New website getting online, testing
    • 摘要: 针对视网膜眼底病变图像数据集类间分布不均和病灶区域识别困难的问题,提出一种融合金字塔视觉变压器(pyramid vision transformer v2, PVTv2)和DenseNet121双注意力视网膜病变分级算法。首先,该算法经由PVTv2和DenseNet121组成的双分支网络,对视网膜图像的全局和局部信息进行初步提取;其次,在PVTv2和DenseNet121输出处分别采用空间通道协同注意力模块和多频率多尺度模块,优化局部特征细节,突显微小病灶特征,增强模型对复杂微小病变特征敏感性和病灶的定位感知;再次设计神经元交叉融合模块,建立病灶区域宏观布局和微观纹理信息之间的远程依赖关系,进而提高视网膜病变分级准确率;最后,利用混合损失函数缓解样本分布不均所导致的各等级之间模型关注度不平衡情况。在IDRID和APTOS 2019数据集上进行实验验证,其二次加权系数分别为90.68%和90.35%,IDRID数据集上的准确率和APTOS 2019数据集ROC曲线下方面积分别为80.58%和93.22%。实验结果表明,所提算法在视网膜病变分级领域具有一定应用价值。

       

      Abstract: To address the challenges of uneven inter-class distribution and difficulty in lesion area recognition in retinal fundus image datasets, this paper proposes a fusion dual-attention retinal disease grading algorithm with PVTv2 and DenseNet121. First, retinal images are preliminarily processed through a dual-branch network of PVTv2 and DenseNet121 to extract global and local information. Next, spatial-channel synergistic attention modules and multi-frequency multi-scale attention modules are applied to PVTv2 and DenseNet121, respectively. These modules refine local feature details, highlight subtle lesion features, and enhance the model's sensitivity to complex micro-lesions and its spatial perception of lesions areas. Subsequently, a neuron cross-fusion module is designed to establish long-range dependencies between the macroscopic layout and microscopic texture information of lesion areas, thereby improving the accuracy of retinal disease grading. Finally, a hybrid loss function is employed to mitigate the imbalance in model attention across grades caused by uneven sample distribution. Experimental validation on the IDRID and APTOS 2019 datasets yields quadratic weighted kappa scores of 90.68% and 90.35%, respectively. The accuracy on the IDRID dataset and the area under the ROC curve on the APTOS 2019 dataset reached 80.58% and 93.22%, respectively. The experimental results demonstrate that the proposed algorithm holds significant potential for application in retinal disease grading.