption procedure of DRPE is the exact in-
verse  process  of  the  encryption  with  the  conjugates  of
phase keys.

C = T{P} T{·}

P = T−1{C}

{Pi,Ci}

The encryption  process  of  the  DRPE  can  be  con-
sidered as the forward propagation process (see Fig .1(a)),
and  it  is  defined  as ,  where  denotes  the
forward model.  Optical  cryptanalysis  is  a  typical  inverse
problem  that  is  denoted  as  (see Fig .1(b)),
aiming  to  retrieve  the  plaintext  from the  corresponding
ciphertext.  One  possible  pure  data-driven  solution  is  to
train a DNN with a set of plaintext-ciphertext pairs. As-
suming that a training set of ground-truth plaintexts and
their ciphertexts  is known. The optical cryptana-
lysis problem  implicitly  solved  by  DNN  can  be  formu-
lated as the following equation 

RDNN = arg min
θ∈Θ

∥Rθ{Ci} − Pi∥2 , (2)

Rθ θwhere  is the mapping function of the DNN, and  de-

notes the parameters of weights and biases. This kind of
“end-to-end ”  mapping  method  is  simple  but  needs  a
large  number  of  plaintext-ciphertext  pairs  in  the  same
optical encryption system, which means that an attacker
has the ability to access the cryptosystem in advance.

Nevertheless, for COA, according to Kerchhoff’s prin-
ciple15,  the  attacker  is  assumed  to  have  access  only  to  a
ciphertext and use it alone to retrieve the corresponding
plaintext. In practice, for the COA on DRPE, the attack-
er still  has  the  knowledge  of  the  cryptosystem  (e.g.,  co-
herent  illumination,  4f architecture) except  for  the  ran-
dom phase keys. Therefore, it is possible to gather a set of
training data from a virtual DRPE system that includes a
set of randomly generated RPMs placed at the spatial and
frequency domain. Since the ciphertext is obtained from
the different  plaintext  and different  RPMs,  the “end-to-
end” mapping DNN carries the burden of learning all of
the physical laws.

We have noted that  the  DRPE cryptosystem is  essen-
tially a coherent imaging system and the encryption for-
mulation (Eq. (1)) can be rewritten as
 

C(x, y) = P′(x, y) ∗ h(x, y) , (3)

∗
P′(x, y) = P(x, y) ·M(x, y)

h(x, y) = FT{N(u, v)}

Ac(x, y)

where  the  symbol  “ ”  denotes  a  convolution operation,
 is the complex field at the in-

put  plane,  is  the  point  spread
function (PSF) of the DRPE system. Then the autocorrel-
ation of ciphertext  can be written as
 

 

DRPE encryption process Inverse problem

C(x, y) P(x, y)

θ1∈Θ
θ2∈Θ

θ∈Θ

Ac(x, y) Ap(x, y)

DNN1 DNN2

a b

c

 

arg min||Rθ{Ci} − Pi||2

arg min||Rθ1(Aci) − Api||2
arg min||Rθ2(Api) − Pi||2

Fig. 1 | Overview of learning-based COA on DRPE. (a) The encryption process of DRPE is a forward propagation process. (b) The COA is an

inverse problem, aiming to obtain an optimized estimate of the plaintext from the ciphertext. (c) Flowchart of the proposed COA method, where

two DNNs (DNN1 and DNN2) are used in serial to respectively learn the removal of speckle noise from the autocorrelation of the ciphertext Ac

and the prediction of the final plaintext P from its autocorrelation Ap.
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Ac(x, y) =C(x, y)⊗ C(x, y)
=[P′(x, y)⊗ P′(x, y)] ∗ [h(x, y)⊗ h(x, y)]
=[P′(x, y)⊗ P′(x, y)] ∗ δ(x, y) , (4)

⊗
δ(x, y)

where the symbol “ ” denotes the autocorrelation oper-
ation,  is  a  peaked  function.  It  suggests  that  the
contribution of  RPM2  at  the  Fourier  plane  can  be  re-
moved  by  performing  an  autocorrelation  operation.
Therefore, the  calculated  autocorrelation  of  the  cipher-
text can be simplified as 

