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Abstract: As a typical representative of inverse design algorithms, the direct binary search algorithm has been
widely used in the design of various optical devices due to its simple principle, fast convergence speed, and high
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fabrication robustness. This article analyzes the core mechanism and design process of the direct binary search

algorithm, sorts out its improvement directions and strategies, focuses on its typical applications in multiple physical

dimensions of optical-signal amplitude, wavelength, mode, and polarization, and looks forward to the possible

development trends of future research, in order to provide valuable references for related research and promote

further inverse-design exploration and application in the photonic-chip field.

Keywords: inverse design; optical devices; direct binary search algorithm; multiple physical dimensions
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Fig. 1 Overview of the DBS algorithm and Its applications
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Fig. 3 Equivalent theoretical models. (a) Y-branch model of division multiplexer™; (b) ADC model of polarization beam splitter™;

(c) Waveguide model of waveguide crossing®™”; (d) MMI model of waveguide crossing
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Fig. 4 Lag effect®. (a) Square etching pattern; (b) Fabrication error caused by lag effect; (c) Circular etching pattern
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Silicon-based on-chip optical devices based on
direct binary search algorithm
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Overview of DBS algorithm and Its applications

Overview: Although traditional electrical interconnect technology has laid an important foundation for modern
computing architecture, it is constrained by limited bandwidth and high power consumption, making it difficult to meet
the continuously growing demand for computing power. Against the backdrop of Moore's law approaching the physical
limit and the increasingly prominent bottleneck of chip-to-chip interconnection, silicon-based optical interconnection
technology, with the advantages of compatibility with mature complementary metal oxide semiconductor processes and
unique high refractive index contrast, has become a key path to break through the barriers of traditional electrical
interconnection technology. In order to transform photonic chips into intelligent design paradigms, inverse-designed
photonic devices have broken through traditional design limitations and can better meet the increasing demands of
integrated, efficient, and functional photonic chips in the future. As a typical representative of inverse design algorithms,
the direct binary search (DBS) algorithm has been widely used in the design of various photonic devices due to its simple
principle, efficient convergence speed, and high fabrication robustness. This article deeply analyzes the core mechanism
and design process of the DBS algorithm, and reveals its limitations in time cost, simulation times, convergence
efficiency, and search freedom. In response to the above issues, this article sorts out the improvement directions of the
DBS algorithm, with a focus on introducing gradient-oriented direct binary search algorithm, Bayesian direct binary
search algorithm, multi-step direct binary search algorithm, and multi-dimension direct binary search algorithm. In
addition, the technical implementation methods of the DBS algorithm in the modulation of optical-signal amplitude,
wavelength, mode, and polarization are discussed in detail. Through design cases of typical devices, such as power
splitter, wavelength division multiplexer, mode division multiplexer, and polarization rotation splitter, the specific
application of the DBS algorithm in optimizing multiple physical dimensions is analyzed. Finally, the possible
development trends of future research in multifunctional photonic devices, other-material-based photonic devices, and
large-scale photonic integrated chips are discussed. This article provides valuable references for related studies and
promotes further exploration and application of inverse design in the photonic-chip field.
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