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Hybrid artificial neural networks and analytical
model for prediction of optical constants and
bandgap energy of 3D nanonetwork silicon
structures
Shreeniket Joshi and Amirkianoosh Kiani*

The  aim  of  this  study  is  to  develop  a  reliable  method  to  determine  optical  constants  for  3D-nanonetwork  Si  thin  films
manufactured using  a  pulsed-laser  ablation  technique that  can be applied  to  other  materials  synthesized by  this  tech-
nique.  An  analytical  method  was  introduced to  calculate  optical  constants  from reflectance  and  transmittance  spectra.
Optical band gaps for this novel material and other important insights on the physical properties were derived from the
optical constants. The existing optimization methods described in the literature were found to be complex and prone to
errors  while  determining  optical  constants  of  opaque  materials  where  only  reflectance  data  is  available.  A  supervised
Deep Learning Algorithm was developed to accurately predict optical constants from the reflectance spectrum alone. The
hybrid method introduced in this study was proved to be effective with an accuracy of 95%.

Keywords: 3D nanonetwork; nanostructures; optical properties; artificial neural network.

Joshi S, Kiani A. Hybrid artificial neural networks and analytical model for prediction of optical constants and bandgap energy of 3D
nanonetwork silicon structures. Opto-Electron Adv 4, 210039 (2021).

 

 

Introduction
Silicon  thin  films  are  widely  used  in  semiconductor
devices  and  have  numerous  applications  in  opto-elec-
tronics, optical  devices,  bio-medicine  and  telecommu-
nications1−3. Innocenzi et al.4 used a self-assembling pro-
cess  with  cetyltrimethylammonium  bromide  (CTAB)  as
a surfactant template to deposit silica sol on silicon sub-
strates in the form of a mesoporous thin film. The elec-
trical response of silica thin films was sensitive enough to
be  used  as  an  indicator  to  detect  and  discriminate
between different alcohol species and relative concentra-
tions. The high index modulation of 0.04 offered by hy-

drogenated amorphous silicon (a-Si:H) is difficult to ob-
tain in other optical materials. Further, the fast response
time of  100 μs  for  a  3% change in index modulation,  as
compared to  conventional  devices  which  have  a  re-
sponse in  a  ms  timescale,  signifies  the  tremendous  po-
tential of  silicon  thin  films  in  telecommunications  ap-
plications.  One  dimensional  (1-D)  fibrous  elements,  in
the form  of  thin  films,  have  been  proven  to  exhibit  ex-
ceptional  sensing  properties,  as  their  porous  structures
result in a large surface contact area5,6.

The intensity of light transmitted, absorbed and reflec-
ted  varies  across  the  electromagnetic  spectrum,  and
changes in response to different incident photon energies. 
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These changes act as important indicators of a material’s
properties and can be used to derive insights on intrinsic
properties  like  band  gap  and  dielectric  quality.  Hence,
optical  constants  are  important  in  benchmarking  and
finding applications  for  novel  materials7.  The extinction
coefficient ‘k’ is a measure of a material’s tendency to ab-
sorb light, and refractive index ‘n’ is a measure of resist-
ance to the passage of light in a given material.

The relation between optical constants is expressed in
terms of a Complex Refractive Index (N) 

N = n− ik with i ≈
√
−1 . (1)

Previous  literature  studies  summarized  that  optical
constants of thin films are widely determined using three
methods8, namely:

1) Ellipsometry data, which is a technique for evaluat-
ing  the  dielectric  properties  of  thin  films  by  measuring
the change in polarization after reflection/ transmittance
and comparing it to a pre-defined model.

2) Dispersion models.
3) Transmittance and reflectance spectra.
The envelope method was introduced by Manifacier et

al9.  in  1976  to  determine  optical  constants  from  the
transmittance  spectrum.  In  this  method,  transmittance
(T) is expressed as: 

T =
Ax

B− Cxcosφ+ Dx2
,

A = 16n2s,B = (n+ 1)3 (n+ s2) ,
C = 2 (n2 − 1) (n2 − s2) ,
D = (n− 1)3 (n− s2) ,

φ =
4πnd
λ

, x = exp (−αd) , α =
4πk
λ

. (2)

where s is  the  refractive  index  of  the  substrate, d is  the
thickness of the thin film.

Swanepoel10 improved  it  further  by  constructing  a
continuous curve  intersecting  the  transmittance  spec-
trum at the maximum intensity points (maximas); simil-
arly,  another  curve  intersects  the  minimum  intensity
points  (minimas).  Hence  transmittance  at  maximas  and
minimas  are  represented  as TM (λ)  and Tm (λ) respect-
ively. 

TM =
Ax

B− Cx+ Dx2
, (3)

 

Tm =
Ax

B+ Cx+ Dx2
. (4)

Swanepoel’s method of analytically determining optic-
al  constants from interference fringes is  greatly effective

in thin films. However, as there no interference fringes in
this study, Swanepoel’s method cannot be applied.

