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Artificial intelligence-assisted chiral
nanophotonic designs
Xuanru Zhang1,2,3 and Tie Jun Cui1,2,3*

Chiral nanostructures can enhance the weak inherent chiral effects of biomolecules and highlight the important roles in
chiral detection. However, the design of the chiral nanostructures is challenged by extensive theoretical simulations and
explorative experiments. Recently, Zheyu Fang’s group proposed a chiral nanostructure design method based on rein-
forcement learning, which can find out metallic chiral nanostructures with a sharp peak in circular dichroism spectra and
enhance  the  chiral  detection  signals.  This  work  envisions  the  powerful  roles  of  artificial  intelligence  in  nanophotonic
designs.
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Chirality  is  a  fundamental  physical  property  which
means that  an object  or  structure cannot  be superposed
to its mirror image. It plays important role in biomedic-
al sensing, as enantiomers with opposite handedness lead
to dramatically different biological effects. However, it is
challenging  to  detect  trace-amount  enantiomers,  since
the chiral bio-molecules are quite smaller than the optic-
al wavelengths and present weak dichroism signals1.

Chiral plasmonic nanostructures have been employed
to  enhance  the  interactions  between  the  optical  waves
and the chiral molecules.  Common dichroism technolo-
gies are based on circularly polarized waves, i.e. the spin
angular  momenta  (SAM)  of  photons1. Chiral  metasur-
faces, metamaterials, and nanoparticles can be employed
to enhance the sensing signal2,3, since their  intrinsic  cir-
cular  dichroism  (CD)  signals  can  be  sensitively  affected
by chiral  biomolecules.  In  recent  years,  dichroism  tech-
nologies based on orbital angular momenta (OAM) have
been proposed and investigated, in which the dichroism
signal is defined based on the differential response spec-
tra  of  opposite  vortex  modes4,5.  Plasmonic  resonant

structures  with  intrinsic  chirality  can  also  enhance  the
dichroism signals based on OAM5,6.

However,  the  interactions  between  chiral  molecules
and chiral  nanostructures  are  complex.  Different  bio-
molecules may require different nanostructures to reach
the  optimally  enhanced  dichroism  signals.  Hence,  the
design of the chiral nanostructures consumes huge com-
puting resources in iterative electromagnetic (EM) simu-
lations. Artificial intelligence (AI) emerges as a powerful
tool  in  nanostructure  designing,  which  can  deal  with
more complex problems and larger-scale data compared
with  traditional  optimization  algorithms.  AI  has  been
successfully used in the design of metasurfaces, photonic
crystals, integrated wavelength routers, etc.7−12

In  a  recent  paper  published  on Opto-Electronic Sci-
ence13, Zheyu Fang and his colleagues propose a method
for  chiral  nanostructure  design  based  on  reinforcement
learning (Fig. 1), in which the exploration of new nano-
structures  and  the  update  of  models  are  simultaneous.
The introduction of reinforcement learning improves the
quality  of  the  training  dataset  and  reduces  the  EM 
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simulation  amounts. Fig. 1(a) presents  the  construction
of the training dataset. Different nanostructures are cre-
ated  randomly  at  the  start,  and  their  optical  responses
are calculated by EM simulations. As shown in Fig. 1(b),
the next step is to train several artificial neural networks
(ANNs)  to  obtain  the  mapping  relations  between  the
nanostructure  geometries  and  their  spectra.  Then,  new
structures are designed with a Bayesian optimization al-
gorithm  based  on  predictions  from  ANNs  (Fig. 1(c)).
The ANNs recognize  nanostructures  with strong chiral-
ity, generate possibly optimized structures, and decrease
the computing  resource  spent  on  weakly  chiral  nano-
structures. Figure 1(d) demonstrates the  updating  pro-
cess  of  the  training  dataset.  For  nanostructures  whose
optical responses predicted by different ANNs differ sig-
nificantly,  their  optical  responses  will  be  calculated  by
EM simulations.  The inaccuracies  of  the  ANNs indicate
that there are few similar structures in the current data-
set,  hence  the  simulated  data  are  added  to  the  training
dataset.  For  those  nanostructures  predicted  consistently
by different ANNs, there should already be similar struc-
tures  in  the  training  dataset.  After  the  data  update,  the
ANNs  are  retrained.  Therefore,  ANNs  ensure  that  the
nanostructures  added  to  the  dataset  have  the  potentials
of strong  chirality  although  the  initial  dataset  is  con-
structed randomly.

To execute the proposed scheme, the chiral unit to be
designed is parameterized by 40×40 units encoded with 0
or 1, which represents that a gold cuboid or air exists at

that  position.  ANNs  achieve  the  mapping  between  the
optical response  spectra  and the  matrixes  which  repres-
ent the geometry. As last, three chiral metasurfaces with
different  CD  peak  frequencies  are  designed.  The  chiral
metasurfaces are  also  fabricated  and  measured  to  valid-
ate  the  proposed  method.  The  experimental  results  are
consistent with the designed results. The frequency shifts
of  the  CD  spectra  caused  by  chiral  molecules  are  also
measured  using  left-glucose  and  right-glucose  solutions
controlled  by  microfluidic  channels.  The  resonance
wavelength  shifts  between  enantiomers  of  glucose  with
opposite chirality reach 7 nm, which indicates enhanced
sensitivity of the chiral molecules.

The  proposed  method  improves  the  quality  of  the
training dataset and reduces the electromagnetic simula-
tion amounts compared with classical exploration meth-
ods.  Chiral  nanostructures  with  significant  CD  values
and high  chiral  detection  sensitivity  have  been  success-
fully  designed  and  fabricated.  Besides  the  demonstrated
chiral nanophotonic designs, other optical properties can
be also designed since the algorithm is universal for any
physical  meanings  of  the  optical  responses.  This  work
envisions the  promising  applications  of  AI  in  nano-
photonic and electromagnetic designs.
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Fig. 1 | The design workflow of the chiral nanostructures based on reinforcement learning. Figure reproduced with permission from ref.13,
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