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Silicon dominates the contemporary electronic industry. However, being an indirect band-gap material, it is a poor ab-
sorber of light, which decreases the efficiency of Si-based photodetectors and photovoltaic devices. This review high-
lights recent studies performed towards improving the optical absorption of Si. A summary of recent theoretical ap-
proaches based on the first principle calculation has been provided. It is followed by an overview of recent experimental
approaches including scattering, plasmon, hot electron, and near-field effects. The article concludes with a perspective 
on the future research direction of Si-based photodetectors and photovoltaic devices.  
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Introduction 
Si is an integral part of all electronic devices. It plays an 
important role in opto-electronic devices such as 
photodetectors and photovoltaic devices1,2. However, 
since it is an indirect band-gap material, phonon assis-
tance is required in the photo-excitation process to com-
pensate the wave-vector difference between the valence 
band maximum and the conduction band minimum of 
holes (Γ point) and electrons (X point), respectively (Fig. 
13). Therefore, although Si dominates the photonics de-
vices, a field that is better known as Si photonics4, it is a 
substrate for the light emitting materials5,6. Moreover, it 
can be used for a much wider variety of applications if its 
optical absorption in the telecommunication wavelength 
range is improved7. In this article, some important recent 
studies directed towards improving the performance of Si 
photonic devices have been reviewed. 

Theoretical advances 
Optical near-field (ONF) effect can potentially improve 
the carrier excitation in indirect band-gap materials. This 
is attributed to the fact that ONF is expected to have large 
wave vector components (Δk), which implies very small 
Δx, due to the field localization. This was validated in a 
study which demonstrated that ONFs, as a dipole-mode 

plasmon, generate carriers directly8. It was shown that in 
small particles, the plasmons induce an electric field that 
exhibits Fourier components with large wave numbers. 
Furthermore, it was demonstrated that such an electric 
field generates carriers without phonon assistance. Fur-
ther investigation of the ONF excitation was performed 
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Fig. 1 | Comparison of far- and near-field excitations. (a) Far-field 

(FF) excitation of Si. Here kphoton, kc, kv, and kphonon are the wave 

vectors of photon, conduction band, valence band, and phonon, 

respectively. (b) Optical near-field (ONF) excitation of Si. Figure is 

reproduced from ref.3 under the terms of the Creative Commons 

Attribution 4.0 International license. 
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in a system comprising of metallic nanospheres embed-
ded in crystalline Si9. Here, the excitation was evaluated 
under the framework of linear perturbation theory, and it 
was found that the ONF effect is too weak to be measured 
in a real system. However, these calculations were based 
on analytical model systems, and not on the real carrier 
excitations. 

To this end, Yamaguchi et al.10 evaluated the carrier 
dynamics using first-principles calculations, where they 
calculated the electron excitation by considering the in-
direct interband transition between states with different 
Bloch wave numbers. Instead of using the Bloch condi-
tion, which cannot describe the indirect interband transi-
tions, they implemented the Born-von Kármán boundary 
condition11,12. Further, they also performed a 
time-dependent calculation of the ONF excitation using 
one-dimensional Kronig-Penny (1D-KP) model (Figs. 
2(a) and 2(b)). They considered the dispersion relation 
with an indirect band gap (Fig. 2(c)). As shown in Figs. 
2(d) and 2(e), it was observed that the absorption spectra 
for far-field excitation decreases at the band-gap energy 
(Ed), while the absorption spectrum for near-field excita-
tion decreases at the band-gap energy (Eg) (much smaller 
than Ed) which was realized by the direct excitation. Fur-
thermore, they clearly showed that the near-field compo-
nent of the dipole radiation (r-3) is the origin of ONF ex-
citation13. 

