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Spiking neural networks for object detection and semantic
segmentation across event-driven and frame-based modalities: a

review

Anguo Zhang!', Hongwei Cao®*', Na Shan*?, Jiagi Wang>®, Mingbo Pu®*¢ and Yongduan Song’*

Abstract: Spiking neural networks (SNNs), drawing inspiration from the energy-efficient and event-driven processing
of biological brains, are emerging as a compelling alternative to traditional artificial neural networks (ANNs) for
resource-constrained artificial intelligence (Al) applications. Their intrinsic properties, including low power consump-
tion, ultra-low latency, and native spatio-temporal information processing capabilities, position them as ideal candi-
dates for critical computer vision tasks such as real-time object detection and semantic segmentation, especially at
the edge. This review systematically explores the fundamental principles of SNNs, including their unique neuron
models and information encoding schemes, contrasting them with the operational paradigms of ANNs. We delve
into the sophisticated mathematical formulations underpinning key SNN neuron models and the intricate learning
dynamics that differentiate SNNs. A significant portion is dedicated to meticulously dissecting recent architectural
innovations in SNNs tailored for image object detection and semantic segmentation. This includes an in-depth analy-
sis of pure SNN convolutional networks, pragmatic hybrid SNN-ANN models, and the cutting-edge integration of
attention mechanisms and Transformer-based designs. Furthermore, we provide an enhanced exposition of crucial
training algorithms, such as advanced surrogate gradient methods and spiking batch normalization, highlighting their
theoretical underpinnings and practical implications. Finally, this review synthesizes the current performance bench-
marks, identifies persistent research challenges, and delineates promising future directions, particularly emphasiz-
ing the synergistic co-design of SNN algorithms and neuromorphic hardware. We argue that SNNs, while not yet
universally outperforming ANNs, hold immense potential to revolutionize Al in dynamic, resource-limited environ-
ments, becoming a cornerstone of next-generation intelligent systems.
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Introduction

The remarkable advancements in deep learning over the
past decade have profoundly reshaped the landscape of arti-
ficial intelligence (AI), particularly in computer vision'-
and natural language processing’”’. Deep artificial neural

networks (ANNs) have demonstrated unparalleled capabili-
ties in tasks ranging from image recognition and speech
processing to complex decision-making®!!. However, this
exceptional performance comes at a significant cost: ANNs
are inherently resource-intensive, demanding substantial
computational power, large datasets, and considerable
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energy consumption'> 4. This intrinsic limitation poses a
formidable challenge for real-time and edge Al applica-
tions, such as autonomous vehicles'>"'8, unmanned aerial
vehicles (UAVs)®-22, and collaborative robots**~?’, where
energy efficiency and low latency are paramount for opera-
tional endurance and responsiveness. The burgeoning
demand for edge Al, driven by the need for fast, real-time
responses, enhanced data privacy, and reduced power
consumption, necessitates novel Al paradigms that can
operate efficiently within strict power and computational
budgets**-*!. This inherent limitation of traditional DNNs is
not an insurmountable barrier, but rather a powerful cata-
lyst for innovation, fostering the co-development of alterna-
tive solutions across hardware, algorithmic, and applica-
tion layers.

In direct response to these limitations, SNNs have
emerged as a highly promising, bio-inspired computing
paradigm, often heralded as third-generation neural
networks®>*. SNNs distinguish themselves by mimicking
biological neural networks, employing neuron models that
communicate via discrete, asynchronous electrical pulses-
spikes-rather than continuous, real-valued activations.
This event-driven, sparse computational model inherently
offers remarkable energy efficiency and native compatibil-
ity with temporal information encoding*!. As a crucial
link between neuroscience and machine learning, SNNs
portend a future where AI development will draw more
deeply from biological intelligence, potentially leading
to the emergence of more general, efficient, and robust
intelligent systems*-*4,

Within computer vision, object detection and semantic
segmentation are foundational tasks, crucial for applica-
tions spanning video surveillance, autonomous driving, and
medical image analysis**~*¢. Object detection precisely iden-
tifies and localizes objects*~*!, while semantic segmenta-
tion assigns class labels to every pixel for fine-grained scene
understanding®>*. However, real-world scenarios intro-
duce significant complexities, including scale variations,
illumination changes, and ambiguous boundaries®. Tradi-
tional DNNSs, despite their impressive results, often strug-
gle with these complexities, imposing severe computational
demands that render them unsuitable for resource-
constrained environments. This context positions SNNs,
with their promise of low power consumption and low
latency, as a potential transformative solution®. The
demand for real-time, dynamic scene understanding aligns
exceptionally well with event cameras, which provide high
temporal resolution and event-driven data streams*-°!.
SNNs, as an event-driven computing paradigm, exhibit a
natural synergy with such data®>*, suggesting superior effi-
ciency for dynamic semantic segmentation compared to
frame-based ANNS.

Historically, SNNs have lagged behind ANNs in complex
tasks, but recent breakthroughs have dramatically narrowed
this performance gap, with SNNs achieving comparable or

superior results on specific benchmarks while significantly
reducing energy consumption®-°. This rapid improvement
is driven by convergent advances in neuromorphic hard-
ware®, event camera technology”, and sophisticated algo-
rithmic developments in SNN architectures and learning
strategies. The diminishing performance disparity signifies
a pivotal shift in SNN technology, from theoretical explo-
ration to practical viability, foreshadowing a surge in SNN
research geared towards practical deployment and real-
world applications. Given this evolving landscape, this
comprehensive review is designed to provide an in-depth
exploration of the latest advancements in SNNs for image
object detection and semantic segmentation. It systemati-
cally covers fundamental SNN concepts, including neuron
models and information encoding schemes, and elucidates
their foundational differences from ANNs. We then dissect
recent architectural innovations, advanced learning strate-
gies, their synergistic relationship with neuromorphic hard-
ware, quantitative performance benchmarks, and critical
future research directions.

