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Fast-zoom and high-resolution sparse
compound-eye camera based on dual-end
collaborative optimization
Yi Zheng1†, Hao-Ran Zhang1†, Xiao-Wei Li1, You-Ran Zhao1,
Zhao-Song Li1, Ye-Hao Hou1, Chao Liu1,2* and Qiong-Hua Wang1,2*

Due to  the  limitations  of  spatial  bandwidth  product  and  data  transmission  bandwidth,  the  field  of  view,  resolution,  and
imaging speed constrain  each other  in  an optical  imaging system.  Here,  a  fast-zoom and high-resolution sparse com-
pound-eye camera (CEC) based on dual-end collaborative optimization is proposed, which provides a cost-effective way
to break through the trade-off among the field of view, resolution, and imaging speed. In the optical end, a sparse CEC
based on liquid lenses is designed, which can realize large-field-of-view imaging in real time, and fast zooming within 5
ms.  In  the  computational  end,  a  disturbed  degradation  model  driven  super-resolution  network  (DDMDSR-Net)  is  pro-
posed to deal with complex image degradation issues in actual imaging situations, achieving high-robustness and high-fi-
delity resolution enhancement. Based on the proposed dual-end collaborative optimization framework, the angular reso-
lution of the CEC can be enhanced from 71.6" to 26.0", which provides a solution to realize high-resolution imaging for
array camera dispensing with high optical hardware complexity and data transmission bandwidth. Experiments verify the
advantages of the CEC based on dual-end collaborative optimization in high-fidelity reconstruction of real scene images,
kilometer-level long-distance detection, and dynamic imaging and precise recognition of targets of interest.
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Introduction
Modern  optical  imaging  systems  are  expected  to  have
characteristics of large field of view, high resolution, and
fast imaging speed1−6. However, due to the limitations of
spatial  bandwidth  product  and  data  transmission  band-
width,  field of  view,  resolution,  and imaging speed con-
strain each other  in  an optical  imaging system7−9.  Insect
compound  eye  is  a  multi-aperture  visual  perception  or-
gan composed of  numerous ommatidia,  providing solu-

tions  to  break  the  spatial  bandwidth  product  limitation
of  traditional  single-aperture  imaging  systems10−15.  In-
spired by the insect compound eye, many artificial com-
pound-eye array cameras have been developed and pos-
sible to achieve both large field of view and high resolu-
tion16−18.  However,  the  dense  sub-camera array  not  only
generates  massive  amounts  of  data,  but  also  leads  to  a
dramatic increase in system size, weight, and power con-
sumption,  which  severely  limits  the  imaging  speed  and 
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portability of the system.
To solve these issues, some representative works have

been  proposed  in  recent  years.  Some  researchers  pro-
posed compound-eye array cameras with multi-scale op-
tical  structures,  where  the  array  cameras  share  a  large-
scale objective lens at the front end19−22. This reduces the
number  of  lenses  and  improves  the  compactness  of  the
system  to  a  certain  extent,  while  ensuring  a  large  aper-
ture  and  achieving  well  aberration  correction.  Some  re-
searchers proposed array cameras consisting of two types
of sub-cameras with different resolutions, which can op-
erate  with  active  selective  local  high-resolution  imaging
within  a  large  field  of  view,  reducing  data  transmission
bandwidth  demand  by  adaptively  allocating  image  re-
sources23,24.  In  addition,  achieving  non-uniform  resolu-
tion  imaging  modes  through  irregular  arrangement  of
different  types  of  lenses  also  provides  a  solution  to
achieve  large  field-of-view  imaging  and  improve  imag-
ing speed25,26. However, the demands for a large number
of  image  sensors  with  high  pixel  density,  or  a  mass  of
lens units are always inevitable. Therefore, it is still chal-
lenging  to  achieve  large  field  of  view,  high  resolution,
and fast  imaging speed with  low optical  hardware  com-
plexity and data transmission bandwidth.