A more detailed investigation of the ONF excitation in 
realistic three dimensional Si systems (Fig. 3(a)) was re-
ported recently14. Here, a real-time and real-space 
grid-based time-dependent density-functional theory 
(DFT) approach15–17 was used. A supercell method along 
with the Born-von Kármán periodic condition was im-

plemented to calculate the wave-vector excitation11, 
where the vertical band gap energy at the  point was 2.0 
eV. In this system, the source of the ONF was a 
y-polarized point dipole with the near-field component 
(r-3), which was set 5 Å apart from the surface of Si. Thus, 
realistic metallic structures, which could generate plas-
mon, were not treated explicitly in this study. The poten-
tials of the ONF were described by 


  p 2

near 3

( ) π( , ) sin( )sin ( )
C y y tV r t ωt

Tr
 ,    (1) 

where  is the frequency of the oscillating dipole, C is a 
constant, and T = 30 fs is the pulse duration. The electric 
field distribution induced by the oscillating dipole, as 
described by Eq. (1) is non-uniform in spatial domain 
(see Fig. 3(b)). Therefore, it results in the generation of 
large components of the Fourier domain as shown in Fig. 
3(c), which implies that the ONF has large wave vectors. 
Based on these observations, the absorption intensity was 
obtained by calculating the transition probability. As 
shown in Fig. 3(d), the absorption intensity for the 
far-field excitation (blue solids circles and blue line) de-
creases around 2.0 eV, which corresponds to the band 
gap energy at the Γ point. On the contrary, the ONF in-
duces a sufficiently large absorption intensity, which 
causes a red shift of the absorption spectra (red solid cir-
cles and red line in Fig. 3(d)). Furthermore, direct optical 
transitions between different wave vectors were also con-
firmed. Figure 3(e) shows the absorption intensity as a 
function of the variation in wave vector for the electronic 
excitation between second-highest valence band and the 
lowest conduction band in the ONF excitation at 1.6 eV. 
Here, the absorption intensity is maximum at k ~4 nm-1. 

Fig. 2 | ONF excitation in indirect band-gap structure. (a) Potential, (b) a schematic of the 1D-KP model, and (c) dispersion relation. Here, 

Eg: band-gap energy and Ed: direct band-gap energy. Frames (d) and (e) show the normalized absorption spectra of the 1D-KP model due to 

the far- and near-field excitations, respectively. (f) Absorption spectra due to the electric field components from the dipole radiation, which are 

r-3 (red solid line), r-2 (blue dashed line), and r-1 (green dotted line). Figure is reprinted with permission from ref.10, Copyright © 2016 American 

Physical Society. 
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This was the direct evidence of the wave-vector excitation 
induced by the ONF. In other words, the direct ONF ex-
citation does not require phonon assistance and can be 
realized with photons exclusively.  

Experimental advances 

Scattering effect: Black Si 
A simple yet effective way to improve the optical absorp-
tion in the solar cells is to increase the optical path length 
through the depletion layer between the p-n junction. To 
improve the light scattering efficiency, the scatterers have 
been fabricated at the surface of the detector, such as py-
ramidal Si hillocks made by the anisotropic etching18, 
vertically aligned single crystalline Si nanowire array19, or 
needles made by the laser irradiation with the ultra-short 
pulse width20. In particular, the latter (Si surface with 
needles) works as an extremely good scatterer because of 
its small sharp tip with no reflection from the surface. 
Consequently, it appears black, and is therefore called a 
black Si. This black Si has been used to develop highly 
efficient Si solar cells with 22.1% efficiency21,22. 

Plasmonic effect 
To improve the scattering efficiency, many researchers 
utilized the field enhancement using the plasmon reso-
nance23,24. The scattering and absorption cross-sections 
are given by point dipole model25: 

      

244
2 6 m

sca
m

8π 2π
6π 3 2

ε εkC α a
λ ε ε

 ,      (2) 

