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Underwater image enhancement based on 
red channel weighted compensation and 
gamma correction model 
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Due to the special characteristics of light in water, the information of the red channel is seriously attenuated in collected 
image. This causes other colors to dominate the image. This paper proposes an underwater image enhancement algo-
rithm based on red channel weighted compensation and gamma correction model. Firstly, by analyzing the attenuation 
characteristics of RGB channels, the intensity and the edge information of red channel are compensated by weighting
the attenuation coefficient ratio between different channels to correct the chromaticity. Then the gamma correction model 
is employed to stretch the intensity range to enhance the contrast which makes the image look clearer. The experimental 
results show that the proposed algorithm can correct the color cast effect and improve the contrast by nearly 2 times for 
the underwater images with too much red component attenuation. 
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Introduction 
The ocean contains a large amount of resources, and the 
video acquired by underwater imaging equipment is es-
sential when exploring marine resources1. In recent years, 
more and more underwater robot equipments have been 
put into applications. Underwater resource exploration, 
underwater facilities maintenance, and submarine tour-
ism require a large amount of underwater data2. Due to 
the special optical environment in ocean, the acquired 
video is prone to suffer from quality degradation such as 
color shift, edge blur and contrast reduction3. Degraded 
images cause huge trouble for subsequent research work4. 
Therefore, underwater imaging has received much atten-
tion and many scholars have done a lot of researches5. 

The current improvement methods of underwater im-
ages mainly fall into two categories6: One category is 
based on traditional underwater image enhancement 
algorithms such as histogram equation7, wavelet trans-
form8, sharpening9 and Retinex10 etc. They do not con-

sider the principle of underwater imaging, but mainly 
optimize the color or contrast by adjusting the pixel val-
ues. In 2007, Iqbal et al.11 proposed an underwater image 
enhancement algorithm using an integrated color model 
(ICM) based on sliding histogram, which successively 
stretched in RGB and HSI color gamut to enhance the 
image. But the algorithm needs to manually adjust the 
parameters according to the input image. In 2010, Iqbal et 
al.12 proposed an unsupervised color correction method 
(UCM) based on Von Kries hypothesis (VKH) and selec-
tive histogram stretching. The UCM algorithm can effec-
tively improve the brightness, but the restored image still 
shows chromaticity unevenness. In 2015, Ghani et al.13 
used the Rayleigh distribution function to redistribute the 
original image based on Iqbal’s work. This algorithm can 
improve the contrast of the image, but it is easy to intro-
duce noise and reduce the signal-to-noise ratio. The other 
category is based on image restoration algorithm which 
establishes scattering model to reconstruct clear image. 
Zhao et al.14 modeled the background light of the scatter-
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ing model to provide optimized parameter design for 
underwater imaging system under natural light and arti-
ficial lighting conditions. But the experimental results 
under this model had not been given by the authors. 
Since the underwater environmental model is similar to 
the natural outdoor imaging model, many researchers 
applied the Dark Channel Prior (DCP) dehazing algo-
rithm proposed by He et al.15 to underwater image resto-
ration. Li et al.16 used the guided triangular bilateral fil-
tering based on the DCP algorithm to restored underwa-
ter image. But the image is overall dark after processing 
with this algorithm. Yang et al.17 proposed to use mini-
mum and medium filtering instead of soft matting to 
reduce computational complexity based on DCP. This 
algorithm uses color correction to improve the contrast, 
but low quality restoration results limit the visual effect of 
the output image. Drews et al.18 proposed an underwater 
DCP (UDCP) algorithm based on blue-green channel to 
estimate more accurate transmission map. But the re-
stored image is prone to brightness saturation. Image 
restoration based on dehazing model is often accompa-
nied with complex calculation which is not suitable for 
real-time video system. 