Specifically, this review makes the following key contri-
butions: 1) a systematic and critical analysis of the latest
SNN architectures for object detection and semantic
segmentation, with a special focus on hybrid and Trans-
former-based models, 2) an in-depth discussion of
advanced training algorithms tailored for SNNs, such as
surrogate gradients and spiking batch normalization, and 3)
a unique focus on the synergy between SNNs and optoelec-
tronic sensors (e.g., event cameras), aligning with the
cutting-edge field of Intelligent Opto-Electronics.

Spiking neural network fundamentals

SNNs draw profound inspiration from the intricate archi-
tecture and dynamic functionality of biological neural
systems’!, distinguishing themselves from traditional ANN's
by employing neuron models that communicate via
discrete, asynchronous electrical pulses, known as “spikes’
or “action potentials”™. This fundamental paradigm shift
allows SNNs to process information in a unique manner,
leveraging the precise timing and frequency of these spikes
to encode and transmit information effectively.

>

Core concepts of spiking neuron dynamics

The operational paradigm of SNNs is deeply rooted in
neurobiological principles, offering a more biologically
plausible model of computation. Central to SNNs is the
concept of a neuron’s internal state, governed by its
membrane potential ( V;, (¢)), which accumulates incoming
synaptic currents over time. When this potential reaches or
exceeds a predefined threshold (Vy,), the neuron fires a
discrete spike, after which its membrane potential is typi-
cally reset. This spike generation process introduces a
crucial non-linearity to the neuron’s dynamics. The general
form for membrane potential dynamics can be described by
a first-order differential equation:
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v -
where 7, is the membrane time constant, V.. is the resting
membrane potential, R, is the membrane resistance, and
I (t) is the total synaptic current arriving at the neuron.
The strength of connections between neurons is modulated
by synaptic weights, which govern the influence of an
incoming spike on the postsynaptic neuron’s membrane
potential. Synaptic inputs can be excitatory or inhibitory.
When a presynaptic neuron fires a spike, it induces a tran-
sient change in the membrane potential of the postsynaptic
neuron, known as the post-synaptic potential (PSP). The
ability of synapses to strengthen or weaken over time is
termed synaptic plasticity, which forms the biological basis
of learning and memory’>.

The inherent sparsity and event-driven nature of SNNis,
where computations occur only upon spike firing, directly
contribute to their exceptional energy efficiency’®. This
stands in stark contrast to ANNs, which typically involve
continuous activation and dense computations across all
neurons at every timestep. However, the discrete and
complex spike dynamics of SNNs pose significant chal-
lenges for direct application of traditional gradient-based
learning algorithms like backpropagation, necessitating the
development of specialized training strategies such as surro-
gate gradients.

Vrest) + RmIsyn (t) ) (1)

Key spiking neuron models

Diverse spike-based neuron models exist, each offering
varying degrees of biological realism, computational
complexity, and efficiency, serving as the fundamental
building blocks of SNN architectures.

Integrate-and-fire (IF) and leaky integrate-and-fire (LIF)
models

The IF model is the simplest conceptualization of a spiking
neuron. It functions as a perfect integrator, where its
membrane potential V,, (t) accumulates incoming synaptic
current over time. Once V,, (¢) reaches a predefined thresh-
old Vy,, the neuron fires a spike and its potential is reset.
However, the basic IF model lacks a crucial biological
feature: the passive decay of membrane potential
over time’*.

The LIF model addresses this by incorporating a “leak-
age” term, making it both more biologically realistic and the
most widely adopted neuron model in SNN research due to
its excellent balance of plausibility and computational effi-
ciency”. The LIF model simulates how a neuron integrates
incoming current while its membrane potential simultane-
ously “leaks” back towards a resting state. The dynamics of
the LIF neuron’s membrane potential V,, (¢) are described
by the differential equation:

dv, (1)
g = (Va (8)
where the term — (V,, (f) —

Vrest) + Iin (t) 9 (2)

Veest) represents the passive

leak, causing the potential to exponentially decay towards
the resting potential V. with a membrane time constant
Tm. Lin () is the total input current from presynaptic
neurons. Upon spiking at time # (when V,, () > Vy,), the
neuron fires, and its membrane potential is instantly reset
to a lower value V., (where Ve < V.s) and is often
clamped for a brief refractory period to prevent immediate
re-firing.

While the IF and LIF models’ simplicity is advantageous,
they face limitations in complex deep networks, primarily
because their fixed parameters (e.g., 7., Vi) may require
extensive manual tuning and can limit their expressive
power and adaptability. Nevertheless, their computational
efficiency has made them a cornerstone in many pioneer-
ing SNN architectures, such as Spiking-YOLO” and Spik-
ing-YOLOX" for object detection. They are also used in
Spiking CenterNet”® for event data and SpikeFPN” for
adaptive threshold mechanisms. For classification and
segmentation, LIF neurons are employed in Spiking-SSeg-
Net® and  Spiking-UNet  variants for  image
segmentation®’,

Parameterized leaky-integrate-and-fire (PLIF) model

The PLIF neuron, a further extension of the LIF model,
introduces learnable parameters for the membrane time
constant (7,,) and the threshold potential (V},) that can be
optimized during training. This allows the neuron’s dynam-
ics to adapt more flexibly to the data and task requirements,
improving the model’s expressive power and training stabil-
ity®. PLIF models have been used in embedded SNN object
detection® and in LT-SNN®*, which optimizes learnable
thresholds online. The PLIF model is also a key component
in EvSegSNN®¢ for semantic segmentation. The PLIF model's
learnable parameters enable it to capture more complex
neuronal behaviors without significantly increasing the com-
putational overhead, offering a bridge between the simplic-
ity of LIF and the adaptability of more complex models.

Bistable integrate-and-fire (BIF) model

The BIF neurons, introduced by Yasir et al.¥’, represent a
novel approach by exhibiting two stable states, which
enhances information transmission and stability. This
mechanism improves temporal coding and significantly
enhances detection performance by optimizing spike
utilization and encoding more information per spike.