In  fact,  zoom  imaging  has  been  widely  used  to  deal
with  the  conflict  between  field  of  view  and  resolution.
Zoom  imaging  systems  can  obtain  high  resolution  im-
ages of key targets using limited photosensitive pixels by
adjusting the imaging focal length27,28. Introducing zoom
function in compound-eye array cameras will be of great
significance in reducing the number of sub-cameras and
alleviating  the  demand  of  data  transmission  bandwidth
while  maintaining the large field of  view and high-reso-
lution  imaging  capability.  However,  the  zoom  mode
through  mechanically  moving  lens  group  lacks  fast  ad-
justment  speed,  usually  costing  several  seconds,  and  re-
quires high complexity causing a relatively large volume
and weight.  Liquid lenses emerging in recent years have
attracted much attention due to the fast focusing charac-
teristics  and  high  compactness29−32,  but  the  design
method of zoom imaging systems based on liquid lenses
still  needs further exploration. Moreover, zoom imaging
systems still suffer degradation of imaging quality caused
by  many  factors  such  as  insufficient  aberration  correc-
tion,  manufacturing  tolerance  and  environmental  inter-
ference. Some deep learning based super-resolution algo-
rithms  that  do  not  rely  on  optical  hardware  have
achieved  impressive  results,  but  they  may  be  inevitably

constrained  by  generalization33−35.  And  although  point
spread  function  engineering  has  good
interpretability36−38,  it  often  necessitates  a  complex  cali-
bration and iterative  calculation process,  with  executing
difficulty  increasing  sharply  with  the  number  of  sub-
cameras  in  compound-eye  array  cameras.  In  summary,
fast  zoom  and  high-fidelity  resolution  enhancement  are
crucial  for  compound-eye array cameras,  because of  the
potential  to  deal  with  the  conflict  among  the  field  of
view, resolution, and imaging speed.

Here,  a  fast-zoom  and  high-resolution  sparse  com-
pound-eye  camera  (CEC)  based  on  dual-end  collabora-
tive  optimization is  proposed,  which  provides  a  cost-ef-
fective  way  to  break  through  the  trade-off  among  the
field of view, resolution, and imaging speed, as shown in
Fig. 1.  Through  fast  zooming  of  the  optical  end  and  in-
formation  demodulation  of  the  computational  end,  the
designed  sparse  CEC  can  achieve  both  real-time  large-
field-of-view  imaging  and  high-resolution  imaging.
Specifically,  in  the  optical  end,  a  sparse  CEC  based  on
liquid  lenses  is  designed,  which  can  achieve  fast  adjust-
ment  of  imaging  magnification  and  aberrations.  Each
sub-camera  of  the  CEC  has  a  field  of  view  more  than
15.8°  ×  11.8°  and  2×  optical  zoom  imaging  capability,
with a zoom response time of only 5 ms. In the computa-
tional end, a disturbed degradation model driven super-
resolution  network  (DDMDSR-Net)  is  proposed,  which
achieves high-robustness and high-fidelity resolution en-
hancement.  By  introducing  an  imaging  degradation
model  considering  environment  interference,  manufac-
turing  tolerance  and  acquisition  noise,  the  trained
DDMDSR-Net is well suited for the resolution enhance-
ment of  the proposed CEC without complex calibration
processes.  Moreover,  a  channel  attention  mechanism  is
used  during  the  training  and  reconstruction  process  of
the DDMDSR-Net, ensuring the strong capability of fea-
ture  information  extraction.  Through  the  collaborative
zoom and optimization of both the optical and computa-
tional ends, the angular resolution of the CEC can be en-
hanced from 71.6" to 26.0", dispensing with high optical
hardware  complexity  and  data  transmission  bandwidth.
Experiments verify the advantages of the CEC in high-fi-
delity reconstruction of real scene images, kilometer-lev-
el  long-distance  detection,  and  dynamic  imaging  and
precise  recognition  of  targets  of  interest.  The  proposed
CEC  has  important  application  value  in  fields  such  as
geodesy, search and track, and urban traffic monitoring. 
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Results and discussion
 