Ac(x, y) ≈ [P′(x, y)⊗P′(x, y)] = Ap(x, y)+S(x, y) , (5)

Ap(x, y)
S(x, y)
where  denotes  the  autocorrelation  of  plaintext,

 is the speckle noise term, which refers to the con-
tribution of RPM1. If this speckle noise can be removed
as well, the plaintext can be further retrieved. Decorrela-
tion or reconstruction of an object from the modulus of
its Fourier transform is a long-standing challenge and it
is essentially an ill-posed inverse problem due to the ab-
sence  of  its  Fourier  phase.  Usually,  this  type  of  inverse
problem can be solved by an iterative phase retrieval al-
gorithm with some prior knowledges such as non-negat-
ive and real-valued object and the support area in the ob-
ject  domain26,27.  However,  iterative  methods  are  time-
consuming,  which  makes  real-time  reconstruction  a
challenge.  Recently,  deep  learning  offers  an  alternative
approach to perform such de-correlation tasks48,51,52, and
U-net  shows  powerful  performance  in  solving  image
pixel regression problems59.  Accordingly, a U-net neural
network can be employed to perform the de-correlation
task  by  training  the  mapping  relationship  between  the
autocorrelation pattern (which corresponds to  the mag-
nitudes  of  an  object’s  Fourier  transform)  and  the  real-
space object from a large prepared training set. After the
training,  the  de-correlation  DNN  model  can  invert  an
autocorrelation pattern  to  the  corresponding  object  im-
age in real-time.

Therefore,  the  problem  to  be  addressed  in  COA  on
DRPE can be reformulated as two inverse problems: one
is the removal of the speckle noise from the autocorrela-
tion  of  the  ciphertext  while  the  other  is  the  retrieval  of
the plaintext  from  the  noise-free  autocorrelation.  In-
spired  by  the  aforementioned  analysis  while  aiming at
achieving  a  better  performance  with  limited  training
data,  we  propose  a  two-step  deep  learning  strategy  for
solving  the  problems  of  the  COA  on  DRPE  (see Fig.
1(c)).  Specifically,  the  autocorrelation  functions  of  the
ciphertext and the plaintext should be calculated first  as
the  feature  to  be  trained.  Then  two cascaded  DNNs are

Ac(x, y)
Ap(x, y)

P(x, y) Ap(x, y)

built  to  solve  the  two  corresponding  inverse  problems,
DNN1  takes  the  autocorrelation  of  the  ciphertext

 as its input and estimates the plaintext autocor-
relation ;  DNN2  is  trained  to  predict  the  final
plaintext  image  from .  Mathematically,
these two inverse problems solved by DNN1 and DNN2
can be respectively formulated as 

RDNN1 = arg min
θ1∈Θ

∥Rθ1(Aci)− Api∥2 , (6)
 

RDNN2 = arg min
θ2∈Θ

∥Rθ2(Api)− Pi∥2 , (7)

RDNN1 RDNN2

θ1 θ2

RDNN1 RDNN2

where  and  are  the  mapping  functions  of
DNN1 and DNN2,  and  denote the weights and bi-
ases of  DNN1 and DNN2,  respectively.  Once  the  learn-
ing step is completed,  and  can then be used
to decipher the plaintext from an unknown ciphertext. 

Data acquisition
For  training  the  DNNs  mentioned  above,  the  training
data should be prepared. The objective of DNN1 is to re-
move the  speckle  noise  from  the  autocorrelation  func-
tions of  ciphertexts.  In  the  COA  scenario,  the  intercep-
ted  ciphertext  might  be  encrypted  with  any  unknown
RPMs. To get the better de-noising performance, the de-
noising model should sufficiently encompass the statist-
ical variations across as many RPMs as possible. Usually,
different realizations  of  the  speckle  patterns  can  be  ob-
tained by coherently illuminating the plaintext  with dif-
ferent random phases. This requires the use of many dif-
ferent random  phase  keys  to  encrypt  the  plaintext  im-
ages  to  achieve  the  statistical  ergodic  property  of  the
speckle  pattern.  Therefore,  a  virtual  DRPE  system  (not
the  real  one)  should  be  designed  to  gather  the  training
data. As illustrated in Fig. 2, a set of randomly generated
RPMs are placed at the spatial and frequency domains in
this virtual DRPE system to encrypt the plaintext images
and  obtain  the  corresponding  ciphertext  images,  which
can be expressed as 