Multi-threshold spiking neuron

Multi-threshold spiking neurons, as introduced in Lei et
al.®8 and Li et al.¥, fire multiple spikes based on a series of
predefined thresholds. This mechanism is designed to
enhance information transmission in SNNs, especially
within complex architectures like Mask2Former. By allow-
ing neurons to fire upon crossing different thresholds, the
model’s output can better align with ANN activations,
thereby streamlining conversion and training processes.
This approach, when combined with connection-wise
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normalization, helps prevent inconsistent firing rates in
skip connections, ensuring faithful information representa-
tion across the network.

Dynamic threshold leaky-integrate-and-fire (DT-LIF)
model

To enhance adaptability beyond fixed thresholds, the DT-
LIF neuron dynamically adjusts its firing threshold based
on past activity, mimicking biological neuronal adaptation
and firing-rate homeostasis”. The dynamic threshold
Vu (t) for a DT-LIF neuron can be modeled as

Vin (£) = Vino + Zkﬂke_(t_[k)/r“d“"‘ ) (3)

where Vi, is the baseline threshold, #, is an increment
added to the threshold after each spike fired at time #, and
T 1S the adaptation time constant governing the expo-
nential decay of the threshold. This dynamic adjustment
significantly enhances inference speed and accuracy by
preventing neurons from firing excessively or becoming
“dead” due to consistently high or low membrane poten-
tials. After each spike, the threshold transiently increases
and then gradually decays. The DT-LIF model represents a
balance: it is “bio-inspired” yet incorporates engineering
adjustments for computational efficiency and training
performance, reflecting a core theme in SNN research to
compromise “pure biological realism” for “computational
feasibility”. This model is employed in DT-LIF Based SSD%
to improve detection accuracy and inference speed.

Analog spiking neuron

In Ma et al's?* analog Spiking U-Net, an analog spiking
neuron is proposed which modifies the firing positions of
neurons and transfers information in floating-point signals,
aiming to preserve detailed information. This model inte-
grates analog CBAM (convolutional block attention
module) and spiking ViTBlock (vision transformer block)
to enhance semantic segmentation. The analog CBAM is
specifically designed to handle floating-point signals from
ANNs before conversion to spikes, enabling the use of
traditional ANN modules without corrupting spike distri-
bution. This innovative approach seeks to bridge the infor-
mation gap often encountered when converting continuous
ANN activations to discrete SNN spikes.

The continuous evolution of SNN neuron models
directly addresses inherent training difficulties and perfor-
mance limitations®. The progression from basic LIF to
adaptable PLIF, and the introduction of multi-threshold,
analog, and NSNP neurons, reflect ongoing efforts to
balance computational efficiency with complex network
performance, bridging the gap with ANNs and enhancing
task-specific capabilities.

Information encoding schemes

In SNNs, information is represented and communicated
through spikes, necessitating efficient encoding schemes to
translate input data into spike trains and decode output

spike trains into meaningful representations”. These
schemes leverage SNNs’” unique spatio-temporal properties,
typical rate encoding and temporal encoding mechanisms
are as shown in Fig. 1.

Input signal
(Intensity)

Rate coding

Temporal coding
(Latency)

|: | | _ Time window (T) Time window

Pixel 1

Pixel 2 |

Pixel 3

Pixel 4

Information Information is in Information is in
is in the spike the spike frequency the spike timing
frequency

Fig. 1 | The rate encoding and temporal encoding mechanisms of input
signal for SNNs.

Rate encoding

Rate encoding schemes represent information through the
average firing rate or frequency of spikes within a given
time window, where a higher firing rate typically signifies a
stronger signal. The firing rate R of a neuron can be simply
expressed as

Nipikes
Tuindow
where N is the number of spikes fired within a time
window Tindgow - While simpler to implement and often used
for compatibility with rate-based ANN concepts, this
method can potentially lose the fine-grained temporal
information inherent in spike sequences®. Rate-based spike
coding is used in SpikiLi* for LiDAR-based 3D object
detection. However, rate encoding faces challenges with
datasets of varying intensities®!. To address this, constant
current injection®? or normalized voxel grids®® are used to
ensure uniformity in scale and mitigate outliers.

R =

; (4)

Temporal encoding

Temporal encoding schemes leverage the precise timing of
spikes or the relative timing between spikes to represent
information. This approach is highly information-rich and
inherently compatible with the dynamic nature of biologi-
cal neural networks. This includes latency coding, where
information is encoded in the time of the first spike relative
to a reference point or stimulus (shorter latencies often
correspond to stronger input signals), and rank-order
coding, which encodes information in the relative order of
firing of different neurons (the first neuron to fire might
carry the most salient information). Temporal encoding is
particularly powerful for capturing dynamic spatio-tempo-
ral information, making SNNs naturally adept at process-
ing time-series data and dynamic scenes. Its energy effi-
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ciency stems from the fact that neurons only fire when
necessary, minimizing activity. Spike-time-dependent inte-
grated (STDI) coding, proposed by Qu et al.”’, further
augments information capacity in individual spikes for
ultralow-latency SNNGs.

The choice between encoding schemes involves a trade-
off between performance and energy efficiency. Rate encod-
ing is simpler but may sacrifice temporal precision, whereas
temporal encoding is information-rich but can be more
complex to implement and train. This trade-oft directly
influences model accuracy and computational efficiency,
driving future research to explore more efficient and task-
adaptive hybrid encoding schemes®*.

Fundamental differences and advantages over ANNs
SNNs fundamentally diverge from ANNSs in several critical
aspects, which collectively contribute to their unique advan-
tages and challenges.

