New website getting online, testing
    • 摘要: 提出一种基于多任务注意力机制的无参考屏幕内容图像质量评价算法(multi-task attention mechanism based no reference quality assessment algorithm for screen content images, MTA-SCI)。MTA-SCI首先使用自注意力机制提取屏幕内容图像的全局特征,增强对屏幕内容图像整体信息的表征能力;然后使用综合局部注意力机制提取屏幕内容图像的局部特征,使局部特征能够聚焦于屏幕内容图像中更吸引人注意的细节部分;最后使用双通道特征映射模块预测屏幕内容图像的质量分数。在SCID和SIQAD数据集上,MTA-SCI的斯皮尔曼秩序相关系数(Spearman's rank order correlation coefficient, SRCC)分别达到0.9602和0.9233,皮尔森线性相关系数(Pearson linear correlation coefficient, PLCC)分别达到0.9609和0.9294。实验结果表明,MTA-SCI在预测屏幕内容图像质量任务中具有较高的准确性。

       

      Abstract: This paper proposed a multi-task attention mechanism-based no-reference quality assessment algorithm for screen content images (MTA-SCI). The MTA-SCI first used a self-attention mechanism to extract global features from screen content images, enhancing the representation of overall image information. It then applied an integrated local attention mechanism to extract local features, allowing the focus to be on attention-grabbing details within the image. Finally, a dual-channel feature mapping module predicted the quality score of the screen content image. On the SCID and SIQAD datasets, MTA-SCI achieves Spearman's rank-order correlation coefficients (SROCC) of 0.9602 and 0.9233, and Pearson linear correlation coefficients (PLCC) of 0.9609 and 0.9294, respectively. The experimental results show that the MTA-SCI achieves high accuracy in predicting screen content image quality.