Take typical image taken at a depth of about 10 m in 
the Bohai Sea by Yantai Institute of Coastal Zone Re-
search, Chinese Academy of Sciences as an example, the 
red component in the image is attenuated sharply. The 
blue-green background dominates the whole image. And 
the captured image is blurred. For images in similar 
scenes, we tested a variety of existing underwater en-
hancement and restoration algorithm. But the results af-
ter processing are not satisfactory. It is still challenging to 
restore images with red component attenuation. In this 
paper, a new underwater enhancement algorithm for sim-
ilar complex scenes is proposed without estimating com-
plex water parameters. The following arrangements are as 
follows: At first, we analyze the characteristics of typical 
ocean image attenuation and describe problems pertain-
ing to underwater images. Then the enhancement model 
and algorithm are introduced in detail. Next we compare 
the experimental results with other literatures and con-
clude this paper in the end. 

Characteristics analyze on typical 

underwater images 
Water absorbs light with longer wavelength significantly. 

Most of the red light can only penetrate 2–3 m19. The light 
of different wavelengths decays with depth in water as 
shown in Fig. 1. In addition, underwater imaging is also 
affected by other factors such as distance, turbidity of 
water and illumination. The attenuation of underwater 
light during propagation is consistent with Lambert-Beer 
law20. The law states that the attenuation of light in the 
medium is exponentially related to the transmission dis-
tance, as shown in equation (1): 

( ) exp[ ( )]λ λt x β d x   ,            (1) 
where λβ  is a transmission factor related to wavelength 
λ. d(x) is the transmission distance. And ( )λt x  is the 
transfer function of light.  

 
The typical images collected about 10 m deep in the 

Bohai Sea are shown in Fig. 2. Obviously, the green color 
dominates the whole image.  

As shown in Fig. 3, we separate the RGB channels and 
calculate the data distribution in different channels. The 
grayscale values in the red channel are basically distrib-
uted in the extreme left side of the histogram. The edge 
features in the red channel are seriously lost, which re-
sults in uneven color distribution in RGB image. The 
channel with missing information is a great obstacle to 
the subsequent image restoration. Therefore, it is very 
meaningful to propose an algorithm to estimate the pixel 
intensity and edge information in the red channel. 

Proposed algorithm 

Red channel weighted compensation  
In RGB color space, different ratios of the three primary 
colors can produce various intermediate colors, such as 
white when the values of three primary colors are [255, 
255, 255]. If the images are captured in outdoor condi-
tions, the color of the sky background or artificial lighting 

Fig. 1 | Light absorption at different wavelengths underwater.
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area should tend to be at the vertex of the RGB color cube, 
as shown in Fig. 4. In theory, the pixel value in the red 
rectangle in Fig. 4(a) should approach the value in Fig. 
4(b). The absence of red channel’s information in Fig. 4(a) 
causes the background to be blue-green.  

The Gray World21 algorithm considers that for an im-
age with large numbers of color changes, the average val-
ue of RGB channels tends to the same gray value. Simi-
larly, when a natural image in outdoor condition is sepa-
rated into RGB channels, it can be found that the sepa-
rated three images are similar in the edge. In DCP algo-
rithm, the guided image is selected as any of the separated 
RGB images when using guided filtering22 to refine the 
transmission map. The typical images collected in Bohai 
Sea are mainly attenuated in red channel. The intensity 
and edge information are almost completely missing in 
red channel while the blue and green channels still retains 
the edge features. So we consider using the information of 
other channels to compensate the red channel. 

The experiment results23 show that there is an ap-
proximate linear relationship between the underwater 
scattering coefficient λb  and the wavelength λ. They 
derived this inference by analyzing the data of nine wave-
lengths collected in different waters using least squares 
regression analysis. This inference was widely quote by 
later scholars. It can be formulated as follows: 

r( 0.00113 1.62517) ( )λb λ b λ    ,      (2) 
where rλ  is the reference wavelength depending on the 
property of the measuring device (i.e. 555-nm for an AC9 
meter in Ref. 23). In this paper, we only consider the pro-

portional relationship of the scattering coefficient of dif-
ferent wavelengths, so r( )b λ  does not need to be ob-
tained by additional means in advance. We select the 
wavelength of red, green and blue to be 620 nm, 540 nm 
and 450 nm. 