Fundamental differences

SNNs communicate via discrete, binary, and asynchronous
electrical pulses (spikes), contrasted with ANNSs’ continu-
ous, real-valued, and typically synchronous activations.
This event-driven nature means SNNs process information
only when a spike occurs, leading to sparse and asyn-
chronous computations, unlike ANNSs’ dense, synchronous
processing. SNNs are designed to more closely mimic
biological brains, guiding their core architectural and learn-
ing principles, while ANNs are abstract mathematical
models. The discrete and non-differentiable nature of spike
generation in SNNs complicates direct application of tradi-
tional gradient-based learning algorithms like backpropaga-
tion, necessitating specialized SNN training techniques.

Key advantages

As shown in Fig. 2, energy efficiency is a cornerstone
advantage, as SNNs transmit information and perform
computations only when a neuron fires, leading to signifi-
cantly fewer operations and orders of magnitude lower
energy consumption, crucial for power-constrained edge Al
devices”1%. For instance, sparse compressed SNN accelera-
tors have achieved 26x model size reduction and high
energy efficiency for object detection'”. Spiking-YOLO
adaptations have shown 280x less energy consumption on
TrueNorth!*?. Spiking-UNet achieved a 10x energy reduc-
tion compared to its CNN counterpart®. SNNs replace
high-power MAC operations with more energy-efficient
AC operations, particularly for neuromorphic hardware’'.
PSSD-Transformer consumes 17.76x less energy than
ANN-based models'®.

Low latency is another key benefit, on specialized neuro-
morphic hardware, SNNs can achieve extremely low latency
processing, outperforming ANNSs in real-time applications
by processing information as events occur rather than wait-
ing for full-frame data. SUHDY, an ultralow-latency and
high-accuracy SNN for object detection, achieves 750x

Artificial
neural network

Spiking neural
network (SNN)

o W

Event-driven input Continuous

activation functions
‘e

Spikes
Threshold-based Dense,synchronous
activation computation
Sparse,
asynchronous Higher energy

computation consumption

g High energy 4 :
efficiency

Fig. 2 | Difference and advantages of SNN compared to ANN.

timestep reduction and 30% mAP enhancement. Low
latency in SNNs is also achieved by using Neurons-Shared
Blocks and transfer learning, enabling rapid inference with
fewer time steps®.

Sparsity in SNNs is a natural characteristic inherited
from biological neural networks, contributing to their
computational efficiency and reduced memory footprint.
Addressing information loss in sparse spiking is a key area
of research, with solutions like spike-driven deformable
transformer encoder (SDTE) and spike-driven mask
embedding (SDME) enhancing segmentation
performance®®. Pure sparse self attention (PSSA) and
dynamic spiking membrane shortcut (DSMS) ensure spike-
based processing without floating-point computations'®.

Temporal data processing is an intrinsic strength of
SNN:s, as they encode information in spike timings, making
them well-suited for processing spatio-temporal data and
complex dynamic patterns, ideal for sequential or event-
based sensory inputs. SNNs for image segmentation
demonstrate dynamic event-driven processing and tempo-
ral axis capacity, opening new horizons for models with
exponential ~memorization®.  Spiking-LSTM  models
combine SNN and LSTM to capture spatio-temporal infor-
mation effectively for tasks like hyperspectral image
segmentation'*.

Compatibility with event-driven sensors is another key
advantage. SNNs’ event-driven operational paradigm makes
them highly compatible with data streams from event
cameras, which generate asynchronous event-based data,
offering superior performance in challenging conditions
like high-speed motion, high dynamic range, and low
light**1%. EvSegSNN® highlighted SNNs’ suitability for
event-based sensors due to their asynchronous spike
computation and speed of spread, making them ideal for
low-power, real-time semantic segmentation tasks. Beyond
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image-based tasks, SNNs also process raw sensor data
directly, as exemplified by'®® for automotive radar object
detection.

The spiking object detection and semantic segmentation
pipelines with event-driven data input is presented in Fig. 3,
a comparative overview of SNNs and ANNs/DNNs, high-
lighting their distinct characteristics and advantages, is

Real-world scene

Dynamic vision sensor
(DVS) of event camera

Event-driven
image data
SNN-based object SNN-based semantic
detection segmentation

Spiking object detector | Spiking semantic segmenter
(e.g., Spiking-YOLO) | (e.g., EvSegSNN)

E)

\4
owper: ][] 4]
classification &

bounding box ¢

Output: dense |

Time window .
semantic mask

e S

Fig. 3 | The spiking object detection and semantic segmentation pipelines
with event-driven data input. This concrete visual representation illus-
trates the entire process, from a real-world scene captured by an event
camera (generating sparse, point-like events) to the processed outputs
(bounding boxes for object detection and pixel-wise masks for semantic
segmentation).

presented in Table 1.

While the biological plausibility that garners SNNs much
praise is simultaneously the root cause of their primary
challenges, training difficulty and non-differentiability due
to discrete spiking and complex dynamics, this fundamen-
tal trade-off lies at the heart of SNN research!””!”. The
discrete nature and complex dynamics of SNN spikes
render traditional gradient descent methods impractical,
propelling researchers to develop alternative gradient-based
or gradient-free approaches. These methods, by necessity,
often involve some level of compromise on pure biological
realism in favor of computational feasibility. Crucially, the
full realization of SNN§s’ energy efficiency and low-latency
advantages is heavily contingent on specialized neuromor-
phic hardware!®!!%, Traditional computing platforms like
GPUs and CPUs are not optimized for event-driven, sparse
computation, thus hindering SNNs from demonstrating
their full potential energy savings. Consequently, the future
trajectory of SNN development is inextricably linked to the
synergistic co-design of algorithms and hardware, along-
side the broader commercialization and accessibility of
neuromorphic chips'!’.

SNN architectures for object detection

Object detection, a cornerstone task in computer vision,
demands both high accuracy and real-time performance.
SNNs, with their inherent energy efficiency and event-
driven nature, are uniquely positioned to address the
computational demands of deploying object detection
models on edge devices. This section reviews the evolution
of SNN architectures for object detection, from early
conceptual models to advanced hybrid and Transformer-
based designs.

