New website getting online, testing
    • 摘要: 具有动态调控能力的微纳光学器件是近年来微纳光子学领域的研究热点,二氧化钒(VO2)作为一种常见的功能性可调谐材料,其相变前后晶态的转变导致材料本身电磁参数的变化,可用于实现对光谱的动态调控。本文利用VO2的相变特性和光敏树脂单体的光聚合特性,通过在甲基丙烯酸酯单体中掺入VO2纳米晶,制备出了有效折射率可变的光敏型聚合物纳米复合材料。在此基础上,结合飞秒激光加工技术,开发出了具有相变调控特性的高精度二维、三维微纳光学结构的一次加工成型技术。测试结果表明,该方法所研制出的微纳光学结构,在外界温度达到相变临界温度时,结构中VO2纳米晶发生热致相变,导致结构整体的有效折射率发生变化,实现了对短波段光谱的动态调控。

       

      Abstract: Over the past few years, the field of micro-/nano- photonics has witnessed a surge in research focused on developing innovative optical devices that offer dynamic spectra engineering. Among the materials showing promise in this area, vanadium dioxide (VO2) can actively manipulate its refractive index via a phase transition process, enabling the dynamic manipulation of spectra. In this work, a photosensitive polymer nanocomposite with tunable effective refractive index is prepared by incorporating VO2 nanocrystals into methacrylate monomers, which takes advantages of the phase change characteristics of VO2 and the photopolymerization properties of the monomer. In addition, with the aid of the state-of-the-art femtosecond laser processing technology, highly precise two-dimensional and three-dimensional micro-/nano- optical structures embedded with the phase change capabilities outlined by VO2 are achieved. Fascinatingly, the spectra measurements via Fourier transform infrared spectrometer reveal that when subjected to the critical phase transition temperatures, the printed micro-/nano- structures will undergo a thermally induced phase transition of the VO2 nanocrystals embedded within them. Consequently, there is a discernible alteration in the effective refractive index of the optically functionalized structure, inspiring the dynamic manipulation of the short-band spectra.