(
1±R
T

)

Ritter et al11. have provided a normalization relation of
absorbance and transmittance where the interference ef-
fect  is  eliminated;  this  method  is  proved  to  be  accurate
for films of high as well as low absorption with an error
rate close to 2%. Hishikawa et  al12. have proved that ex-
pressing equations for reflectance (R) and transmittance

(T)  in  form  of  suppresses the  effect  of  interfer-

ence. However,  these  methods  are  experimentally  tedi-
ous as the transmittance and reflectance spectra for each
layer need to be determined13.

The  Cauchy  dispersion  model14−16 takes  advantage  of
the fact that a majority of dielectric films are transparent
in the visible range, hence the relation in Eq. (5) is used
and  the  values  for  fitting  constants  are  evaluated.  After
finding  these  constants,  the  relation  can  be  extended  to
fit  the  rest  of  the  spectrum  by  inputting  corresponding
wavelength values. In case of a strong absorbing material,
Eq. (6) is used. 

n (λ) = An +
Bn

λ2 +
Cn

λ4 . (5)
 

k (n) = Ak +
Bk

λ2 +
Ck

λ4 . (6)

These equations are completely empirical, and as con-
cluded by Poelman et al10.  the results are not reliable. In
this study, Cauchy’s model was tested initially, but it was
abandoned as large errors were observed.

The  Forouhi-Bloomer  (F-B)  model  as  shown  in Eqs.
(7,  8) is  derived  from  Kramer-Kronig  (KK)  relations,
where Eg represents the optical band gap energy14,17,18. 

k (E) =
q∑
i

Ai(E− Eg)
2

E2 − BiE+ Ci
. (7)

 

n (E) = n (∞) +

q∑
i

B0iE+ C0i

E2 − BiE+ Ci
. (8)

The F-B  method  was  developed  to  model  the  interb-
and  region,  where  photon  energies  are  higher  than  the
bandgap of the material. The values for all the independ-
ent variables: Ai, Eg, Bi, Ci, n(∞) in Eqs. (8, 9) should be
known19.

A comprehensive overview of various methods for de-
termination of  optical  constants  has  been compiled  and
compared for  accuracy by Poelman et  al.8.  As  there  was
almost no  physical  information  about  the  thin  film  un-
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der study, dispersion models were not considered viable.
Further, the ellipsometry method demands additional in-
frastructure.  As  a  result,  determination  of  the  optical
constants using  the  reflection  and  transmittance  spec-
trums  was  the  only  alternative  that  was  deemed to  be  a
viable approach.

Another  method  to  derive  optical  constants  for  thin
films involves developing a model for calculating reflect-
ance and transmittance using independent variables, like
refractive index of substrate, thickness of film, refractive
index of film and extinction coefficient, symbolically rep-
resented as s(λ), d, n(λ) and κ(λ) respectively, and equat-
ing them to experimentally measured values of transmis-
sion and reflectance20−23. 

T (λ, s (λ) , d, n (λ) , κ(λ)) = T experimental (λ) .
(9)

 

R (λ, s (λ) , d, n (λ) , κ(λ)) = R experimental (λ) .
(10)

If  we  assume, λ, s(λ)  and d to  be  known,  then  this
problem  is  reduced  to  having  two  unknowns  with  two
equations.  However,  it  is  important  to  emphasize  here
that n(λ)  and κ(λ) are  not  merely  mathematical  con-
stants,  but  have  critical  physical  significance.  Hence,
there  are  multiple  combinations  possible  to  satisfy  the
equation which would not be physically acceptable.

Chambouleyron  et  al24,25. introduced  a  possible  solu-
tion to  this  indeterminate  system  by  developing  a  con-
strained optimization problem. In this method the prior
knowledge  of  the  behaviour  of  functions n(λ), α(λ)  was
used to limit  the possible  estimation parameters  to only
physically meaningful  values.  An  extension  of  this  nu-
merical method,  termed  Pointwise  Unconstrained  Min-
imization Approach (PUMA), was tested to derive optic-
al  constants  from transmittance data for  thin films with
thicknesses ranging from 98 nm to 1.2 μm26,27.

As the thin film discussed in this study is a novel ma-
terial,  it  was  not  possible  to  obtain  information  on  the

nature of  its  optical  properties  in  terms  of  optical  con-
stants or its response to incident photon energy. Hence,
neither PUMA  nor  any  dispersion  model  could  be  em-
ployed in the preliminary stages of this study. However,
once optical  constants  were  determined  by  the  imple-
mentation  of  different  analytical  models,  an  attempt  to
validate  this  method  was  made  using  PUMA,  which  is
described in the Experimental setup and method section.

The current research aims at determining optical con-
stants  and  using  them  as  indicators  to  explore  material
properties  of  nanofibrous  silicon  thin  films.  A  novel
method involving a combination of three distinct analyt-
ical  models  was  introduced;  it  determines  the  values  of
‘n’ and ‘k’ individually and validates  these values  by in-
putting them into an analytical  expression for  transmit-
tance. Additionally, an Artificial Neural Network (ANN)
was built to determine optical constants for opaque ma-
terials when only reflectance data is available. 