Principle of the sparse CEC based on dual-end
collaborative optimization
The core of the sparse CEC based on dual-end collabora-
tive  optimization  is  to  achieve  resolution  enhancement
through the collaboration of  fast  zooming in the optical
end and information demodulation in the computation-
al end. This strategy allows the proposed CEC to operate
using  sparse  sub-camera  array  and  image  sensors  with
limited  pixel  density,  ensuring  low  optical  hardware
complexity  and  data  transmission  bandwidth.  Mean-
while,  the  large-field-of-view  and  high-resolution  imag-
ing  can  also  be  achieved.  The  workflow  diagram  of  the
sparse  CEC  based  on  dual-end  collaborative  optimiza-
tion is shown in Fig. 2(a). Firstly, the sub-cameras of the
sparse  CEC  are  used  to  capture  images  of  different  re-
gions,  which  can  be  stitched  to  form  large  field  of  view
images. Then, by controlling the liquid lenses in the sub-
cameras,  the  imaging  magnification  and  aberrations  of
the sub-cameras can be fast adjusted to obtain zoom im-
ages with wider information frequency domain. Through
the  reconstruction  by  the  proposed  DDMDSR-Net,  the
resolution of the images can be further improved.

At the optical end, the liquid lens based sparse CEC is
designed,  composed  of  multiple  identical  sub-cameras
arranged  on  a  curved  surface.  By  reasonably  setting  the
angle  between the  optical  axes  of  the  sub-cameras  to  be
slightly  smaller  than  the  maximum  field  of  view  of  the
sub-camera,  there  is  an  overlap  between  the  fields  of
view  of  the  sub-cameras,  allowing  for  stitching  of  large
field of view images. By pre-calibrating the homography
between  the  sub-images  captured  by  the  sub-cameras
and  the  large  field  of  view  images,  and  combined  with
adjustments of image brightness and white balance coef-
ficient, stitched large field of view images can be generat-
ed.  Each  sub-camera  contains  several  liquid  lenses  and
solid lenses, and the focal length as well as imaging aber-
rations  can  be  adjusted  by  controlling  the  liquid  inter-
faces  of  the  liquid  lenses,  which  is  different  from  tradi-
tional zoom methods that rely on the movement of lens
groups. Specifically, the liquid lens are driven by a voice
coil  motor,  which squeezes the cavity through Ampere's
force and causes deformation of the liquid interface, thus
realizing  zoom  function.  Therefore,  the  zoom  response
time  of  the  designed  sparse  CEC based  on  liquid  lenses
can  achieve  millisecond  level.  When  executing  specific
design,  we use four sub-cameras to form the CEC as an
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example  (Supplementary  information  Section  1).  Each
sub-camera  contains  two  liquid  lenses,  four  single  solid
spherical lenses and two spherical doublet lenses, operat-
ing with a  field  of  view more than 15.8°  × 11.8°  and 2×
optical  zoom  imaging  capability.  The  two  liquid  lenses
are located in the zoom group and compensation group,
respectively,  with sufficient spacing between them, so as
to  achieve  sufficient  modulation of  the  optical  power  of
the sub-camera.

At  the  computational  end,  the  DDMDSR-Net  is  de-
signed to deal with complex image degradation issues in
actual  imaging situations  and achieve  further  resolution
enhancement.  A  disturbed  degradation  model  is  first
built  for the training datasets generator,  considering the
composite  degradation  factors  of  transmission  medium,
lens aberration, and image acquisition. The physical pro-
cess  and corresponding mathematical  description of  the

disturbed degradation model are shown in Fig. 2(b), and
the imaging degradation process can be represented as
 

I(x, y) = [PSF(x, y)⊗T(x, y)⊗O(x, y)] ↓ +N(x, y), (1)

where I(x, y)  and O(x, y)  represent  degraded image and
original  image,  respectively, T(x, y)  is  the  degradation
function  of  the  transmission  medium,  PSF(x, y)  is  the
degradation  function  of  the  sub-camera  lens  also  called
point  spread  function  (PSF),  ↓ represents  down -sam-
pling  process  of  the  image  sensor,  and N(x, y)  is  the
noise.  The  degradation  functions  and  noise  are  set  to
vary  according  to  the  random  disturbed  factors,  rather
than being set as fixed functions, so as to deal with vari-
ous  complex  degradation  scenarios.  Specially,  Monte
Carlo  method is  used  to  generate  the  degradation func-
tions of the sub-camera lens, which can be expressed as
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PSF(x, y) = PSFMonte(idealPSF(x, y), d1, d2, ..., dn),
(2)