Early SNN architectures for vision tasks

The initial foray of SNNs into computer vision primarily
focused on simpler recognition and classification tasks,
such as handwritten digit recognition (e.g., MNIST dataset)
or basic pattern classification!!?-!'>. Meftah et al.''* explored
SNNs for image segmentation and edge detection using

Table 1 | Comparison of SNNs and ANNs/DNNs for object detection and semantic segmentation.

Feature

SNNs

ANNs/DNNs

Communication mechanism
Neuron activation
Information processing
Learning paradigm
Energy consumption
Latency
Biological Plausibility
Training difficulty
Hardware compatibility
Typical performance (accuracy)

Data modality suitability

Discrete spikes, asynchronous
Threshold-based, event-driven
Sparse, temporal (Timing/Frequency)
STDP, surrogate gradients, ANN-to-SNN conversion
Low (inherently efficient)
Ultra-low (especially on neuromorphic hardware)
High (mimics biological brains)
High (non-differentiable spikes)
Neuromorphic processors, edge devices
Rapidly improving, approaching/exceeding ANNs on specific tasks

Event-based data, time-series

Continuous values, synchronous

Continuous activation functions (e.g., ReLU)
Dense, rate-based (Activation Strength)

Backpropagation (Gradient Descent)

High (resource-intensive)

Higher (due to synchronous processing)

Low (abstract mathematical models)

Lower (well-established methods)

GPUs, CPUs, TPUs

High, state-of-the-art across many tasks

Frame-based data, Static images
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unsupervised Hebbian-based winner-take-all learning with
LIF neurons. Pioneering conversion work by Cao et al.!*®
demonstrated an early method to convert deep CNNs into
SNNs for energy-efficient object recognition, achieving two
orders of magnitude lower energy consumption compared
to FPGA-based CNNs while maintaining similar accuracy.
These foundational efforts were crucial for demonstrating
the feasibility of spike-based computation in the visual
domain, setting the groundwork for adapting successful
deep learning concepts to the SNN framework despite the
inherent architectural simplicity that limited their applica-
bility to more complex object detection problems.

Pure SNN convolutional networks (S-CNNs)

As depicted in Fig. 4, inspired by the immense success of
Convolutional Neural Networks (CNNs) in conventional
computer vision, researchers began translating these power-
ful architectures into the SNN paradigm, giving rise to deep
Spiking Convolutional Neural Networks (S-CNNs). These
models have demonstrated notable energy efficiency advan-
tages, particularly in event-driven object detection tasks.
The development trajectory of S-CNNs involved adapting
or simplifying successful ANN detectors, leading to a strate-
gic shift within the SNN field toward optimizing for its
unique characteristics.

ANN-to-SNN conversion pipeline

’
[ i . !
I Pre-train Weight SNN I
1 ANN with normalization deployment :
"' backpropagation & threshold &inference ||
: calibration !
[

| 1

: NN
' HE
' (IR
I 1
I \ J \ ) I
| 1
| Trained Converted |
: weights SNN model 1
1

: Energy 1
1 efficiency 1
1 gain "

Fig. 4 | Generic ANN-to-SNN conversion pipeline. This diagram illustrates
the transformation process, highlighting how a pre-trained ANN s
adapted to an SNN, typically involving threshold mapping and weight
transfer to leverage existing deep learning successes.

Spiking-YOLO and its variants

Spiking-YOLO?® is an SNN adaptation of the popular
YOLO (You only look once) object detection architecture.
It introduces a “meta-SNN block,” a channel normalization
scheme, and unbalanced threshold sign neurons. The
primary motivation was to leverage YOLO’s efficiency and
accuracy for object detection within the SNN framework,
addressing the inefficiencies of traditional normalization

methods and enhancing adaptability to diverse datasets.
This aimed to resolve challenges in building deep SNNs
capable of complex vision tasks while maintaining the
energy efficiency inherent to spiking neurons. It simplifies
the YOLO architecture to suit SNN characteristics by incor-
porating specific SNN-friendly components like the meta-
SNN block and custom normalization. This allows for
direct training of deep SNNs without ANN-to-SNN conver-
sion. However, it still faces high training complexity and an
accuracy gap compared to its ANN counterparts. Building
on this, Bi et al.!*® adapted YOLOvV5’s C3 module using LIF
neurons, achieving 2.47x lower power consumption and
improved accuracy for foreign object detection on over-
head power lines. Liu et al.!®> further adapted spiking-
YOLO for mobile robot deployment, demonstrating 280x
less energy consumption on TrueNorth. Miao et al.”’
advanced spiking-YOLOX by integrating ternary signed
spiking neurons and fast fourier convolution (FFC) for
enhanced feature extraction and state-of-the-art object
detection. Additionally, Qu et al.”” proposed SUHD, an
ultralow-latency SNN that enhances SPPF conversion effi-
ciency through timestep compression and spike-time-
dependent integrated (STDI) coding.

Multi-scale spiking detectors

The multi-scale spiking detector (MSD) framework''” inte-
grates spiking multi-scale fusion with dedicated spiking
detectors. Traditional SNNs often struggle with detecting
objects of varying sizes in complex scenes due to their focus
on local features. MSD was developed to enhance deep
feature extraction across multiple scales, which is crucial for
robust object detection. It achieves high performance with
low energy consumption by utilizing On-chip neuromorphic
network blocks (ONNB) and a multi-scale spiking fusion
mechanism, directly training deep SNNs. This allows for a
more comprehensive understanding of visual scenes. As a
related model, the spiking fusion object detector (SFOD)!*¢
combines a spiking denseNet backbone with an SSD (single
shot MultiBox detector) detection head. Its innovative spik-
ing fusion module enables multi-scale feature fusion not
only spatially but also temporally, improving detection
accuracy for dynamic objects by fusing transient move-
ments from shallow layers with broader actions from
deeper layers. Fan et al.!”” introduced SFDNet, a fully spik-
ing RGB-event fusion-based detection network featuring
the leaky integrate-and-multi-fire (LIMF) neuron model
and a multi-scale hierarchical spiking residual attention
network, achieving state-of-the-art low-power and robust
detection. Furthermore, Fan et al.'? introduced SpikeDet,
which optimizes firing patterns using a Membrane-based
deformed shortcut residual network (MDSNet) and spiking
multi-direction fusion module (SMFM), achieving high AP
with reduced power consumption.