The attenuation coefficient λc  for different wave-
length λ is inversely proportional to its corresponding 
background light λB , and is proportional to the scatter-
ing coefficient λb 24. So the ratios of attenuation coeffi-
cient between three channels can be calculated as follows: 

g g r,

r r g,

c b B
c b B





  ,               (3) 

b r,b

r r b,

b Bc
c b B





  ,               (4) 

where ,λB   is the background light at infinity. We take 
the brightest 0.1% pixels in each channel as the back-
ground light in this paper.  

The attenuation of the underwater image remains ap-
proximately unchanged in a local region. So median fil-
tering is adopted to keep the local intensity information 
of each channel. Define the three channels after filtering 
as medR , medG  and medB : 

med medfilt ( )R f R  ,            (5) 

med medfilt ( )G f G  ,            (6) 

med medfilt ( )B f B  ,            (7) 
where fmedfilt is the median filtering operation on each 
channel. The size of filtering widow is defined as 15×15. 

We know that the attenuation in red channel is strong 

Fig. 3 | RGB channels and corresponding histogram distribution. (a) Original image. (b) R channel. (c) G channel. (d) B channel. (e) Histo-

gram distribution of R. (f) Histogram distribution of G. (g) Histogram distribution of B. 

Fig. 4 | (a) Underwater image. (b) Estimated theoretical value in red rectangle. (c) RGB color cube. 
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while the attenuation in green and blue channels is weak, 
so we compensate the intensity information of red chan-
nel based on the other two channels. Define the compen-
sation coefficients of three channels as rω , gω  and bω . 
According to the attenuation ratio, the compensation 
coefficients are normalized to: 

g 1b
r

r r

(1 )
c c

ω
c c

    ,               (8) 

g g 1b
g

r r r

(1 )
c c c

ω
c c c

     ,            (9) 

g 1b b
b

r r r

(1 )
cc c

ω
c c c

    .            (10) 

Then the red channel after weighted compensation can 
be calculated as: 

new r g bR ω R ω G ω B      ,         (11) 
As shown in equation (11), if the intensity and edge 

information has been attenuated to a very low level, the 
information in the red channel can be compensated in 
this way. Note that the edge information is blurred after 
median filtering, so guided filtering22 is applied to refine 
the compensated red channel. The guided filtering filters 
the target image q through a guided image I, making the 
final output image similar to the target image q in inten-
sity, but the edge similar to the guided image I. The out-
put image q and the guided image I can be represented by 
the following local linear model: 

,i k i k kq a I b i ω      ,           (12) 
where i, k is the pixel index, and a, b is the coefficient of 
the linear model when the window located at k. 

Since the green channel is rich in edge, we use green 
channel as the guided image to refine the compensated 
red channel newR  to obtain the final output red channel 

GF
newR . Finally, the compensated red channel and the green, 

blue channel are combined into a new RGB image. The 
flow of red channel weighted compensation is shown in 
Fig. 5. Figure 5(a) is the original image. Figure 5(b) is the 

red channel after local intensity compensation. Figure 5(c) 
is the red channel after guided filtering on Fig. 5(b), and 
Fig. 5(d) is the final compensated image. It is obvious that 
the red channel is compensated and the background is 
bright and natural. 

Gamma correction model 
After compensating the background color in the previous 
part, the resulting image temporarily retains low contrast 
and poor visual effect which is not satisfactory enough. 
So in this part, we use a method based on grayscale 
stretching to improve the contrast of the image.  