where  idealPSF(x, y)  is  the  ideal  PSF  without  distur-
bance degradation, and d1, d2, ... , dn represent values of a
set of predefined disturbance factors related to manufac-
turing  tolerances  of  the  lenses  and  wavefront  errors  of
the  liquid  lenses.  The  details  of  image  degradation  pro-
cessing  and specific  settings  can  refer  to  Supplementary
information  Section  2.  Combining  high  resolution  im-
age  datasets  with  the  proposed  disturbed  degradation
model,  training  pairs  can  be  easily  generated  for  super-
vised learning of the DDMDSR-Net.

The DDMDSR-Net consists of three modules: shallow
feature extraction module, deep feature extraction mod-
ule,  and image  reconstruction module,  as  shown in Fig.
2(c).  Among  them,  the  shallow  feature  extraction  mod-
ule consists of 3×3 convolution layers, which are used to
extract shallow information from the image and expand
the dimension of the feature space. The deep feature ex-
traction  module  consists  of  six  residual  Swin  Trans-
former blocks (RSTBs) and one channel  attention block
(CAB), which are used to further extract features in high
dimensional space39. The details of the network can refer
to  Methods  and  Supplementary  information  Section  3.
Through  the  reasonable  generalization  brought  by  the
proposed disturbance degradation model and the strong
feature  extraction  ability  of  the  network,  high-robust-
ness  and  high-fidelity  resolution  enhancement  can  be
achieved.  Such  strategy  is  well  suited  for  the  resolution
enhancement  of  the  CEC  with  multiple  identical  sub-
cameras, dispensing with complex calibration processes. 

Fabrication and basic imaging performance test
According to the above design, a prototype of the sparse
CEC is  fabricated,  as  shown in Fig. 3(a).  Each solid lens
in the sub-cameras is coated with a visible light band an-
ti-reflective film, and each sub-camera contains two liq-
uid lenses with the type of EL-12-30-TC provided by Op-
totune  Switzerland  AG.  The  low  bandwidth  image  sen-
sor  with  the  type  of  VEN-161-61U3C  provided  by  Da-
heng  Imaging  Inc.  has  a  resolution  of  1080×1440,  and
supports a maximum frame rate of 61.2 fps for image ac-
quisition.  Four  sub-cameras  are  fixed  on  an  installation
bracket,  the  mechanical  length  of  each  sub-camera  is
within 10 cm and the weight is approximately 250 g. And
each sub-camera can be independently  or  synchronous-
ly  driven  to  achieve  zoom  function  through  a  cus-

tomized  current  driver.  In  the  experiment,  we  mainly
control the sparse CEC to switch between two critical fo-
cal length states with a fastest response time of approxi-
mately  5  ms,  and  the  relationship  between  driving  cur-
rents and focal length is shown in Fig. 3(b).

To test the basic imaging performance, the sparse CEC
is used to capture images of a resolution target. The im-
ages captured by one of the sub-cameras before and after
dual-end  collaborative  zoom  and  optimization  are
shown  in Fig. 3(c, d),  being  taken  as  an  example.  It  can
be  tested  that  the  sub-camera  can  capture  large  field  of
view images as expected, and the total horizontal field of
view of the sparse CEC with a single exposure can reach
more  than  40°.  The  line  pairs  of  the  fourth  group  ele-
ments can be distinguished,  which means the initial  an-
gular resolution reaches 71.6". And after dual-end collab-
orative  zoom  and  optimization,  the  line  pairs  of  the
eleventh  group  elements  can  be  clearly  distinguished,
which  means  the  angular  resolution  reaches  26.0",  and
significant improvement in the contrast of the line pairs
of  the  fourth  group  elements  can  also  be  observed.  The
imaging  performance  test  results  indicate  the  proposed
method  can  not  only  enhance  low-frequency  informa-
tion,  but  also  successfully  overcomes the  interference  of
blur  and  noise,  extracting  and  amplifying  the  required
high-frequency  information  (Supplementary  informa-
tion Section 4). 

