-
Abstract
LiDAR currently mainly uses a Dammann grating as the laser beamsplitter. However, as a periodic diffraction optical device, the Dammann grating satisfies the grating equation requiring each diffraction angle's sine value to form an arithmetic progression, which cannot achieve uniform angular beam-splitting. The theoretical diffraction efficiency is also limited. This paper uses the angular spectrum and random search optimization algorithm to design a more flexible non-periodic beamsplitter. Simulations show that the metasurface beamsplitter can achieve a 70-degree field angle of 41 beams with an equal diffraction angle interval. The simulated diffraction efficiency reaches 84% which is higher than the diffraction limit of a binary phase device. In experiments, the metasurface beamsplitter has good beam-splitting uniformity and can promote the development of LiDAR.
-
-
-
-