New website getting online, testing
    • 摘要: 针对车辆因姿态、视角等成像差异造成车型难以识别问题,提出一种基于渐进式多粒度ResNet车型识别网络。首先,以ResNet网络作为主干网络,提出渐进式多粒度局部卷积模块,对不同粒度级别的车辆图像进行局部卷积操作,使网络重构时能够关注到不同粒度级别的车辆局部特征;其次,对多粒度局部特征图利用随机通道丢弃模块进行随机通道丢弃,抑制网络对车辆显著性区域特征的注意力,提高非显著性特征的关注度;最后,提出一种渐进式多粒度训练模块,在每个训练步骤中增加分类损失,引导网络提取更具辨别力和多样性的车辆多尺度特征。实验结果表明,在Stanford cars数据集、Compcars网络数据集和真实场景下的车型数据集VMRURS上,所提网络的识别准确率分别达到了95.7%、98.8%和97.4%,和对比网络相比,所提网络不仅具有较高的识别准确率,而且具有更好的鲁棒性。

       

      Abstract: Aiming at the problem that vehicle models are difficult to recognize due to differences in vehicle posture and viewing angles, a vehicle model recognition network based on progressive multi-granularity ResNet is proposed. Firstly, a progressive multi-granularity local convolution module is proposed by using the ResNet network as the backbone network to perform local convolution operations on vehicle images of different granularity levels, so that local features of vehicles at different granularity levels can be paid attention to when the network is reconstructed. Secondly, for the multi-granularity local feature map, the random channel discarding module is adopted to perform random channel discarding, which suppresses the network's attention to the vehicle's salient regional features and improves the attention of non-salient features. Finally, a progressive multi-granularity training module is proposed. A classification loss is added in each training step to guide the network to extract more discriminative and diverse vehicle multi-scale features. Experimental results show that the recognition accuracy of the proposed network reaches 95.7%, 98.8%, and 97.4% respectively on the Stanford-cars dataset, the Compcars network dataset, and the vehicle model dataset VMRURS in real scenes. In comparison with the comparative network, the proposed network not only has higher recognition accuracy but also has better robustness.