             
3 m

abs
m

2πIm 4π
2

ε ε
C k α a

λ ε ε
 ,      (3) 

where α is the polarizability, a is the radius of the particle, 
 is the dielectric function of the particle, m is the dielec-
tric function of the surrounding media, and λ is the 
wavelength. It is evident from Eq. (2) that  should be 
negative (−2m), i.e., the scatterer should be a metal, to 
utilize the plasmon resonance for the light scattering. 
Further from Eq. (3), it is clear that the plasmon induced 
light scattering is indispensable for a strong optical ab-
sorption. For a more effective trapping of the scattered 
light at the metallic nanoparticles on the surface, the 
scattered light excites the waveguide mode using a thin Si 
substrate of Si-on-insulator (SOI)26,27 wafer. Furthermore, 
a higher coupling efficiency can be realized by controlling 
the size and the shape of the metallic nanoparticle28,29. In 
particular, it was observed that smaller size, as well as 
cylindrical and hemispherical shapes of spheres lead to a 
longer path length in the substrate. Further improvement 
of the carrier-excitation was realized by introducing a 
photonic design to induce light trapping with 
three-dimensional structures consisting of nanowires and 
nanoparticles30,31. Since the plasmon resonance for the Au 
sphere occurs at ~520 nm, ellipsoid shape32, chains of 
nanoparticles33, or elongated shapes such as nanorod34 
with longer resonance wavelength have been implement-
ed to obtain larger absorbance in this wavelength range. 
In addition, the periodic structure of the metal, i.e., 
metamaterial-plasmonic absorbers35,36, has been investi-
gated to enhance the optical absorption. The periodic 

Fig. 3 | ONF excitation in a realistic Si system. (a) The theoretical model consisting of a Si bilayer and the electric dipole measured at a dis-

tance of 5 Å above Si surface. (b) Potential of the ONF induced by the electric dipole shown in (a). (c) The Fourier transform of (b). (d) Compar-

ison of the absorption intensity for far-field (blue) and near-field (red) excitations. (e) Absorption intensity as a function of the variation in the 

wave vector (k) for the excitation at 1.6 eV. Figure is reproduced from ref.14 under the terms of the Creative Commons Attribution 4.0 Interna-

tional license. 
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structure works as a grating coupler of light with a nor-
mal incident angle. Consequently, it results in a strong 
absorption exceeding 80%. We investigated the 
self-assembly method37 to improve the efficiency of na-
noparticles deposition. Using the laser-assisted deposition 
of the electrode metal with a reverse biased p–n junction, 
we realized a selective photocurrent generation in the 
transparent wavelength range38. We observed a drastic 
change in the surface morphology of the metal, and con-
firmed the increase in the photocurrent at the wavelength 
that is close to that used during the electrode deposition. 
Since Au has high absorption coefficient, alternative ma-
terials, such as transparent conducting oxides were con-
sidered to achieve the resonance at longer wave-
lengths39,40. 

Hot electrons 
The internal photoemission on a Schottky barrier (Fig. 4) 
has been investigated to utilize the scenarios where the 
photon energy is lower than the band gap energy of Si 
(EC−EV = 1.1 eV)41–43. Since the Schottky barrier between 
Au and Si (B ~ 0.5 eV) is lower than the band gap energy 
of Si, the infrared wavelength region that is longer than 
the band-gap wavelength (1100 nm) can be used. The 
carriers of electron (hot electrons) were excited to obtain 
energies that are higher than the Schottky barrier. By op-
timizing the plasmon resonator, the responsivity of 
4.5×10-4 A W-1 was obtained at nearly 1600 nm (~0.77 eV). 
Using a three dimensional plasmonic resonator, a 
photocapacitance structure was developed to detect the 
charge generation at the Schottky barrier with higher 
efficiency (Fig. 4(b))44. 

Near-field effect 
As discussed in the previous section, the ONF effect can 
improve the absorption efficiency at the band-gap wave-
length. This implies that the localized field can induce 
large wave vector components, which in turn leads to 
direct excitation in indirect band-gap semiconductors 
(Fig. 1(b)). To corroborate this effect, we fabricated a Si 