Experimental setup and method
A  picosecond  Ytterbium  pulsed  laser  (IPG  Germany)
was used to irradiate a pulsed laser beam onto an n-type
silicon wafer, with an orientation of <100> (one side pol-
ished-manufactured by  Czochralski  process).  The  ab-
lated  silicon  fibres  were  deposited  on  a  standard  glass
slide  substrate  held  in  a  vertically  parallel  position.  A
schematic  of  the  fabrication  setup  is  shown  in Fig. 1.  A
light  spectroscopy  instrument  (Ocean  Optics  UV-Vis
USB 2000+ & STS-NIR) was employed to record reflec-
tion and transmission spectra  in  visible  range  (400–750
nm) and near-infrared (NIR)  range (750–2500 nm),  re-
spectively.  The  details  of  this  fabrication  setup,  control
parameters,  mechanism of film ablation and deposition,
along with  the  experimental  setup  for  recording  reflec-
tion  and  transmission  spectra  have  been  described  in  a
previous study28.

The reflectance and transmittance data included a cer-
tain degree of noise. It was important to filter this noise
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Fig. 1 | Schematic of fabrication set-up. Figure reproduced with permission from ref.6, Elsevier.
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before using the data to determine optical constants and
other  material  properties.  Signal  smoothing  is  widely
used to  improve  the  signal-to-noise  ratio  without  signi-
ficantly distorting the signal data. The Savitzky-Golay fil-
ter (digital  smoothing polynomial/  least  square smooth-
ing  filter)  was  employed  to  track  the  input  data  more
closely  and  prevent  any  transient  effects  during  the
smoothing process29.

In Fig. 2 and Fig. 3,  the filtered data is  projected onto
the experimentally captured data to emphasize the effect-
iveness  of  the  Savitzky-Golay  filter  in  smoothing  the
data, at the same time, preserving the essence of the ob-
tained data.
 

Results and discussion
 

Theoretical prediction models
To develop a method to reliably and accurately determ-
ine optical  constants,  different  existing  analytical  meth-
ods  were  tested.  A  combination  of  three  models  was
found to  provide  the  most  accurate  and  repeatable  res-
ults  in  determining the  values  of  optical  constants.  This
approach  is  explained  below,  and  comprises Eqs.
(11–15).

To  make  comparisons  between  different  methods,  a
single  sample  of  silicon  nano-fibrous  thin  films  was

taken  as  a  standard.  The  manufacturing  parameters  for
this  sample  were  Power:  10  W,  Frequency:  1200  kHz,
Pulse  duration:  150  ps,  and  Scanning  speed:  100  mm/s.
Towards the end of the study, the suggested method was
validated  against  five  samples  produced  with  various
manufacturing parameters.

An analytical method was adopted which used a com-
bination  of  different  models  to  determine  the  values  of
‘n’ and ‘k’ individually.

The calculated values of optical constants are then val-
idated  by  inputting  them  into  an  analytical  expression
for  transmittance.  In Eqs.  (11 –15), R:  Reflectance, T:
Transmittance, d: thickness of thin film, n: refractive in-
dex, k: extinction coefficient, α: absorption coefficient.

A  relation  between  absorption  coefficient  (α) and  re-
flectance  and  transmittance  data,  as  shown  in Eq.  (11)
was provided by Pankove30,31. 

α =
1
d
ln

[
(1− R)2 +

[
(1− R)4 + 4R2T2

]
1/2

2T

]
. (11)

This relation  was  simplified  and  was  successfully  ap-
plied  in  the  form  as  shown  by Eq.  (12) by  Vitanov  and
others32,33. 

α =
1
d
ln

(
1− R
T

)
. (12)

In Eq.  (13),  experimentally  obtained  values  for R and
T are  inputted  to  find  absorption  coefficient  (α). A  fur-
ther extinction coefficient can be found using Eq. (13) as
demonstrated in previous publications12,32,33. 

k = αλ
4π

. (13)

Using Eqs.  (12)  and  (13),  the  values  for  extinction
coefficients  (k)  were  derived  for  all  corresponding
wavelengths  in  the  given  spectral  range.  An  expression
for calculating the refractive index is  shown in Eq.  (14).
This relation  employs  the  previously  calculated  extinc-
tion coefficient,  wavelength  values  and  amount  of  re-
flectance33−36. 

n =

[
4R

(R− 1)2
− k2

]1/2

−
(
R+ 1
R− 1

)
. (14)

It  is  crucial  to  validate  the  accuracy  of  this  analytical
approach,  and hence  an expression for  transmittance  as
shown in Eq. (15) was used. This analytical relation was
first  provided  by  Heavens37, and  has  been  experiment-
ally verified by others38,39. 
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T =
n2

n0

·
{
(1+ g1)2 + h2

1

}{
(1+ g22)

2
+ h2

2

}
exp (2α1)+(g21+h2

1 ) (g22+h2
2) exp (−2α1)+Ccos2γ1+Dsin2γ1

C = 2 (g1g2 − h1h2)

D = 2 (g1h2 + g2h1)

g1 =
n2
0 − n2

1 − k2

(n0 + n1)
2
+ k2

& g2 =
n2
1 − n2

2 + k2

(n1 + n2)
2
+ k2

h1 =
2n0k1

(n0 + n1)
2
+ k21

& h2 =
2 (n1k− n2k1)

(n1 + n2)
2
+ (k1 + k2)2

α1 =
2πkd
λ

& γ1 =
2πn1d
λ

, (15)

here  subscripts,  0:  air,  1:  thin  film,  and  2:  substrate.  In
this case, n0 = 1, n2 = 1.5.