Ci(x, y) = FT−1{FT{Pi(x, y)
·Mi(x, y)} · Ni(u, v)}, i = 1, 2, ..., n . (8)

Aci(x, y)
Subsequently,  the  autocorrelations  of  ciphertexts

 can  be  calculated  by  taking  an  inverse  Fourier
transform of its  power spectrum in accordance with the
Wiener–Khinchin theorem, that is 

Aci(x, y) =
∣∣∣FT−1{|FT{Ci(x, y)}|2}

∣∣∣ , i = 1, 2, ..., n .

(9)
Api(x, y)Meanwhile, the autocorrelations of plaintexts 
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can  also  be  calculated  from  the  ground-truth  plaintext
images, that is 

Api(x, y) =
∣∣∣FT−1{|FT{Pi(x, y)}|2}

∣∣∣ , i = 1, 2, ..., n .

(10)

Aci(x, y)
Api(x, y)

Api(x, y)

In  this  way,  the  dataset  of  the  autocorrelations  of
ciphertexts  and the  autocorrelations  of  plain-
texts  are set as the inputs and outputs of DNN1
respectively; the dataset of the autocorrelations of plain-
texts  and  the  ground-truth  plaintext  images

Pi(x, y) are set  as  the  inputs  and  outputs  of  DNN2,  re-
spectively. 

Network model
To perform the task of de-noising, the popular DnCNN
model60 is  employed  as  DNN1  in  the  proposed  COA
method.  The  architecture  is  illustrated  in Fig. 3(a).  The
ciphertext’s  autocorrelation image first  passes through a
standard convolutional  layer  with  filter  size  3×3,  fol-
lowed by a rectified linear unit  (ReLU),  and then passes

 

P1, P2, …, Pn

M1, M2, …, Mn

FT

N1, N2, …, Nn

FT C1, C2, …, Cn

n

n n

n

Virtual DRPE system

Fig. 2 | Acquisition of the training data by designing a virtual DRPE system. A set of randomly generated RPMs (M1, M2,…,Mn) are placed

at the spatial domain, and another set of randomly generated RPMs (N1, N2,…,Nn) are placed at the frequency domain. The ground truth plain-

text images (P1, P2,…,Pn) are encrypted one-by-one and the corresponding ciphertext dataset (C1, C2,…,Cn) can be obtained.

 

Down sampling

Up sampling

PoolingConv

Dense block

64×64
32×32

16×16

8×8
16×16

32×32

64×64

4×4
8×8

16

32
36 33

36 34
36 36

36
36

36
1

Skip connection

36

Input

64×64

Output

64×64

Input Output

64×64 64×64

64 64 64 64 1

ConvConv + ReLU Conv + BN + ReLU

… …

a

b

Fig. 3 | Structure of the employed DNNs. (a) The architecture of DNN1, which takes the DnCNN structure. (b) The architecture of DNN2, which

takes the general encoder–decoder U-net structure. The encoder gradually condenses the lateral spatial information into high-level feature maps

with growing depths; the decoder reverses the process by recombining the information into feature maps with gradually increased lateral details.
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through  ten “BN+Conv+ReLU” blocks  successively,
which  consists  of  an  operation  of  batch  normalization
(BN),  a  standard  convolutional  layer  with  the  size  3×3
and a ReLU. Finally, a standard convolutional layer with
filter size 1×1 is employed to output the noise-free auto-
correlation  image.  We  have  compared  DnCNN  model
with  the  extensively-utilized  U-net  one59 on  the  task  of
de-noising (See  Fig.  S1).  Both  networks  have  good  per-
formance on the removal of speckle noise, but the train-
ing time of DnCNN is much shorter than that of the U-net.