Other notable contributions to pure SNNs for object
detection
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Pure SNNs have seen diverse advancements for object
detection. Bulzomi et al.!?! proposed a lightweight SNN
using visual attention mechanisms to filter noise, achieving
a 24x smaller model size. Courtois et al.** demonstrated
embedded SNN object detection with a SpikeThin-VGG
backbone on an FPGA-based SPLEAT accelerator, achiev-
ing 490 m]/prediction for automotive event data. Bodden
et al.’® introduced Spiking CenterNet, utilizing an M2U-
Net-based decoder and knowledge distillation to achieve
2.6% higher mAP. Zhang et al.”” proposed SpikeFPN for
automotive event-based object detection, which uses an
FPN architecture and an adaptive threshold mechanism,
achieving 0.477 mAP on the GEN1 dataset. Mohapatra et
al.”® presented SpikiLi, an SNN for LiDAR-based 3D object
detection, leveraging CNN-to-SNN conversion and quan-
tized weights for efficient autonomous driving. Feng et al.!??
proposed a multi-patch localization SNN for infrared drone
object detection, decoupling classification and localization
tasks to achieve 98.9% accuracy with low power. Lien and
Chang'’! demonstrated a sparse compressed SNN accelera-
tor, achieving 26x model size reduction and 1.05 mJ/frame
energy efficiency. Su et al.'** proposed EMS-YOLO, a deep
directly-trained SNN for object detection that achieves
ANN-comparable performance with 5.83x less energy.
Zhang et al.’* introduced SG ResNet with a binary selec-
tion gate, addressing gradient vanishing and achieving high
accuracy. Qu et al.”” proposed SUHD, an ultralow-latency
SNN achieving 750x timestep reduction and 30% mAP
enhancement. Yasir et al.*” introduced BN-SNN, integrat-
ing bistable integrate-and-fire (BIF) neurons to enhance
information transmission and improve detection perfor-
mance. Wang et al.'> developed Spike-BRGNet, an event-
based semantic segmentation network for traffic scenes,
featuring a three-branch spiking encoder and a spiking
multi-scale context aggregation (SMSCA) module, outper-
forming SOTA SNN methods by +1.57%-1.91% mloU
while consuming 17.76x less energy than ANN-based
models.

A notable limitation of early spiking CNNs is their
propensity to focus on local and single-scale features. This
inherent bias makes it challenging to achieve high detec-
tion accuracy, especially for objects with varying sizes or in
complex, cluttered scenes. While traditional CNNs excel at
local feature extraction, their SNN counterparts inherited
this characteristic, which proves particularly problematic
for object detection where understanding the global scene
context is paramount for accurate localization and classifi-
cation. This limitation in feature representation has directly
spurred the development of more advanced architectures,
including the integration of feature pyramids and Trans-
former-based designs. The early development trajectory of
S-CNNss involved adapting or simplifying successful ANN
detectors (e.g., YOLO, SSD). While this expedited SNN
application to complex tasks, its inherent limitations drove
researchers to explore more “native” SNN designs like

MSD’s spike-based multi-scale fusion and ARSNN’s unique
approach to temporal alignment loss. This indicates a
strategic shift within the SNN field toward optimizing for
its unique characteristics rather than mere transplantation.

Hybrid SNN-ANN Architectures

Recognizing the complementary strengths of SNNs (energy
efficiency, temporal processing) and ANNs (high accuracy,
robust training, mature learning algorithms), researchers
have explored integrating these two paradigms into hybrid
architectures (typically as shown in Fig. 5). The core philos-
ophy behind these hybrid models is to leverage SNNs’
power-efficient, event-driven processing capabilities, typi-
cally for extracting low-level, spatio-temporal features from
event data, with ANNSs’ established efficient learning and
powerful representation capabilities, often for high-level
tasks like object classification and bounding box regression.
Hybrid architectures represent a pragmatic engineering
compromise, meticulously crafted to mitigate the perfor-
mance disparity of SNNs while concurrently preserving
their inherent efficiency advantages.

Generic hybrid SNN-ANN architecture

-
SNN feature ANN
extractor classification/
(backbone) regression head
Event Converted
q featu
data input pe %
° —
* Low-level spatio-temporal
feature processing <High-level task processing
+ Spike-based computation +Dense computation
« Energy efficient «High accuracy
Converted Output

(e.g., Bounding boxes,
feature maps segmentation mask)

illustrates how SNN components, often used for efficient low-level
feature extraction, are integrated with ANN components, typically
handling high-level tasks, to balance performance and energy efficiency.

A common hybrid approach involves using an SNN as a
lightweight and efficient backbone for extracting features
from event data, which are then fed into an ANN-based
head for final object detection tasks. This architecture aims
to achieve performance comparable to pure ANNs while
significantly reducing the number of parameters, latency,
and power consumption. The driving force is to bridge the
gap between SNNs’ efficiency and ANNSs’ superior accu-
racy and robust training for complex tasks. For instance,
Liu et al.'? proposed a Spiking-YOLO model for mobile
robot object detection by leveraging DNN-to-SNN conver-
sion for energy efficiency on neuromorphic hardware like
TrueNorth. Similarly, Zhang et al’s** spiking RetinaNet
combines an SG ResNet backbone with an ANN detection
head, achieving 0.296 mAP on MSCOCO. Another notable
example is the DT-LIF Based SSD%, which utilizes the DT-
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LIF neuron model within a hybrid SNN based on the SSD
framework. This model significantly improves detection
accuracy and inference speed by employing spiking VGG
and spiking DenseNet backbones, along with batch normal-
ization (BN), spiking convolutional (SC) layers, and DT-
LIF neurons, demonstrating a 25.2% improvement in object
detection accuracy on the Prophesee GEN1 dataset.