photodetector with a lateral p–n junction (Fig. 5(a))3. We 
avoided the field enhancement due to the Au nanoparti-
cles24,26,27 in this device by introducing their near-field 
sources with extremely low coverage ~2 % (Figs. 5(b) and 
5(c)). Consequently, we observed a 40 % increase in the 
photosensitivity as compared to that without Au nano-
particles (Figs. 5(d) and 5(e)). As shown in Fig. 5(e), the 
photosensitivity rate increased at longer wavelengths near 
the band-gap wavelength. This dependence has not been 
reported for devices that utilized plasmon 
resonance23,24,26,27, where the enhancement in photosensi-
tivity exhibits a peak around the plasmon resonance, 
which is determined by the materials and shapes. To find 
the origin of this dependence, we evaluated the wave-
length dependence under the assumption that the ONF 
effect causes a direct excitation in the indirect band-gap 
semiconductor. The absorption coefficients of the indi-
rect (αI) and the direct (αD) band-gap materials near the 
energy band gap Eg are described as45 

  2
I g( ) /α hν E hν  ,          (4) 

  1/2
D g( ) /α hν E hν  ,         (5) 

where h is Planck constant and νis frequency of light. 
Since the bias voltage was 0, the photo-current becomes 
the short circuit current described as46 

   SC (1 ){1 exp( )}I Q R αl en  ,    (6) 
where Q is the collection efficiency, R is the reflection 
coefficient, l is the absorbing layer thickness, e is the elec-
tron charge, and n is the number of photons per second 
per unit of the p–n junction. The ONF can induce a di-
rect transition by the inclusion of Au nanoparticles. Thus, 
the photocurrent for this device is the same as that of the 
direct transition (ISC_D). However, since the coverage of 
the Au nanoparticles A is not 100 %, the photocurrent 
shows an increase in the regions where Au nanoparticles 
existed (the ratio was A), while it remained the same (the 
ratio was (1-A)) in other regions. Thus, the increased rate 
in the device can be expressed as follows: 

Fig. 4 | Schematic of the hot electron driven photocurrent over a Schottky barrier. (a) The Schottky barrier (B) is lower than the band-gap 

energy. Therefore, a longer wavelength (2) can be utilized instead of the band-gap wavelength (1). Here, EC: conduction band energy, EV: va-

lence band energy, and EF: Fermi level energy. (b) Three dimensional plasmonic photocapacitor structure. Figure (b) is reprinted with permission 

from ref.44, Copyright © 2016 American Chemical Society. 
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where C is the proportional constant. As shown in Fig. 
5(e), the solid curves represent the calculated increased 
rates, where blue, red, and black curves correspond to N 
= 10, 5, and 1, respectively. The experimental data con-
firmed that the observation of increased rate near the 
band-gap energy supports the possibility of the direct 
transition by the ONF. Further improvement of the in-
creased rate can be realized by implementing a larger 
coverage of the Au nanoparticles and a larger depletion 
area by introducing the intrinsic Si layer between the p- 
and n-type layers, i.e., p–i–n diode structure. 

Figure 6(a) shows the variation of increased rate as a 
function of size of the Au nanoparticles. We observe that 
the increased rate is maximum for Au nanoparticle with a 

diameter of 100 nm. To quantify this size dependence, 
numerical calculations were performed using a finite dif-
ference time domain (FDTD) method47. The calculated 
field distributions (Fig. 6(b)) were then used to obtain the 
Fourier spectra (Fig. 6(c)), where the spectra were ob-
tained from the cross-sectional profile of the field distri-
bution along the x-axis and they were averaged along 
y-axis 0 ≤ y ≤ D/2 (D is the diameter of Au nanoparticle). 
Since the wave number difference between the Γ and X 
points (kx_ΓX) is 4.92 nm-1 48, we studied the diameter de-
pendence of the power spectrum at kx_ΓX (|F(E) ΓX|2, red 
circles in Fig. 6(d)). It is observed that F(E) ΓX|2 also at-
tains a maximum at D = 100 nm. The calculated size de-
pendence is found to be in good agreement with the ex-
perimental results (Fig. 6(a)). The effect of generating a 
larger k-component by the ONF was then investigated by 
determining the normalized power spectra. This normal-
ization was performed using the square of the volume of 
Au nanoparticles (open blue circles in Fig. 6(d))49. The 
normalized power spectra increase with a decrease in size. 
These calculations confirm that, a greater Δk is generated 
when the size of Au nanoparticles decreases. In other 
words, the efficiency of the direct optical transition by the 
ONF increases with a decrease in size due to large com-
ponents of the wave number. 