Imaging performance for real scenes and
applications 

Imaging and high-fidelity reconstruction for real
scenes
In  order  to  test  the  imaging  performance  of  the  sparse
CEC  based  on  dual-end  collaborative  optimization
framework  in  more  general  real-world  scenarios,  it  is
used to capture images of a parking lot scene. After pixel
mapping and white balance and image brightness correc-
tion,  we  successfully  complete  the  stitching  of  four  sub
field of view images, forming a large field of view image
of the scene, as shown in Fig. 4(a). We enlarge and com-
pare  some  key  areas,  especially  those  containing  abun-
dant  semantic  and texture  information,  to  verify  the  ef-
fectiveness  of  high-resolution  reconstruction,  as  shown
in Fig. 4(b, c).

It  can  be  seen  that  after  dual-end  collaborative  zoom
and  optimization,  the  texts  on  the  landmark,  license
plates,  and  road  sign  becomes  clearer,  and  the  texture

Zheng Y et al. Opto-Electron Adv  8, 240285 (2025) https://doi.org/10.29026/oea.2025.240285

240285-5

 

https://doi.org/10.29026/oea.2025.240285


information  of  the  speed  bump  is  also  successfully  en-
hanced.  Although humans can mentally  supplement  in-
formation based on life experience, it is difficult for ma-
chines  to  do  so.  The  proposed  strategy  successfully  en-
hances  the  effective  information of  key  target  images  in
real  scenes  by  combining  optical  and  computational
methods, demonstrating significant practical application
value in machine vision.
 

Imaging performance for targets at different distances
When  capturing  targets  at  different  distances,  the  envi-
ronmental  interference  factors  in  the  imaging  may
change,  which  brings  challenges  to  the  robustness  and
generalization  of  the  method.  To  further  test  the  imag-
ing  performance  when  dealing  with  different  imaging
conditions,  the  sparse  CEC  is  used  to  capture  an  urban
scene, which contains targets at different distances.

Similar  to  the  previous  experimental  steps,  we  stitch

the  sub  field  of  view  images  captured  by  four  sub-cam-
eras to obtain a large field of view image of the scene, as
shown in Fig. 5(a).  Then we compare the locally magni-
fied images of targets at different distances before and af-
ter  dual-end  collaborative  zoom  and  optimization,  in-
cluding buildings located approximately 0.15 km and 0.2
km away,  as  well  as  signs  located approximately  1.7  km
away  from the  sparse  CEC.  It  can  be  seen  that  the  pro-
posed  strategy  is  still  effective,  bringing  obvious  im-
provement  of  image  resolution  and  significant  suppres-
sion of noise and blur, as shown in Fig. 5(b). This is the
result of the combination of fast optical zoom which ef-
fectively extends the captured information frequency do-
main, and disturbed degradation model which helps de-
modulate and enhance effective information.

Moreover,  we  also  use  a  digital  single  lens  reflex
(DSLR) camera (Canon EOS 6D Mark II, with 26.2 mil-
lion  pixels)  with  a  lens  (RF24-105mm F4  L  IS  USM)  to
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Fig. 3 | Fabrication and imaging performance test of the proposed sparse CEC. (a) Prototype of the proposed sparse CEC. (b) Relationship be-

tween the driving currents of the liquid lenses and the focal length of the sub-camera. (c) Large field of view image of the resolution target cap-

tured by a sub-camera in the CEC. (d) High resolution image of the resolution target through the dual-end collaborative zoom and optimization.
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Fig. 4 | Imaging and high-fidelity reconstruction results for real scenes. (a) Large field of view image captured by the proposed sparse CEC. (b)