As  shown  in Fig. 4, the  analytically  calculated  trans-
mittance using the model involving Eqs.  (11-15) fits  the
experimental  data  perfectly.  Experimental  transmittance
(Trans_exp)  and  analytically  calculated  transmittance
(Trans_an) were compared and it was found that Sum of
Squared  Errors  (SSE)  =  1.4602,  Mean  Absolute  Error
(MAE)  =  0.020,  and  Mean  Squared  Error  (MSE)  =
0.00114259. As the error is practically zero, it can be in-
ferred  that  the  optical  constants  determined  from  the
analytical model have been accurately validated with the
experimental data.

In Figs. 5 and 6,  the  refractive  index  and  extinction
coefficient  are  plotted  as  functions  of  wavelengths.  It  is
important to understand the trend and interdependence
between  these  two  properties.  For  wavelengths  between
464 and 514 nm, a decreasing trend in the value for the
extinction coefficient can be observed. In this region, the
extinction  coefficient  is  at  its  highest  value,  and  hence
the amount of light reflected and transmitted (Figs. 2 and
3) is  low, as most of the light is  absorbed. It  is  apparent
that  a  decrease  in  the  value  of  the  extinction  coefficient
leads to  an  increase  in  both  reflectance  and  transmit-
tance values, and hence refractive index is also observed

to  display  an  increasing  trend.  If  observed  closely,  it  is
evident that the refractive index and the reflectance spec-
tra  have  a  strong interrelation.  The trends  are  exhibited
by  the  refractive  index  are  mimicked  by  the  reflectance
spectra. In the region after 750 nm (NIR range), it can be
observed  that  there  is  a  rise  in  the  increasing  trend  of
transmittance. As a result of this, an expected decrease in
the  refractive  index  as  well  as  the  reflectance  spectra  is
observed.  This  change  in  optical  properties  with
wavelength is  crucial  for developing applications for the
novel  material  discussed  in  this  study.  The  pulsed-laser
fabricated  nanofibrous  silicon  thin  film  displays  strong
absorption properties for lower regions of the VIS spec-
trum  and  becomes  semi-transparent  for  wavelengths  in
the NIR  range.  The  nanofibrous  silicon  thin  film  de-
veloped  has  strong  absorption  properties.  At  632.8  nm,
its  extinction  coefficient  is  0.0044  whereas  in  a  typical
sample of  Si,  it  is  observed  to  be  0.01896923  with  a  re-
fractive  index  of  3.88.  This  is  substantially  higher  than
the nanofibrous thin film, which has a refractive index of
2.3640.
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Using the PUMA method28,29, the output data was ex-
amined, and it  can be observed that for determining re-
fractive  index  (n)  and  extinction  coefficient  (k)  from
both  (reflectance  and  transmittance)  spectra, k values
were  initialized and were  kept  fixed while  only n values
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were varied continuously (Figs. 7–9).
A  similar  trend  was  noted  when  the  simulation  was

implemented  for  predicting  ‘n’ and  ‘k’ values  from  the
reflectance  spectrum  alone.  The  refractive  index  was
fixed this time after initialization and only the extinction
coefficient was varied. Further, the prediction of k values
(from  reflectance  data  only)  was  so  erroneous  that  it
could not even be accommodated for comparison in Fig.
8,  and  a  separate Fig. 9 is displayed  to  show  the  differ-
ence between the actual analytically calculated values and
the PUMA prediction for extinction coefficient. The sim-

ulation appears to have failed as it is supposed to optim-
ize n and k values for each point.

When the model was analyzed by Mulato et al.28 there
were some limitations or exceptions that were found, one
of them was that the accuracy in predicting optical con-
stants  is  lower  at  high  photon  energies  or  for  lower
wavelengths.

There are two major reasons this method did not work
for the above-mentioned nano-fibrous thin films:

1).  This  method  was  tested  by  Mulato  et  al.28,  it  was
found that  the  predictions  fail  when  there  is  a  discon-
tinuity  in  the α vs hv curve.  This  failure  occurs  when it
starts  predicting  constant  values  for α and hence  con-
stant values for k. As has been demonstrated in28, the α vs
hv curve for nanofibrous silicon thin film is  discontinu-
ous,  and  it  was  correctly  observed  that  this  numerical
method started predicting constant values for k after the
initialization.

2).  As  mentioned previously,  the  numerical  approach
assumes  that n and k are  decreasing  functions  of
wavelength, which is not true in this study as it  was ob-
served that n(λ) first increases, reaches a peak value and
then declines sharply (as shown in Fig. 5).

As discussed earlier,  PUMA was implemented to find
optical  constants  from  reflectance  data  only  and  also  to
serve as secondary validation for our model.