x0, x1, ..., xn−1

However, for the task of de-correlation, a modified U-
net  architecture59 is  employed  (see Fig. 3(b)),  where  the
encoder path (left side) to extract the feature maps from
the  input  patterns,  and  the  decoder  path  (right  side)  to
perform pixel-wise regression. The input to the network
is  the  de-noised autocorrelation images  with  the  size  64
pixels ×64 pixels. They first pass through a standard con-
volutional layer with the filter size 3×3, followed by a 2×2
max pooling  operation  with  the  stride  2  for  down-
sampling,  and  then  is  successively  decimated  by  four
“convolution  +  dense  +  downsampling ”  blocks,  where
each  block  consists  of  a  standard  convolutional  layer
with the size 3×3, a dense block, and a 2×2 max pooling
layer with the stride 2. A dense block consists of n convo-
lutional  layers,  where  the nth layer  receives  the  feature-
maps of all preceding layers, , as inputs: 

xn = Hn([x0, x1, ..., xn−1]) , (11)

0, 1, ..., n− 1
where  the  bracket  [·]  denotes  the  concatenation  of  the
feature-maps  extracted  from  layers ,  and
Hn(·) refers to a composite function of three consecutive
operations: BN, followed by a ReLU and a standard con-
volution  layer  with  the  size  3×3.  After  passing  through
the encoder path,  the feature maps of the plaintext then
successively  pass  through  3  “upsampling  +  dense ”
blocks, where each block consists of an up-convolution-
al layer with the size 2×2 and a dense block. Finally, an-
other  up  convolutional  layer  is  employed  to  perform
pixel-wise  regression.  In  addition,  skip  connections  are
also  employed  to  pass  high-frequency  information
learned  from  previous  layers  down  the  network  toward
the  output  reconstruction.  We  have  also  compared  two
models  above  on  the  task  of  de-correlation,  the  results
are shown in Fig.  S2.  It  is  obvious that  U-net  has better
performance than DnCNN for de-correlation. 

Results and discussion
 

Simulations and analysis
Numerical simulations have been carried out to demon-

strate  the  validity  of  the  proposed  learning-based  COA
approach.  In  the  following  numerical  simulations,  the
size of all the images is set as 64 pixels ×64 pixels. For the
training process, a total of 10000 images (5000 digits and
5000 letters) from the MNITS handwritten digit dataset61

and NIST handwritten letter62 were adopted as the data-
set  of  plaintexts.  They  were  resized  from  28  pixels  ×28
pixels  to 32 pixels  ×32 pixels  and zero-padded 64 pixels
×64 pixels.  Simultaneously,  20000  RPMs  randomly  dis-
tributed in the range of (0,2π] with 256 gray-levels were
generated  by  setting  the  different  random  seeds
(1−10000  for  RPM1,  10001−20000  for  RPM2),  which
were used as the phase keys at the spatial and frequency
domains of the DRPE system respectively. Subsequently,
10000 corresponding  ciphertexts  were  obtained  by  en-
crypting  the  10000  plaintext  images  with  this  virtual
DRPE  system.  The  autocorrelations  of  ciphertexts  and
plaintexts were calculated as the input and output of the
DNN1, and the autocorrelations of plaintexts and plain-
texts  itself  acted  as  the  input  and  output  of  the  DNN2.
For both DNNs, the loss functions have been defined by
the mean absolute error (MAE): 

MAE(A,B) = 1
N
∑
i,j

[A(i, j)− B(i, j)] , (12)

A(i, j) B(i, j)where  and  denote  the  output  of  the  DNNs
and  the  ground  truth,  respectively, N is  the  number  of
the pixels.  Alternatively,  a loss function that is  based on
mean square error (MSE) can also be used to obtain sim-
ilar results. We used the Adam optimizer with a learning
rate  of  0.0005  to  optimize  the  weights  and  biases  of  the
neural  networks.  The  program  was  implemented  with
Python  3.6  on  the  platform  of  TensorFlow.  A  graphics
processing  unit  (NVIDIA  GeForce  GTX  1050  Ti)  was
used  to  expedite  the  computation.  After  10  epochs  and
20 epochs, the loss function MAEs of DNN1 and DNN2
become  0.0037  and  0.048,  respectively,  which  implies
that the DNNs have been well trained to achieve a good
performance for the training dataset.