The success of hybrid architectures underscores a critical
insight: SNNs and ANNs should often be viewed as
complementary modules, with SNNs excelling at low-level
event feature extraction and ANNs at high-level classifica-
tion and regression. Their synergistic combination, as
exemplified by hybrid SNNs, achieves an optimal balance
between performance and energy efficiency. This modular
design philosophy can be readily extended to design more
intricate heterogeneous systems, potentially deploying SNN
components on neuromorphic chips and ANN compo-
nents on GPUs for optimized overall system performance.

Attention mechanisms and transformer-based SNN

Integration

The revolutionary success of transformer architectures
across diverse computer vision domains has naturally led to
their integration into SNNs. As presented in Fig. 6, this
integration primarily aims to address the limitations of
spiking CNNs in processing global context and long-range
dependencies'?. This convergence indicates that SNN
development is proactively embracing and adapting to the
latest advancements in modern deep learning, striving for
comprehensive competitiveness.

Spiking vision transformer (S-ViT)

Spiking vision Transformers (S-ViTs) are adaptations of the
vision transformer architecture for SNNs, focusing on
reducing the number of timesteps for processing. The core
motivation is to capture global dependencies efficiently, a

known limitation of traditional SNN-CNNs, while main-
taining or improving latency and energy efficiency. This is
crucial for handling complex visual tasks that require a
broader understanding of the image context. These models
adapt the self-attention mechanism to operate with spikes,
aiming to capture global dependencies efficiently. While
powerful, training convergence and stability in deeper S-
ViTs remain significant research challenges. Active research
explores S-ViTs to improve latency and energy
efficiency'”~1%. Yu et al."** introduced SpikingViT, a multi-
scale spiking vision transformer model for event-based
object detection, which enhances spatio-temporal informa-
tion processing through a multi-stage feature extraction
(MFE) module and a temporal memory spiking neuron
(TMSN) block.

Spike-TransCNN architectures

Spike-TransCNN architectures are hybrid designs that
combine spiking Transformers with spiking CNNs. These
models address the inherent bias of SNN-CNNs towards
local features and their difficulty in integrating global and
high-level semantic information. The aim is to effectively
integrate both global and multi-scale local features for
enhanced detection accuracy and energy efficiency, particu-
larly for sparse event data. They achieve this by adeptly
combining the global information extraction capabilities of
spiking Transformers with the local feature extraction
advantages inherent in spiking CNNs. For example, in
Wang et al.'®, a PSSD-transformer is proposed for image
semantic segmentation, incorporating pure sparse self
attention (PSSA) and dynamic spiking membrane shortcut
(DSMS) to handle floating-point computations with sparse
spikes. Nonetheless, potential limitations may include
restricted architectural innovation and suboptimal perfor-
mance on very large datasets compared to ANN counter-
parts.

Attention mechanism and transformer-based SNN

Sparse,
asynchronous

Spiking transformer/
attention module

Global context capture
long-range dependencies
spatio-temporal attention

[—— * Reduced latency
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Fig. 6 | Attention mechanism and Transformer-based SNNs. This diagram illustrates how spiking versions of self-attention are integrated into SNN architec-
tures, allowing for the efficient capture of global dependencies while preserving the energy efficiency of spike-based computation.
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Other attention mechanisms

Beyond full transformer integration, various attention
mechanisms have been incorporated into hybrid SNN-
ANN backbones. Attention-based SNN-ANN bridging
modules are designed to capture sparse spatio-temporal
relationships within SNN layers and efficiently convert
them into dense feature maps for the ANN component.
This allows for targeted information flow and highlights
salient features while maintaining SNN efficiency. The goal
is to improve the interpretability and feature weighting
within SNNs for better performance. Bulzomi et al.!!
proposed visual attention mechanisms for lightweight
SNNss for object detection to filter noise and reduce activa-
tions. Miao et al.”” employed fast fourier convolution (FFC)
in SpikingYOLOX to provide a global receptive field,
implicitly functioning as an attention mechanism for
enhanced feature extraction. Zhang et al.'’** introduced an
attention spike decoder (ASD) to dynamically assign
weights to spiking signals along temporal, channel, and
spatial dimensions for effective decoding. Fan et al.!'" inte-
grated a multi-scale hierarchical spiking residual attention
network within SFDNet. Furthermore, in Li et al.*®, special-
ized modules like the adaptive temporal weighting (ATW)
injector, event-driven sparse (EDS) injector, and channel
selection fusion (CSF) module facilitate robust interaction
between SNN and ANN branches. The ATW Injector inte-
grates event temporal features into frame features, the EDS
Injector combines sparse event data with rich frame
features, and the CSF module selectively fuses features from
both branches. In Ma et al.”’, an Analog CBAM (convolu-
tional block attention module'®®) combines channel and
spatial attention mechanisms, designed to handle floating-
point signals from ANNs to integrate attention mecha-
nisms without corrupting spike distributions. Lastly, Wang
et al.'”® introduced a dynamic surrogate gradient function
(EVAF) and a boundary region-guided loss to optimize
training, which involves attention to relevant boundary
areas.

The integration of transformer architectures serves as a
direct response to the challenges SNNs face in handling
global context and long-range dependencies. A recognized
weakness of SNN-CNNs is their inherent bias towards
“local and single-scale features,” as well as their difficulty in
“integrating global and high-level semantic information”.
Transformers, by their nature, excel at capturing global
attention mechanisms and long-range dependencies. While
S-CNNs demonstrate robust performance in local feature
extraction, they often lack sufficient global contextual infor-
mation, which is paramount for many object detection
tasks. The introduction of transformers into SNNs (e.g., S-
ViT, Spike-TransCNN) directly compensates for the limita-
tions of S-CNNs, thereby enhancing performance on
complex visual tasks.