It can be inferred from Figs. 10 and 11 that when op-
tical  constants  determined  by  the  PUMA  method  were
inputted  into  our  analytical  expressions  for  reflectance
and  transmittance,  the  resulting  spectra  were  for  the
most  part  close  to  the  analytical  and  experimental  data.
This  serves as  an important indicator that  the analytical
expressions for reflectance and transmittance used in our
study are  very  similar  to  the  equations  used  via  uncon-
strained optimization29 for optical constants to fit the ex-
perimentally  obtained  transmittance  and  reflectance
spectra.  Hence  PUMA  was  an  important  evaluation
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which enabled us to understand the problems with com-
plex optimization.  It  also  serves  as  a  secondary  valida-
tion for the analytical approach used in this study.
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Fig. 11 | PUMA model evaluation with experimental reflectance.
  

Artificial neural networks
For  thin  films  deposited  on  opaque  substrates,  only  the
reflectance spectrum is available and hence the analytic-
al  approach discussed earlier becomes an indeterminant
problem. To solve this, it was intended that the thin film
would first be deposited on glass substrates and the ana-
lytical approach  described  above  would  be  used  to  de-
termine the  optical  constants.  This  would  provide  reli-
able insights about the material’s optical properties. Now
the film could be deposited on an opaque substrate, and
the reflectance data for this system, consisting of the thin
film and the opaque substrates, would be recorded. Thus,
the reflectance data combined with knowledge of the op-
tical  properties  of  the  nano-fibrous  thin  film  could  be
used in  an  optimization  algorithm  with  precise  con-
straints,  as to limit the solution to only physically viable
results. However,  we  realized  that  determination  of  op-
tical constants  from reflectance  data  using  an  optimiza-
tion algorithm is complex and unreliable, as its effective-
ness  may  differ  when  the  material  properties  are
changed. This was seen in the case of PUMA, where the
assumptions made were not suitable for the nanofibrous
thin film discussed in this study28.

Previously,  Costa  et  al41.  emphasized  the  problem  of
classical optimization  algorithms  falling  into  local  min-
ima during determination of optical constants and intro-
duced  a  self-adaptive  Genetic  Algorithm  to  avoid  local
minima  and  to  accurately  determine  optical  constants
for  dispersive  and  absorbing  materials  in  the  visible
range. Ma et al42.  demonstrated and trained a very basic
single layer Back Propagation system to evaluate the op-
tical  constants  of  a  mono-layer  thin  film.  Tabet  et  al43.
have implemented ANNs to predict the fitting constants

in Cauchy’s dispersion model, which were integrated in a
measurement program to find film thickness and refract-
ive  indices  of  transparent  films  in  the  visible  region.
Jakatdar et al44. introduced an approach to increase com-
putation efficiency of Artificial Neural Networks (ANNs)
with  the  Adaptive  Simulated  Annealing  algorithm  and
used it to determine optical constants from ellipsometry
signals.

An ANN model  implementing a  trained Deep Learn-
ing Network (DLN) would have an internal function re-
lating  wavelength  and  reflectance  spectrum with  optical
constants, and  as  this  would  be  a  self-developed  optim-
izer. It should prove to be one of the most reliable meth-
ods to determine optical constants from reflectance data
alone. The procedure would be similar to the one inten-
ded  for  constrained  optimization.  Initially,  thin  films
would  be  deposited  on  glass  substrates,  reflectance  and
transmittance spectra would be solved using the analytic-
al  approach  as  described  before,  and  then  the  optical
constants would be related to corresponding wavelengths
and  reflectance  data.  This  dataset  would  be  inputted  as
training data for the ANN Model  which through super-
vised  learning  would  develop  a  function  which  accepts
wavelength and reflection data as input and predicts the
corresponding optical constants. Finally, reflectance data
from opaque thin films would be inputted to this trained
ANN and the model would accurately predict the optical
constants for the new input data.

On a conceptual level, an ANN is a computational net-
work, which  consists  of  interconnected  systems  of  indi-
vidual  artificial  neurons.  This  system  is  inspired  by  the
nerves in human brain and is programmed to mimic the
working of biological neurons. As previously reported by
ref.45, in a single artificial neuron, weights and biases are
tuning parameters which are developed over iterations as
the network gets trained. Any deep neural network con-
sists  of  a  large  number  of  artificial  neurons  arranged  in
different  layers:  input  layer,  hidden  layers  and  output
layer. In this study, a densely connected network was im-
plemented  in  which  each  neuron  in  the  hidden  layers
was connected to  every  other  neuron in  its  correspond-
ing input and output layers. 

Developing a deep learning predictive model
A python library – ‘Keras’ – was employed for develop-
ing  the  deep  learning  model.  Keras  is  known  to  be  a
powerful  tool  and provides  different  building blocks for
creating  deep  learning  networks.  There  are  two  major
frameworks  in  Keras.  One  of  them  is  Sequential  API,
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which was  implemented  in  this  study.  A  built-in  con-
struct termed  as  Sequential  was  used  to  develop  indi-
vidual  layers  of  the  deep  learning  network.  In  the  code
implemented to predict optical constants, a dropout per-
centage  of  20%  was  used.  This  drops  out  some  of  the
tuned  weights  and  is  an  important  measure  to  avoid
over-fitting of the model to the training data46.

