• 摘要: 超表面技术因其在亚波长尺度上对电磁波的高效调控能力而成为光学领域的前沿研究方向。然而,传统的设计方法耗时较长且要求研究人员拥有丰富的经验。为此,本文提出了一种基于增强型双向神经网络(EBI-DNN)的超表面设计方法,将前向预测神经网络(FPNN)与逆向预测神经网络(IPNN)结合,高效地从目标相位快速推导出超表面所需的几何参数,并解决了传统逆向设计方法中“一对多”的问题。将该方法应用于圆偏振和线偏振复用超表面的设计,并通过仿真验证其在全息效果中的优异性能,峰值信噪比(PSNR)分别为18.75 dB和16.82 dB。与传统的设计方法相比,EBI-DNN仅需41 s即可完成训练,显著减少了设计时间,其训练速度相较于传统BI-DNN提高了约21倍,而在相同数据集下训练速度仍能提升1.73倍。并且仅需数秒即可生成所需的超表面,极大地缩减了超表面设计所需的时间。此外所设计的EBI-DNN结构简单,可以减少超表面设计中对研究人员的经验要求同时符合现在集成化的要求。仿真结果表明,EBI-DNN具有良好的性能和广泛的应用前景,尤其在多功能、多通道超表面设计中展现出强大的潜力。本文为超表面技术的快速设计提供了新的思路,并为未来大规模制造和复杂超表面的设计奠定基础。

       

      Abstract: Metasurfaces have emerged as a cutting-edge research focus in optics for their ability to manipulate electromagnetic waves with high efficiency at the sub-wavelength scale. Conventional design strategies, typically demand prolonged optimization cycles and rely heavily on the designer's domain expertise. To address these limitations, we propose an enhanced bidirectional neural-network framework (EBI-DNN) that integrates a forward prediction neural network (FPNN) with an inverse prediction neural network (IPNN). This hybrid architecture rapidly derives the requisite geometric parameters of a metasurface from a specified phase profile while resolving the "one-to-many" ambiguity inherent in conventional inverse design. We demonstrate the EBI-DNN framework on circular-polarization and linear-polarization multiplexed metasurfaces, validating its superior holographic performance through full-wave simulations, with peak signal-to-noise ratios (PSNR) of 18.75 dB and 16.82 dB, respectively. Training the EBI-DNN requires only 41 s, representing a 21-fold speed-up over the traditional bidirectional design network (BI-DNN), even when trained on the same dataset, it still achieves a 1.73-fold increase in training speed. Once trained, the network generates a complete metasurface design in mere seconds. Its streamlined architecture not only shortens development time but also lowers the level of prior expertise needed, in line with current demands for integrated and automated design workflows. Simulation results confirm that EBI-DNN delivers robust performance and offers broad application prospects, particularly for multi-functional and multi-channel metasurface architectures. This work thus provides a new paradigm for the rapid design of metasurfaces and lays the groundwork for large-scale fabrication of complex devices in the future.