Local  magnification  of  the  large  field  of  view  image.  (c)  Reconstructed  high  resolution  images  through  the  dual-end  collaborative  zoom  and

optimization.
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Fig. 5 | Imaging  and  high  resolution  reconstruction  results  of  targets  at  different  distances.  (a)  Large  field  of  view image captured  by  the  pro-

posed sparse CEC. (b) Comparison between the raw images, reconstructed images through the dual-end collaborative zoom and optimization,

and the images captured by a DSLR camera.
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capture  images  of  the  targets  under  telephoto  shooting
status,  for  comparing  the  fidelity  of  high-resolution  re-
construction of  the images.  Although the exposure time
of the DSLR camera is set to be the same as the proposed
CEC,  due  to  differences  in  ambient  lighting  conditions
and  spectral  responsiveness  of  image  sensors,  there  are
some differences in the brightness and visual contrast of
the  images.  Nevertheless,  the  feature  information  of  the
targets remains basically consistent, and the reconstruct-
ed  images  show  better  denoising  and  anti-ghosting  ef-
fects.  This  means that  the  proposed sparse  CEC operat-
ing with dual-end collaborative optimization framework
achieves  comparable  imaging  quality  with  a  data  trans-
mission bandwidth requirement around four times low-
er than the DSLR camera. 

Dynamic imaging and precise recognition of targets of
interest
To  demonstrate  the  fast  imaging  speed  characteristics,
we construct a dynamic imaging pipeline for the camera
and  select  a  highway  as  the  imaging  test  scenario,  as
shown in Fig. 6(a). Although each sub-camera can be in-

dependently  controlled  and  selectively  trigger  zoom
imaging, to test the critical situation of dynamic imaging,
the zoom imaging time duty cycle  is  set  to 50%. That  is
to say, the imaging focal length state of each sub-camera
is controlled by a square wave signal with a duty cycle of
50%,  and  dual  focus  images  are  alternately  captured,  as
shown in Fig. 6(b).

Initialization  processing  is  performed  at  the  begin-
ning  of  the  operation,  during  which  the  white  balance
coefficient, gain coefficient, and internal and external pa-
rameters  of  the  sub-cameras  are  pre-calibrated.  During
the first duration T, the focal lengths of the sub-cameras
are  synchronously  adjusted  to  18  mm,  and  images  cap-
tured  by  the  four  sub-cameras  can  be  directly  stitched
through pixel mapping to form a large field of view im-
age.  Then,  during  the  second  duration T,  the  focal
lengths of the sub-cameras are synchronously adjusted to
36  mm,  and  images  captured  by  the  four  sub-cameras
can  be  stored,  then  reconstructed  through  the  DDMD-
SR-Net in the background or executed other processing.
Due  to  lower  bandwidth  requirements,  the  storage  can
be  completed  in  real-time  on  a  single  computer.  The
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Fig. 6 | Dynamic imaging pipeline and precise recognition of targets of interest. (a) Dynamic imaging pipeline of the proposed sparse CEC. (b)

Timing  control  of  zoom and  image acquisition.  (c)  Recognition  results  of  targets  of  interest  before  and  after  dual-end  collaborative  zoom and

optimization.
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acquisition speed of dynamic dual focus images is main-
ly  determined  by  the  zoom  response  time  of  the  liquid
lenses and the exposure time of the image sensors. Dur-
ing  the  operation,  it  is  found  that  although  the  focal
length of the liquid lens can be basically achieved within
5 ms after the zoom signal is triggered, it is best to delay
the start  time of  exposure appropriately due to the con-
tinuous slight oscillation of the liquid surface, which can
help to avoid image integration blur. The supportable ac-
quisition period of dual focus images is limited to: 

2T ⩾ 2(ΔT+ Δt+ ε) , (3)

where ∆T is the zoom response time of the liquid lenses
considering  the  duration  of  slight  oscillation,  ∆t is  the
exposure time, and ε is the time delay caused by synchro-
nization  error  of  the  sub-cameras  or  other  interference
factors.  In  the  demonstration  experiment  (Supplemen-
tary Media 1), ∆T is set to 20 ms, ∆t is set to 5 ms, and ε
is set to 13 ms, which means the acquisition frame rate of
each  focal  length  image  can  reach  13  fps  and  the  time
difference  between  obtaining  images  of  the  same  target
with  two  focal  lengths  does  not  exceed  38  ms,  which  is
sufficient to deal with most dynamic scenes. It should be
noted that  by  optimizing the  synchronization triggering
mechanism, ε can  theoretically  be  further  compressed
and  faster  dynamic  dual  focus  imaging  speed  can  be
achieved.  The  maximum  acquisition  frame  rate  of  each
focal length image can reach around 20 fps, which is al-
most impossible to achieve by using traditional mechani-
cal zoom mode.