An  important  factor  in  developing  the  deep  learning
model  was  determining  the  solution  for  the  underlying
optimization  problem.  An  optimization  algorithm
termed ‘Adam’ was implemented in this study to predict
the optical constants. This optimization problem was ex-
pressed in form of a loss function, in this case: Minimiza-
tion  of  Mean  Squared  Error.  The  Adam  algorithm  is  a
Stochastic Gradient Descent method, which is one of the
most  common and computationally  efficient  algorithms
for  solving  optimization  problems45.  This  optimization
algorithm is appropriate for large scale noisy data and re-
quires low tuning compared to alternative methods.

The  flowchart  of  the  algorithm  is  shown  in Fig. 12.
The  network  for  deep  learning  along  with  parameters
like number of hidden layers, dimensions of layers, activ-
ation  functions,  etc.,  were  developed  by  trial  and  error
method  over  several  iterations,  and  the  parameters
providing the best results were finalized.

The  network  used  in  this  study  is  represented  in Fig.

13.  This  ANN  has  6  neuron  layers.  The  network  starts
and ends with a single neuron; the second, third, fourth
and fifth layers consist of 10, 20, 20 and 10 densely con-
nected  neurons  respectively.  The  input  layer  accepts  a
two-dimensional  array,  and  therefore  a  single  neuron
can accept both wavelength and reflection data. The lay-
ers  in  this  network  use  ReLU  activation  function  as  it
showed  the  best  accuracy  as  compared  to  sigmoid  and
tanh  activation  functions.  Gradient  Descent  used  by
Adam maintained a learning rate (α) of 0.001 for all  the
weight updates. As the network was trained, each nodu-
lar weight was continuously updated47.
  

Visible input

layer 1 neuron 

2nd dense hidden layer

20 neuron 

3rd dense hidden layer 

20 neuron 

4th dense hidden 

layer 10 neuron 

Output 

layer

1 visible 

neuron 

Adaptive weights

1st dense hidden layer

10 neuron 

Fig. 13 | Deep Learning Model developed.
 

For  a  single  sample,  inputs  are  wavelength (from 466
to  885  nm)  and  experimental  reflection  data;  the  total
number  of  data  points  was  1278,  as  per  the  standard
practice  the  data  was  split  into  900  for  training  (70%)
and 378 for  testing  (30%).  For  five  samples  data,  inputs
are  wavelength  (from 176 to  885  nm) and experimental
reflection data; for result with 5 samples (manufacturing
repeatability)  the  total  number  of  data  points  was  2048,
as per the standard practice the data was split  into 1433
for training (70%) and 615 for testing (30%).

The ANN model was implemented on this sample and
the  predicted  refractive  index  (n)  and  the  extinction
coefficient (k) were compared to ideal values determined
using  the  analytical  approach.  It  was  found  that  the
ANN-predicted  values  were  very  accurate  as  is  evident
from Figs. 14 and 15. The predicted values almost  over-
lap the  analytical  determined,  or  in  other  words,  expec-
ted values.  The  statistically  important  errors  in  predict-
ing  ‘n’ and ‘k’ values were  calculated.  These  various  er-
rors  were  used  to  understand  the  accuracy  of  a  model
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Fig. 12 | Flowchart for deep learning algorithm.
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and serve  as  means  for  model  evaluation  and  bench-
marking. The errors for ‘k’ and ‘n’ values are displayed in
Tables 1 and 2, respectively. R2 value is a statistical meas-
ure  for  goodness  of  fit  of  predicted  data  with  expected
data, and is a critical parameter to understand the accur-
acy of any regression model. Statistically, a R2 value of at
least 60% is required for the model to be considered ac-
curate. The ANN model in this case gives R2 value of 98%
and 86.7% for k and n, respectively.
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Fig. 14 | Comparison  of  model-predicted  extinction  coefficient
with analytical values.
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Table 1 | Prediction of extinction coefficient (k).
 

K_Mean absolute error 0.000418969

K_Mean squared error 2.6281E-07

Sum_K.sq error 9.93422E-05

R2 0.987741346

 
 

Table 2 | Prediction of refractive index (n)
 

N_Mean absolute error 0.023172839

N_Mean squared error 0.000574442

Sum_N.sq error 0.217139095

R2 0.867649736
 

Validation of analytical approach and deep learning
algorithm
The accuracy  of  analytical  and  ANN  models  was  con-
firmed for our standard sample. For the purpose of valid-
ating  the  methodology  introduced  in  this  study,  it  was
necessary  to  check  its  conformance  with  nano-fibrous
silicon thin  films fabricated using different  manufactur-
ing parameters.

The  following  manufacturing  parameters  (Table 3)
were  kept  constant,  Power  (W):  100,  Scanning  speed
(mm/s): 100, Pattern pitch (mm): 0.0025; RT: room tem-
perature.
  

Table 3 | Manufacturing parameters.
 

Frequency (kHz) Pulse duration (ps) Temperature (°C)

Sample 1 600 150 RT

Sample 2 900 150 200

Sample 3 1200 150 RT

Sample 4 1200 150 600

Sample 5 1200 5000 RT
 

The proposed analytical approach for determining op-
tical constants for porous thin films was validated as the
MSE  for  analytical  and  experimental  transmittance  is
practically  zero  (Table 4).  Further,  the  ANN  model  was
validated as the predicted values for ‘n’ and ‘k’ were com-
pared  with  analytically  determined  values  and  it  was
found that the MSE and MAE are approximately zero.