With the two trained DNNs at hand, now we can per-
form the COA test. The numerical simulation results are
shown in Fig. 4, where the three columns on the left  in-
dicate  the  digits  while  another  three  columns  on  the
right  show  letters. Figure 4(a) shows the  given  cipher-
texts, which are generated with the testing plaintext im-
ages  (different  from  the  training  dataset)  in  a  testing
DRPE  system  (RPMs  generated  by  setting  the  random
seeds  as  20001−21000  for  RPM1  and  21001−22000  for
RPM2).  With  the  given  ciphertexts,  we  can  calculate
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δ(x, y)
their  autocorrelation  functions,  which  are  presented  in
Fig. 4(b).  We  have  removed  the  peaked  function 
from the autocorrelation images for displaying. It can be
clearly seen that the autocorrelation functions present in-
erratic edge profiles and is corrupted by random speckle
noise. Subsequently, these pre-processed autocorrelation
functions are  fed  into  the  trained  DNN1,  and  the  out-
puts  are  presented  in Fig. 4(c).  Then  the  outputs  from
DNN1 are further fed into the trained DNN2 model, the
outputs of DNN2 are presented in Fig. 4(d). The ground-
truth plaintext images are shown in Fig. 4(e) for compar-
ison.  The  predicted  plaintext  images  can  be  visualized
and are clearly recognizable despite of the fact that their
resolutions  are  slightly  degraded  which  may  be  resulted
from  the  convolution  operation  in  the  DNN  training
process.

It  should  be  pointed  out  that  zero-padding  of  images
was applied  before  the  encryption  to  introduce  fre-
quency  redundancy.  Zero-padding  operation  actually
has  been  extensively  exploited  and  discussed  in  signal
processing  literature28−33.  According  to  Nyquist-Shan-
non theorem, a  two-dimensional  signal  can be uniquely
specified by the magnitude of its twice oversampled dis-

crete  Fourier  transformat34. Conventional  phase  retriev-
al  methods  do  work  well  unless  the  condition  of  twice
oversampling is  satisfied.  To  further  validate  the  pro-
posed  method,  we  try  to  reconstruct  plaintext  image
from  its  autocorrelation  function  without  zero-padding
operation, which  is  usually  impossible  for  the  conven-
tional  iterative  phase  retrieval  algorithm.  During  the
training  process,  we  use  the  autocorrelation  function
without  zero-padding  as  the  input  of  the  de-correlation
DNN model and the test results are presented in Fig. S4.
Surprisingly, the  images  can  be  recovered  with  high  fi-
delity  from  the  incomplete  autocorrelation  pattern,
which indicates  the  de-correlation  DNN  model  still  ef-
fective even without zero-padding operation.

To quantitatively  analyze  the  reliability  of  the  pro-
posed COA method, we introduce the correlation coeffi-
cient (CC) to quantitatively evaluate the quality of the re-
trieved  plaintext  images.  The  CC  between  image A and
image B are defined as follows 

CC(A,B) =
∑

i,j [A(i, j)− A][B(i, j)− B]√∑
i,j [A(i, j)− A]2 ×

∑
i,j [B(i, j)− B]2

,

(13)

 

Digits Letters

a

b

c

d

e

Fig. 4 | Attack  results  by  our  proposed  COA  approach.  (a)  The  given  ciphertexts.  (b)  The  autocorrelations  of  ciphertexts.  (c)  Outputs  of

DNN1. (d) Outputs of DNN2. (e) The ground-truth plaintext images.
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Ā B̄ A(i, j) B(i, j)where  and  denote average value of  and .
We have  calculated  the  values  of  the  CC  of  100  recon-
structed  plaintext  images  which  are  randomly  selected
out  of  the  total  1000  in  the  test  set,  and  the  results  are
plotted  in Fig. 5(a).  The  blue  circle  and  orange  triangle
markers  represent  the  values  of  the  CC related  to  digits
and  letters  test  data,  respectively.  As  expected,  most  of
the  CC  values  are  larger  than  0.5  and  the  averaged  CC
values  is  0.816.  However,  it  is  also  worth  noting  that
there  are  still  a  few  cases  in  which  the  CC  values  are
smaller than 0.5 due to the fact  that  the retrieved plain-
text  images  rotated 180 degrees,  especially  for  the  digits