In addition, we also demonstrate the potential applica-
tions of the sparse CEC based on dual-end collaborative
optimization  framework  in  target  search  and  precise
recognition. When used for urban traffic monitoring, the
sparse  CEC  can  achieve  real-time  acquisition  of  large
field  of  view  images,  which  means  that  it  has  efficient
search  capabilities.  Meanwhile,  for  potential  targets  of
interest, precise recognition can be achieved through du-
al-end  collaborative  zoom  and  optimization.  For  exam-
ple,  when  using  YOLOV5  algorithm40 for  detection  for
the  motorcycle  rider  in  the  scene,  as  shown in Fig. 6(c),
the  confidence of  identifying the  target  as 'a  person' be-
fore  dual-end  collaborative  zoom  and  optimization  is
only  0.39,  indicating  a  risk  of  misjudgment.  After  dual-
end  collaborative  zoom  and  optimization,  the  confi-
dence of identifying the target as 'a person' reaches 0.58,
basically achieving accurate recognition. The reasons for
not  achieving  higher  confidence  may  include  the  pres-

ence of  motion blur of  dynamic targets.  It  is  possible  to
deal with this issue by further reducing the image expo-
sure time and optimizing the imaging frame rate, or us-
ing  additional  algorithms  for  motion  blur  suppression.
In addition, when the imaging frame rate is high enough,
the  display  frame  rate  of  the  display  device  also  needs
special  attention  to  avoid  possible  information  loss41 in
interactive usage scenarios with user participation.

In  summary,  a  fast-zoom  and  high-resolution  sparse
CEC  based  on  dual-end  collaborative  optimization
framework  is  developed  in  this  paper,  which  combines
the  advantages  of  liquid  lens  technology  and  computa-
tional  imaging  technology.  By  designing  the  sub-cam-
eras  based  on  liquid  lenses,  effective  extension  of  cap-
tured  information  frequency  domain  for  the  targets  of
interest can be achieved through fast optical zoom. And
through  the  designed  DDMDSR-Net,  effective  informa-
tion  demodulation  and  resolution  enhancement  can  be
achieved with high robustness and fidelity. The designed
network  also  shows  significant  advantages  compared  to
other  methods,  including  more  effective  reconstruction
method  based  on  the  proposed  disturbed  degradation
model,  and  stronger  data  learning  ability  (Supplemen-
tary information Section 5).

We not  only  present  the operation process  and effec-
tiveness  of  the  dual-end  collaborative  optimization
framework  through  resolution  testing  experiments,  but
also demonstrate the ability to deal with complex image
degradation  issues  through  actual  imaging  experiments
in various real scenarios. The successful implementation
of  the  results  is  attributed  to  the  combination  of  the
physical  driving  optical  zoom  method  based  on  liquid
lenses  and  the  computational  demodulation  method
based  on  the  proposed  DDMDSR-Net.  The  liquid  lens
based optical zoom method can fast expand the frequen-
cy  domain  of  obtainable  information  when  capturing
images of the target area of interest,  and the DDMDSR-
Net  can  extract  and  enhance  effective  information  with
high-robustness  and  high-fidelity  within  the  frequency
domain of obtainable information in actual imaging sce-
narios  with  multiple  interferences.  The  designed  com-
pound eye camera has strong dynamic imaging capabili-
ty,  and  can  effectively  complete  the  tasks  of  efficient
search  and  accurate  recognition  of  dynamic  targets.
Moreover, we believe that our proposed dual-end collab-
orative optimization framework can help achieve sparsi-
ty  in  compound-eye  array  cameras  and  significantly  re-
duce  the  cost  of  use.  For  example,  compared  to  the
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classic Aqueti Mantis series compound-eye array camera
consisting  of  18  sub  cameras  with  107  megapixels
totally42,  our  designed  CEC  consisting  of  4  sub  cameras
can achieve comparable field of view and resolution dur-
ing  real-world  imaging,  and  can  reduce  data  transmis-
sion bandwidth and weight by about an order of magni-
tude, which indicates the potential to be used on mobile
platforms.