Also, the high R2 values suggest a high accuracy of the
ANN regression algorithm to predict data which are very
close  to  the  expected  data.  As  mentioned  earlier,  an R2

value of at least 60% is required for the model to be con-
sidered  accurate.  The  ANN  model  in  this  case  gives R2

values in the neighbourhood of 95%.
Based on these results, it can be concluded that the hy-

brid methodology  introduced in  this  study  has  been re-
peatedly  validated  for  samples  produced  with  different
manufacturing parameters  and  a  high  degree  of  accur-
acy can be expected for predicting optical constants with
only reflectance data from this methodology. 

Implementation of the ANN model for calculation of
bandgap energy
The absorption  coefficient  (α)  of  a  thin  film,  which  is  a
function  of  absorbance,  is  an  important  parameter  to
study,  as  the  photon  energy  absorbed  by  any  material
serves  as  an  indicator  of  the  bandgap  energy  and
provides an  insight  into  its  material  properties.  The  ab-
sorbance  spectrum  can  be  derived  from  reflection  and
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A = 1−
(R+ T)
transmittance  spectra  by  using  the  relation, 

13.
The thin film fabricated from laser-ablation of silicon

has a porous structure6, and mainly consists of a combin-
ation of air, silicon (amorphous and crystalline), and sil-
icon dioxide (SiO2). The relation between the imaginary
part  of  dielectric  (function  of  absorbance)  and  photon
energy for a thin film was analyzed by Rouard et al.48,49.

Mistrik et al.7 have defined various absorption regions
for  semi-conductors,  and  based  on  their  classification,
three distinct  regions  can  be  identified  for  the  nan-
ofibrous  silicon  thin  films  discussed  in  this  study  (Fig.
16).

They are described below as:
1) Free-carrier absorption: This is caused due to pres-

ence of free electrons and holes; the effect is observed to
decrease with an increase in photon energy.

2)  Exciton  absorption  peaks:  An  exciton  is  a  photon
absorbed to form an electron and hole pair.  This pair  is
bonded  due  to  the  interaction  of  coulomb  attraction.
Traditionally,  exciton  phenomena  are  observed  in  cases
where  a  crystalline  structure  is  present.  Exciton  regions
are  characteristic  peaks  which  occur  before  the  region,
where  absorption  is  due  to  the  band  gap  –  also  called
fundamental absorption edge – and are subjected to sat-
uration. As the electron-hole pair is bonded together, the
absorbed energy is confined inside the material until the
exciton exists.

hν > Eg ν

3) Fundamental absorption: This is also termed band-
to-band  absorption  of  photons  and  occurs  when  the
photon energy  is  greater  than the  band gap.  Hence  as  a
result,  electrons  are  excited  from  valence  to  conduction
band.  This  indicates  that  in  this  region,  the  condition

 is always true (where h: Planck’s constant, : fre-
quency  of  light  and Eg is  the  band  gap).  In  most  of  the
semiconductor  materials, Eg varies inversely  with  tem-
perature and refractive index. Hence semiconductors ex-
hibiting  wider  energy  band gaps  have  a  lower  refractive
index. 

Optical band gap of nanofibrous silicon thin film

(hν)
(αhv)x

The optical  bandgaps  of  semiconductors  and  amorph-
ous materials are widely determined using Tauc’s meth-
od50.  Photon  energy  is  plotted  on  the  abscissa  and
the quantity  on the ordinate; the value of x is de-
pendent on the nature of transition observed in the ma-
terial. Table 5 shows the band gap information for differ-
ent silicon structures available in the literature7.
 
 

Table 5 | Band gap information for various silicon structures7
 

Semiconductors Crystal structure Eg (T=300K) Type of band gap

Si Diamond 1.12 Indirect

a-Si:H Amorphous 1.7 to 1.8 Indirect

SiC(α) Wurtzite 2.9 Indirect
 

hν (αhv)x

(αhν)x = A (hν − Eg)

According  to  Tauc’s  method,  vs  plot  has  a
distinct  linear  region  which  marks  the  onset  of  strong
absorption,  and  therefore  extrapolation  of  this  region
will  give  the  corresponding  optical  band  gap;  in  other
words, a  tangent  is  drawn from this  linear  region to  in-
tersect  the  abscissa.  The  relation  between  bandgap  (Eg),
absorption  coefficient  (α),  and  energy  of  incident  light
(hv)  is  widely  agreed  upon38 and  is  given  by:

; where A is a constant, and x is de-
pendent  on  type  of  material  and  transition  (direct  and
indirect).

Al-Kuhaili et al51. further provided a detailed explana-
tion of the procedure to calculate band gap from Tauc’s
plot50.  At  the  point,  at  which  the  extrapolated  linear

 
Table 4 | Validation of proposed methodology.