Firstly, we calculate the histogram distribution of three 
channels on the compensated image as shown in Fig. 6(a). 
Then the cumulative histogram can be calculated ac-
cording to the histogram, so that the cumulative propor-
tion is sorted by intensity as shown in Fig. 6(b). The 
gamma correction is based on the whole intensity distri-
bution of the image. Considering the extreme points in 
the image such as noise caused by the environmental 
conditions or the imaging sensors, we search the maxi-
mum and minimum values in the original image by 
means of range search. Based on the previous data analy-
sis, the grayscale value of the three channels is only dis-
tributed in a partial range. We define the minimum value 
before stretching as Ilow and search for Ilow as follows: 

low 10{ | min( ( ) ), 0 255}i
jI i hist j r i     ,  (13) 

where 0 ( )i
j hist j is the proportion of pixels whose in-

tensity is less than or equal to i, and r1 is the pre-set value. 
Similarly, we define the maximum value before 

stretching as Ihigh and search for Ihigh as follows: 

high 20{ | min( ( ) ), 0 255}i
jI i hist j r i     ,  (14) 

where 2 11r r  . 
The process of selecting the stretching interval [Ilow, 

Ihigh] in the cumulative histogram is shown in Fig. 6. In 
order to facilitate the reader’s viewing, we set 1r =0.1 in 
Fig. 6(b). Then its corresponding abscissa is the selected 
Ilow. Ihigh can be obtained in the same way. 

Fig. 5 | (a) Original image. (b) Red channel after compensation. (c) Red channel after guided filtering. (d) New RGB image. 

Fig. 6 | (a) Histogram. (b) Cumulative histogram. 
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We define the range after stretching as [Olow, Ihigh]. 
Theoretically, the image gets the maximum contrast when 
the range is [0, 255] after stretching. We use the following 
gamma correction formula to do the stretching. 

low low

low
low high low low high

high low

high high

                                        , ( )
( )

( ) ( ) ( ) ,  ( )

                                        ,  ( )

γ

O I x I
I x I

O x O O O I I x I
I I

O I I x

 


      
 

. 

    (15) 
In the original image, the pixel whose grayscale value is 

less than Ilow is assigned to Olow in the output image. The 
pixel whose grayscale value is greater than Ihigh is assigned 
to Ohigh. For the correction parameter γ, the range close to 
Ilow is stretched and the range close to Ihigh is compressed if 
γ<1, the image will become brighter. On the contrary, if 
γ>1, the image will become darker. The gamma correc-
tion model is shown in Fig. 7. 

 
The process of image after weighted compensation and 

gamma correction is shown in Fig. 8. The image shown in 
Fig. 8(c) is the result when r1=0.01, r2=0.99 and γ= 0.8. 
The contrast is significantly improved on the basis of 
weighted compensation. For typical image collected in 
Bohai Sea, the restoration results are shown in Fig. 9 
when γ ranges from 0.3 to 1.5. When γ= 0.3, the overall 
brightness is enhanced and the upper part of the image is 
supersaturated. As γ increases, the brightness of image 
gradually decreases. It is obvious that the restored image 
has a more natural visual effect.  

Another advantage of this algorithm is that the transi-
tion between bright area and other areas is smooth which 
can prevent distortion from external lighting sources. 
More experimental results are shown in the next section. 

Results and discussion 
The experimental video is captured with a GoPro camera 
at a depth of about 10 m in the Bohai Sea by Yantai Insti-
tute of Coastal Zone Research. The experiment hardware 
platform is a desktop with Inter(R) Core(TM) i5-6500 
CPU@3.20 GHz, 16G RAM and NVDIA GTX 950, and 
the testing software is VS2013 running on Windows 10. 
In order to verify the versatility of the proposed algorithm, 
we also select some traditional underwater images for 
simulation comparison. In our experiments, we set the 
parameters to r1=0.01, r2=0.99 and γ = 0.8.  

Subjective evaluation 
Figure 10(a) shows four traditional underwater images 
selected from other literature. We compared our algo-
rithm with He’s DCP algorithm15, Histogram equaliza-
tion7, Gray World21 and Iqbal’s UCM algorithm12 in Figs. 
10(b)–10(f). As shown in Fig. 10(b), the result images by 

Fig. 7 | Gamma correction curve. 
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Fig. 8 | Algorithm flow. (a) Original image. (b) After compensation. (c) γ =0.8. 