Fig. 5 | Sensitivity of the lateral p–n junction with Au nanoparticles. (a) Schematic of the device using a Si-on-insulator (SOI). As described in 

ref.3, a solution containing Au nanoparticles was dispersed on the device and the solvent was evaporated with a hot plate. We counted this pro-

cedure of the dispersion number N as one. (b) Scanning electron micrographic (SEM) image of the device. (c) Magnified SEM image of (b). (d) 

Wavelength dependence of sensitivity of the devices. The solid blue circles show the device with the 100-nm Au nanoparticles (N = 5). The open 

black circles correspond to the device before the Au nanoparticle dispersion. (e) Increased photosensitivity rate as a function of the excitation 

wavelength with different dispersion number N. Increased rate were obtained as the ratio between the photosensitivity of the device with and 

without Au nanoparticles. The solid curves show the calculated increased rate using Eq. (7). We used the Au nanoparticle coverage determined by 

SEM images as the ratios of the direct transition A: A=1.82% (N=10), 0.82% (N=5), and 0.48% (N=1). Figure is reproduced from ref.3 under the 

terms of the Creative Commons Attribution 4.0 International license. 
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Although the theoretical results of the large Δk gener-
ated using the first-principle calculation14 supported the 
experimental results3 qualitatively, the enhancement value 
was not explained quantitatively. The disagreement might 
be due to the disagreement of the materials and the size. 
For example, in the first-principle calculation, the point 
dipole was used as a source of the ONF. More detailed 
calculations using the real material in a real system will be 
required to discuss quantitatively. In addition, the limita-
tion of the material size in the first-principle calculation 
results in the disagreement of the system size. To resolve 
this disagreement, a smaller size of the source for ONF 
generation should be used, such as porous Si with several 
nanometer scale50–52. 

Summary and future directions  
Si is an indirect band-gap semiconductor and therefore 
exhibits poor optical absorption efficiency. This review 
presents an overview of various theoretical and experi-
mental efforts to improve the performance of Si-based 
photodetectors and photovoltaic devices. The theoretical 
framework based on first principle calculations along 
with experiments including scattering effect, plasmon 
effect, hot electrons, and near-field effect were discussed. 
The ONF effect permits the generation of a large Δk by 

field localization, which in turn can improve the absorp-
tion efficiency of these devices. The ONF effect can in-
trinsically induce a direct transition due to nonuniformity 
of the optical field. In addition to the reviewed topics, we 
confirmed that near-field could enhance the optical ab-
sorption by the field enhancement effect53, which does 
not utilize plasmon resonance. The field enhancement by 
ONF was confirmed both in the first-principle calcula-
tion and in the experimental absorption spectra of the 
metal complex for CO2 reduction. Therefore, if the 
near-field source is placed with appropriate position, fur-
ther enhancement of absorption is expected. Further, 
since the ONF has nonuniform optical field distribution 
in nanoscale, the ONF can generate even harmonics in 
materials with inversion symmetry54. Yamaguchi et al. 
have showed that the ONF inherently realizes strong se-
cond harmonic generation (SHG) and suggested ways to 
improve the efficiency of this process16,55–57. Further im-
provements of Si-based opto-electronic devices may be 
achieved by combining and optimizing these effects. Re-
cently, the band engineering method was proposed to 
enhance the absorption in another indirect band-gap 
material (Ge)58. Similar investigations have been made in 
other indirect band-gap materials including InSe59–61 and 
MoS2

62,63. The enhancement was achieved by introducing 
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a strain in the crystal, which changed the band diagram 
to the direct band-gap structure. Overall, indirect 
bandgap materials open new avenues for various applica-
tions, which are not limited to photodetectors64,65,66 and 
photovoltaic devices1,2, but also include other realms such 
as light-emitting devices67,68, water-splitting62,69, etc. 
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