“6” and “9”. The reason for that is the autocorrelations of
the prediction and the ground-truth are almost the same,
as shown in Fig. 5(b). The results consist of the ambigu-
ity  regarding  the  phase-retrieval  inverse  problem  since
the  recovery  of  a  signal  from  its  Fourier  magnitude
alone, in general, does not yield a unique solution34.

Moreover, we have also investigated the robustness of
the proposed method against the cropping and the noise.
The  results  are  illustrated  in Fig. 6.  The  two  images  on
the left side of Fig. 6(a) respectively present the cropped
ciphertexts with cropping ratio 1/16 and 1/4; the two im-
ages  in  the  middle  of Fig. 6(a) present  the  ciphertexts
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Fig. 5 | Quantitative evaluation of the reliability of the proposed COA method. (a) CC values to the number of tests. (b) The example of the

prediction rotated 180 degrees and the ground-truth, which have the similar autocorrelation.
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d

 

Fig. 6 | Robustness test against cropping and noise. (a) Ciphertexts with cropping ratio 1/16 and 1/4, added zero-mean Gaussian noise with

0.01 and 0.02 variance, and added salt  & pepper noise with 0.01 and 0.02 distribution density. (b) The corresponding autocorrelation distribu-

tions. (c) The retrieved images by the proposed two-step learning-based COA method. (d) The retrieved images by the one-step learning-based

method.
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added zero-mean Gaussian noise with 0.01 and 0.02 vari-
ance; the two images on the right side of Fig. 6(a) present
the ciphertexts  added salt  & pepper noise with 0.01 and
0.02 distribution density.  The calculated autocorrelation
functions  of  the  corrupted  ciphertexts  are  displayed  in
Fig. 6(b). The reconstructed plaintext images by the pro-
posed  two-step  deep-learning-based  COA  method  are
shown  in Fig. 6(c).  For  comparison,  the  reconstructed
images by the one-step “end-to-end” method (from the
autocorrelation of ciphertext to the plaintext directly) are
shown in Fig. 6(d).  Obviously,  the images shown in Fig.
6(c) can  be  visualized  and  recognized  while  the  images
shown  in Fig. 6(d) are  completely  different  from  the
ground-truth. To quantitatively evaluate the robust cap-
ability,  we have calculated the CC between the retrieved
images (Figs. 6(c) and 6(d)) and the ground-truth image
(the first image from the left of Fig. 4(e)), the CC values
are  shown  in Table 1.  More  data  on  CC  values  under
various  levels  of  cropping  and  noise  were  presented  in
Fig. S3. These results indicate that the proposed method
has  the  better  robustness  against  the  cropping  and  the
noise than the one-step method. 

Optical experiments
To  further  experimentally  verify  the  effectiveness  and
practicability of  the  proposed  learning-based  COA  ap-
proach, we designed and set up an experiment configura-
tion that is schematically shown in Fig. 7. A continuous-
wave laser  (MW-SL-532/50mW) served as  the illumina-
tion  source.  A  spatial  filter  and  a  collimating  lens  were
placed behind the laser. A spatial light modulator (SLM)

(Holoeye LC2002, transmission) was placed at the input
plane  to  display  the  plaintext  images.  Two orthogonally
oriented polarizers were placed before and after the SLM
to  ensure  that  the  SLM  worked  in  amplitude  mode.  A
thin  diffuser  served  as  the  RPM  was  placed  next  to  the
SLM.  A  high  dynamic  range  CMOS  camera  (PCO  edge
4.2, 2160 pixels ×2160 pixels with a pixel size of 6.5 μm ×
6.5 μm, dynamic range of 16 bits) was placed on the back
focal  plane  of  the  Fourier  lens  (f =  150  mm) to  capture
the power spectrum. Considering the effect of the RPM2
could  be  removed  by  the  autocorrelation  operation,  we
do  not  set  the  second  RPM2  at  frequency  plane  in  the
following experiments.