Fig. 9 | (a) Original image. (b) γ =0.3. (c) γ =0.6. (d) γ =0.9. (e) γ =1.2. (f) γ =1.5. 
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DCP algorithm are still heavily color cast with only minor 
changes in brightness. The image processed by the histo-
gram equalization has a good visual effect as shown in Fig. 
10(c). But if we watch carefully and we can find that the 
fish in second image is obviously reddish. Besides, the 
third image and the fourth image are partially reddish. 
We think that it is a phenomenon of over saturation. Alt-
hough it has a good visual effect, it does not completely 
conform to the real scene. As shown in Fig. 10(d), the 
images processed by the Gray World algorithm are dark 
overall. This algorithm does not work well for images 
with a large number of monochromatic patches. This 
algorithm is more suitable for scenes such as image color 
cast caused by different light sources. The images pro-
cessed by Iqbal’s UCM algorithm show color distortion in 
Fig. 10(e). And noises appear in some restored images 
which have strong background light. As shown in Fig. 
10(f), the algorithm proposed in this paper compensates 
the red channel caused by light absorption. The images 
look natural and the contrast is greatly improved. And the 
transition between background and foreground is smooth. 
Subjectively, the algorithm proposed in this paper can 
greatly improve the quality of underwater images. Com-
pared with some commonly used algorithms, it also 
shows some advantages. 

For images collected in Bohai Sea, Fig. 11 compares the 
results processed by commonly used algorithms and our 
algorithm. We compared our algorithm with histogram 
equalization7, Drews’s UDCP algorithm18, Gray World21 
and Iqbal’s UCM algorithm12. As shown in Fig. 11(b), the 
intensities of pixels in red channel are amplified by histo-
gram equalization, which make the result images look 
very red. The result images processed by UDCP algo-
rithm are shown in Fig. 11(c), since the UDCP algorithm 
only takes the blue and green channels into account when 
calculating the dark channel, the red channel still cannot 
be well restored. The restored image only has a little in-
crease in brightness, and the upper half of the image ap-
pears to be over saturated. As shown in Fig. 11(d), the 
images in this scene after the restoration of the Gray 
World algorithm show color block effect. The result im-
ages processed by UCM algorithm are shown in Fig. 11(e). 
Since one of the steps in the UCM algorithms is white 
balance, similarly, color block effect still appears in the 
result images. But the contrast is significantly improved 
on the basis of the Gray World algorithm. Our results are 
shown in Fig. 11(f). It is obvious that the background has 
been compensated. The restored images look natural and 
have similar visual effect to the human eye in outdoor 
conditions.  

Fig. 10 | Comparison of different methods. (a) Original images. (b) DCP. (c) Histogram equalization. (d) Gray World. (e) UCM. (f) Our results.
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Some frames of the restored video are shown in Fig. 12. 
Frame 940, Frame 1300 and Frame 1360 containing 
strong background light. The restored background light is 
similar to the background light in natural outdoor condi-
tions. And the overall effect of the restored images tends 
to be consistent. The restored video plays a very im-
portant role in underwater real-time research. Related 
video is in the in the supplementary information. 

Objective evaluation 
Since subjective evaluation is easily influenced by other 
factors such as knowledge background, mood and envi-
ronment, the conclusions from different observers may 
differ. We also use objective evaluation factors to evaluate 
the quality of images. For the images processed in Fig. 11, 
we calculate the entropy and contrast to evaluate the 
quality of the restored images. Entropy represents the 

Fig.11 | Comparison of different methods of actual underwater images. (a) Original images. (b) Histogram equalization. (c) UDCP. (d) Gray 

World. (e) UCM. (f) Our result. 

Fig. 12 | Video restoration by proposed algorithm. 
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amount of information contained in the image. The larger 
the entropy of the restored image, the more information it 
contains. The contrast indicates the edge information of 
the image. The greater the contrast, the better the visual 
effect of the image. Both evaluation indicators reflect the 
clarity of the image. 