The  proposed  CEC  has  the  potential  for  further  im-
provement through some ways, such as using liquid lens-
es  with  larger  zoom  range43,  increasing  the  number  of
liquid  lenses  used  in  each  sub-camera,  optimizing  the
system design, or using some advanced photoelectric de-
vices44 to  further  enhance  the  zoom  capability  of  the
CEC, achieving higher resolution. However, the trade-off
between  zoom  imaging  capability  and  hardware  cost
needs  to  be  considered.  Besides,  some  advanced  optical
and  digital  methods  can  also  be  deployed  to  improve
imaging performance, including further suppressing im-
age artifacts caused by color dispersion45,46 and reducing
image stitching gaps47.  With further hardware optimiza-
tion and on-chip acceleration algorithm design, the pro-
posed sparse CEC can provide solutions for many practi-
cal application tasks. 

Conclusions
In  conclusion,  a  fast-zoom  and  high-resolution  sparse
CEC  based  on  dual-end  collaborative  optimization
framework  is  proposed,  which  provides  a  cost-effective
way  to  break  through  the  trade-off  among  the  field  of
view,  resolution,  and  imaging  speed.  The  proposed
sparse  CEC  enables  large-field-of-view  imaging  in  real
time,  can  achieve  fast  zoom  imaging  with  a  response
time  of  5  ms,  and  can  successfully  enhance  the  angular
resolution from 71.6" to 26.0" through dual-end collabo-
rative  optimization.  This  work  represents  a  significant
advancement combining new optical devices and design
methods  with  advanced  computational  imaging  meth-
ods,  which is  effective  to  improve  imaging performance
while  maintaining  a  low  demand  of  optical  hardware
complexity  and  data  transmission  bandwidth.  The  pro-
posed CEC has important application value in fields such
as geodesy, search and track, urban traffic monitoring. 

Methods
 

Structure of the DDMDSR-Net
The proposed DDMDSR-Net  uses  SWinIR48 as  the  fun-

damental  model,  and  a  channel  attention  mechanism  is
introduced to the model to deeply fuse the extracted fea-
ture maps.  In the deep feature extraction module  of  the
DDMDSR-Net,  the  RSTB  module  is  a  residual  module
with  Swin  Transformer  layers  (STLs)  and  convolution
layer,  where STL is  the core of  RSTB. By using the shift
window  mechanism  of  STL,  the  input  tensor  is  divided
into multiple non-overlapping windows, and the local at-
tention  of  each  window  is  calculated  separately,  which
has less computational resource consumption and faster
speed  than  traditional  Vision  Transformer  (ViT).  And
CAB  can  perform  channel  based  wise  weighted  alloca-
tion  on the  obtained  feature  maps,  activate  and amplify
useful features, and suppress useless features. 

Training details
During the process of network training, a composite loss
function is set as 

L = αLL1 + βLGAN + ηLPE , (4)

where LL1, LGAN and LPE are  the  naive  L1  pixel  loss,
GAN loss  and  perceptual  loss49,  respectively, α, β and η
are  the  corresponding  weights,  respectively,  which  are
specifically set as 1, 0.1 and 1 in the experiment. For the
GAN loss, we use the PatchGAN model50 as the discrimi-
nator  network,  which is  trained jointly  with the genera-
tor  network  to  facilitate  the  recovery  of  high-frequency
features. For the perceptual loss, we use the VGG19 net-
work  to  extract  image  features,  which  encourages  the
network  to  generate  images  with  more  realistic  details
and better visual effects.

The Flickr2K and part of the OST datasets are used as
the  training  set  containing  a  total  of  6500  images.  We
finetune the pretrained SwinIR model in realword super-
resolution  task  to  accelerate  the  training  process.  In  the
training phase, the images are cropped into a set of small
patches with a size of 256×256×3. The learning rate and
batch size are set to 1×10–6 and 16 respectively. We run a
total of 300 K iterations with 2 NVIDIA 3090 GPUs, and
get the final training weights for testing.
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