 

Sample MSE of Transmittance MAE of k MAE of n MSE of k MSE of n R2 value of k R2 value of n

1 1.91E–09 5.47E–04 8.33E–02 4.77E–07 1.39E–02 0.98 0.97

2 9.65E–11 7.74E–04 9.70E–02 1.00E–06 1.50E–02 0.97 0.97

3 1.87E–09 6.67E–04 1.04E–01 6.55E–07 2.20E–02 0.97 0.96

4 6.44E–10 1.04E–03 2.22E–01 1.79E–06 6.86E–02 0.90 0.88

5 3.97E–10 7.48E–04 1.05E–01 9.58E–07 1.79E–02 0.97 0.97
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Fig. 16 | Absorption regions for fabricated silicon thin film.

Opto-Electron Adv  4, 210039 (2021) https://doi.org/10.29026/oea.2021.210039

210039-10

 



(αhv)x

αhv E = hv
E = Eg

portion of  curve intersects the abscissa, the value
for  = 0 and the corresponding energy,  is the
band gap energy ( ).

(αhv)x

x = 1/2

There is a debate in the literature for selecting a value
of x for semiconductors  in  order  to  obtain  a  comparat-
ively  linear  curve14,52.  In  this  study,  we  consider

 as  it’s the  widely  used  value  for  indirect  trans-
ition, as is the case with silicon thin films14,38,49,50.

E (eV) = hν = 1240
λ (nm)

Thus, 53.

(αhv)1/2

Eg

Eg ≈ 1.648

A tauc plot was drawn for the nanofibrous silicon thin
film  discussed  in  this  study  (Fig. 17).  A  tangent  was
drawn  to  the  linear  region  of  curve and  exten-
ded to intersect  the abscissa.  As a  result,  the  novel  nan-
ofibrous  thin  film  has  an  optical  bandgap  energy  ( )
equivalent  to  the  point  at  which  the  tangent  intersects
the abscissa, hence for our standard sample, .
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Fig. 17 | Tauc’s Plot for determining optical bandgap.
 

The  optical  bandgap  value  (Eg)  for  the  standard
sample was found to be in neighbourhood of the expec-
ted values for bandgap energies for silicon and its deriv-
ates49. This bandgap value renders the material useful for
solar energy conversion51,54.

This information  is  valuable  for  interpretation  of  op-
tical and photoconductive properties of nanofibrous thin
films. 

Conclusion
In this study, a reliable method was developed and optic-
al constants for nano-fibrous silicon thin films were de-
termined. An analytical approach was introduced to find
optical constants, and the error between analytically cal-
culated transmittance and experimental data was practic-
ally zero. An open source optimization method (PUMA)
was  tested,  but  it  failed  to  determine  optical  constants
from  the  reflectance  spectrum  alone  (opaque  material).

This  was  because  some of  the  assumptions  made  in  the
PUMA model  were  found  not  to  be  true  for  the  nan-
ofibrous silicon thin film discussed in this  study.  As the
existing optimization  methods  described  in  the  literat-
ure  were  not  effective  for  determining  optical  constants
for an opaque material,  a Supervised Deep Learning Al-
gorithm was developed, and an ANN was built to accur-
ately predict optical constants from the reflectance spec-
trum alone. The hybrid method, combining the analytic-
al  approach  and  the  deep  learning  algorithm  proved  to
be effective, with nearly zero errors and 95% accuracy in
prediction.  Optical  constants  were  used  to  explore  the
optical  properties  of  the  materials,  and  the  band  gap  of
this  novel  material  was  calculated.  The  ANN  model  in
this  case  gives R2 values  in  the  neighbourhood  of  95%.
High R2 values suggest  a  high  accuracy  of  the  ANN  re-
gression algorithm. It can be concluded that the method-
ology introduced in this study shows a high repeatability
as it has been validated for samples produced with differ-
ent  manufacturing parameters,  and hence a  high degree
of  accuracy  can  be  expected  from  this  methodology  for
predicting optical constants with only reflectance data.

The major  contribution  of  this  study  was  to  determ-
ine  optical  constants  for  nano-fibrous  thin  films.  The
analytical  model was validated and there was conclusive
proof that the optical constants calculated were accurate.
Further, the ANN model was built and found to be reli-
able  in  predicting  using  reflectance  data  only.  The
motive behind building the ANN model was to determ-
ine optical  constants in the case of  opaque thin films or
substrates.  However,  the  scope  of  this  contribution  did
not  include  the  study  and  experimental  analysis  of  the
generation of opaque thin films.

The future scope of this study would be to use the con-
stant manufacturing parameters to develop thin films on
transparent  (glass)  and  opaque  substrates.  The  spectral
data  for  transparent  thin  films  can  then  be  used  in  the
analytical model to determine the optical constants. The
calculated optical  constants  would then be used to train
the  ANN  model.  The  reflectance  data  of  opaque  thin
films  would  then  be  used  in  the  trained  ANN model  to
predict  the  optical  constants.  These  predicted  optical
constants can then be inputted into the analytical model
for reflectance,  and  the  accuracy  of  ANN-predicted  op-
tical constants would be validated with experimental re-
flectance data.

As a result, using the ANN network, it would be pos-
sible to determine optical constants for opaque materials
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from reflectance data alone.
Further future work can use this hybrid method to de-

termine  optical  constants  for  thin  films  fabricated  from
other materials like titania, gold nanoparticles, etc.
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