As we can see in Table 1 and Table 2, since the restored 
images by UDCP are over saturated, too much infor-
mation is missing. The entropy and contrast are reduced 
on the basis of the original images. Since the Gray World 
algorithm is mainly for color adjustment and the images 
are not enhanced, the restored images do not add much 
extra information. The entropy of the images processed 
by histogram equalization is increased by about 10% and 
the contrast is improved by about 100%. The clarity of 
images processed by the UCM algorithm is also slightly 
improved. The entropy is increased by about 13% in Ex-
ample 1 and Example 2. The contrast is improved by 
about 40% on the whole. The entropy of images restored 
by proposed algorithm is increased by about 25%, and the 
contrast is improved by about 2 times. We can draw a 
conclusion that the proposed algorithm has better per-
formance than other algorithms.  

Based on the subjective visual effect and the objective 
evaluation, we think our algorithm is more suitable for 
this scenario.  

In addition, since the algorithm does not need to esti-
mate too many complex water parameters in advance, we 
accelerate the algorithm in parallel with CUDA on the 

hardware. The specific acceleration effect is shown in 
Table 3. In the CUDA acceleration framework, we tested 
the computational time consumption of four different 
sets of resolution, and compared with the total time spent 
by the CPU. As shown in Table 3, the acceleration effect is 
very obvious. It takes only 11.15 ms when the resolution 
is 640480. Time is reduced by about 30 times compared 
to the time running on the CPU. For images with a reso-
lution below 1280810, it can also reach a speed of about 
30 frames per second. This algorithm has great potential 
for applications in underwater real-time detection sys-
tems. 

Conclusions 
To address the image distortion caused by the red com-
ponent attenuation, this paper proposes a simple and 
effective underwater image restoration algorithm based 
on the attenuation characteristics of different wavelength. 
A red channel weighted compensation model is estab-
lished by analyzing the intensity information and attenua-
tion characteristics of different channels. And the guided 
filtering is applied to refine the edge information of com-
pensated red channel. In order to improve the clarity of 
images, the gamma correction model is used to improve 
the contrast. The experimental results show that the re-
stored images are natural in color and the contrast is im-
proved by about 2 times. The algorithm can process video 
with 1280×810 resolution at 30 frames per second after 
CUDA acceleration. 

Table 1 | The entropy of images.

Images 
Original  

image 

Histogram 

equalization
UDCP 

Gray 

World 
UCM 

Proposed 

algorithm 

Example 1 6.0591 7.3843 5.6661 5.2953 6.7993 7.6016 

Example 2 6.2642 7.4076 6.0231 5.5167 6.8102 7.6598 

Example 3 6.8983 7.3646 6.3745 6.0943 6.6168 7.7037 

Example 4 6.6593 7.3714 6.2255 5.9450 6.7546 7.7170 

Example 5 6.7107 7.3956 6.3283 5.9642 6.7796 7.7500 

Table 2 | The contrast of images.

Images 
Original  

image 

Histogram 

equalization
UDCP 

Gray 

World 
UCM 

Proposed 

algorithm 

Example 1 0.5296 1.6113 0.0034 0.6198 0.7179 1.2163 

Example 2 0.6092 1.1637 0.0036 0.7238 0.9214 1.3514 

Example 3 0.7225 1.4438 0.0038 0.8002 1.1921 1.4655 

Example 4 1.0048 1.9396 0.0056 1.2923 1.4122 1.9548 

Example 5 0.9635 1.7528 0.0054 1.1069 1.3013 1.8473 

Table 3 | Calculation time for different resolutions. 

Resolution 
Time/ ms 

Speedup ratio 
CPU CUDA 

640×480 324.34 11.15 29.09 

720×540 381.65 11.60 32.90 

1080×720 1112.09 21.79 51.04 

1280×810 1547.45 35.01 44.20 
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