In  the  training  process,  1000  images  (28  pixels  ×28
pixels) from the Quickdraw dataset63 were selected as the
plaintext  samples.  After  scaling  to  the  size  of  100
pixels ×100 pixels, they were zero-padded to 1024 pixels ×
768 pixels and loaded onto the SLM in sequence. A com-
mercial  ground glass  as  the  training diffuser  (radius r =
50 mm) rotating constantly at 1 circle per minute, which
can  provide  about  600  different  RPMs.  Subsequently,
1000 corresponding power spectrum images were collec-
ted by the camera. For the test process, another 1000 im-
ages  excluded  from  the  training  dataset  were  uploaded
onto  the  SLM  as  testing  plaintexts.  The  ground-truth
plaintext images “apple” and “banana” as the represent-
ative examples of the testing images.  We used three dif-
ferent  types  of  diffuser  (DG600,  DG220  and  DG120,
Thorlabs) to capture the power spectrum images as test-
ing ciphertexts. Figure 8 shows some of experimental test
results. The measured power spectra images are presented

 
Table 1 | CC values between the retrieved plaintexts and the ground-truth

 

Methods Cropping Gaussian noise Salt & pepper noise

Two-step method 0.9464 0.7522 0.8958 0.7610 0.9284 0.8038

One-step method 0.4517 0.3351 0.3751 0.2914 0.4116 0.3290
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Fig. 7 | Experimental  setup.  SF:  spatial  filter,  L1:  collimating lens,  L2:  Fourier  lens,  P1 and P2:  polarizers,  RD: rotating diffuser,  SLM: spatial

light modulator.
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in the second column from left. These three pictures ap-
pear to be obviously different although they are from the
same  plaintext.  However,  the  autocorrelations  of  these
images reveal the similar patterns. The retrieved autocor-
relations from DNN1 and the retrieved plaintext images
are shown in the fourth and fifth columns of Fig. 8. It is
suggested  that  the  proposed  method  consistently  makes
high-quality  plaintexts  retrieval  from  the  ciphertexts  of
different DRPE systems. We have calculated the CC val-
ues of 1000 test data between the reconstructed plaintext
images and the ground-truth images, and the average CC
values  of  three  diffusers  are  0.7635,  0.6969  and  0.6214,
respectively. 

Conclusions
In summary,  we  have  developed  a  two-step  deep  learn-

ing strategy  and  demonstrated  numerically  and  experi-
mentally that it is capable of achieving COA on the clas-
sical  DRPE  system.  By  incorporating  the  deep  learning
method with the speckle correlation technique,  the pro-
posed  learning-based  COA  scheme  employs  two  DNNs
to respectively  learn the  removal  of  speckle  noise  in  the
autocorrelation domain  and  the  de-correlation  opera-
tion  for  deciphering  plaintext  images.  Compared  with
existing  learning-based  attack  methods,  the  proposed
method has  a  unique  character  that  the  mapping  rela-
tionships of autocorrelation features are trained, instead
of  the  random  phase  keys  of  DRPE  system  so  that  our
approach  allows  to  retrieve  the  plaintext  from  the  only
ciphertext without any other resources. Furthermore, the
proposed COA method can be very efficient because the
plaintext  can  be  retrieved  from  the  intercepted
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Fig. 8 | Experimental results.  First column from left: the ground truth plaintext images “Apple” and “Banana”. Second column: the raw power

spectrum images of the different types of diffusers. Third columns: the corresponding autocorrelation functions. Fourth and fifth columns: the re-
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ciphertext  in  real-time  with  use  of  the  trained  DNNs.
One of limitations of the proposed method is that the ca-
pacity of the generalization of de-correlation DNN mod-
el  is  limited,  and  this  COA  approach  works  well  only
when the test images are similar to those in the training
dataset. Therefore, it should be better if the training data-
set  includes  more  types  of  plaintext  images  since  the
training  process  of  two  DNNs  can  be  done  before  the
real COA process.
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