Multi-scale feature fusion in SNN detectors

Robust object detection, especially in real-world scenarios
characterized by objects of diverse sizes, critically depends
on effective multi-scale feature fusion'*, with the pipeline
showed in Fig. 7. Emerging SNN architectures are increas-
ingly incorporating sophisticated multi-scale processing
capabilities. Multi-scale feature fusion is a pivotal solution to
the challenge of scale variation in object detection, moving
beyond the limitations of single-scale feature extraction.

Multi-scale feature fusion in SNN
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Fig. 7 | Multi-scale feature fusion in SNN. This diagram illustrates how
features extracted at different resolutions are integrated within SNN
architectures to robustly detect objects across a wide range of sizes.

Hierarchical feature integration

This approach involves integrating features extracted from
different depths of the network. The multi-scale spiking
detector framework!!” pioneered this concept to enable a
hierarchical understanding of the visual scene, which is
essential for detecting objects across various scales. The
integration of feature pyramid structures, such as feature
pyramid networks (FPNs)'*, has become a prevalent strat-
egy in SNNs to facilitate multi-scale feature extraction'®’.
This approach is directly inspired by successful methodolo-
gies in ANNs and enables SNNs to process information at
multiple resolutions, enhancing the detection of objects
across a wide range of scales. Zhang et al.”” integrated an
FPN architecture within their SpikeFPN for automotive
event-based object detection, enhancing multi-scale feature
extraction.

Spiking fusion modules

Spiking fusion object detector (SFOD)!'® and similar fusion
mechanisms are being developed to integrate spike features
from different scales. The goal is to ensure a comprehen-
sive object representation, especially for dynamic objects, by
combining both spatial and temporal cues from various
scales. This addresses the challenge of accurately detecting
moving targets where both their shape and motion patterns
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are crucial. SFOD’s spiking fusion module not only achieves
spatial fusion but also enhances multi-scale features in the
temporal domain, allowing the integration of temporal cues
(e.g., motion patterns) from different scales to improve
detection accuracy for dynamic objects. Fan et al.’?* inte-
grated the spiking multi-direction fusion module (SMFM)
within SpikeDet to enhance multi-scale feature fusion and
preserve neuron firing patterns for object detection. Miao et
al.”” integrated SPP-SNN (spatial pyramid pooling spiking
neural network) within their SpikingYOLOX to enhance
multi-scale feature fusion capabilities for object detection.
Qu et al.”” addressed limitations in SPPF (spatial pyramid
pooling fast) conversion by introducing a spike-maxpool-
ing mechanism, enabling lossless conversion and enhanc-
ing multi-scale feature fusion in ultralow-latency SNNs. Fan
et al.'” developed a lightweight spiking aggregation module
within SFDNet for efficient RGB-event fusion in object
detection.

Lightweight multi-fusion architectures

SLP-Net (lightweight multi-fusion UNet based on spiking
neural systems)'*® introduces a multi-channel SNP-type
convolution (MCConvSNP) neuron model within a
lightweight asymmetric encoder-decoder design. This
architecture aims for high accuracy with low parameters
and FLOPs, particularly for tasks like skin lesion segmenta-
tion, by optimizing feature extraction and fusion across
multiple levels. It uses an efficient multi-scale feature
extraction block (EMFE) with dilated convolutions for deep
stage multi-scale feature extraction, and a multi-level
feature fusion module (MFF) in skip connections for hier-
archical fusion. A spatial-channel fusion module (SCF)
further optimizes feature fusion across spatial and channel
dimensions. Wang et al.'” utilized a spiking multi-scale
context aggregation (SMSCA) module to fuse features from
different scales and enhance contextual information. The
module obtains multiple scales of receptive fields through
average pooling with different kernel sizes and strides. Ye et
al.®* introduced spiking-SegNet for image segmentation,
employing a U-shaped full-convolutional architecture with
a spiking encoder-decoder that extracts multi-scale infor-
mation via convolutional and transposed convolutional
layers.

The inherent ability of SNNs to process spatio-temporal
information means that their multi-scale fusion extends
beyond mere spatial dimensions; it can also integrate infor-
mation across different layers and time points, forming a
“temporal perception” across scales. This spatio-temporal
multi-scale fusion capability represents a unique advantage
for SNNs in dynamic object detection, potentially leading to
more precise and real-time detection of moving objects
than traditional ANNS.

SNN architectures for image semantic
segmentation

Semantic segmentation, a crucial computer vision task,

aims to assign a class label to every pixel in an image, facili-
tating a fine-grained understanding of the scene?. Unlike
object detection, semantic segmentation typically does not
distinguish between individual instances of the same object
category, instead treating all pixels belonging to a class (e.g.,
all pixels of “road”) as a single entity’>. Traditional
approaches to semantic segmentation predominantly rely
on deep learning methods, particularly CNN architectures
based on encoder-decoder structures like FCN*, SegNet'®,
U-Net!'%, DeepLab!*!, and PSPNet!*. Among these, U-Net,
with its iconic U-shaped structure and prominent skip
connections, has achieved significant success particularly in
medical image segmentation'®.

Semantic segmentation finds extensive applications in
critical domains such as autonomous driving, drone naviga-
tion, medical image analysis, and augmented reality. While
traditional CNNs have demonstrated commendable perfor-
mance in semantic segmentation, they face inherent trade-
offs concerning latency, accuracy, and energy efficiency,
particularly in real-time systems like autonomous vehicles
and drones*. SNNs, with their low-power and event-driven
characteristics, offer a novel avenue to circumvent these
bottlenecks. The substantial computational demands of
traditional CNNs often render them unsuitable for deploy-
ment on edge devices requiring real-time performance and
high efficiency. Consequently, SNNs’ low-power and low-
latency attributes position them as a promising solution for
deploying semantic segmentation in resource-constrained
environments.

Event cameras, which capture dynamic scene changes by
outputting asynchronous streams of brightness changes,
provide data with high temporal resolution, low latency,
and low power consumption. This data modality aligns
exceptionally well with the requirements of semantic
segmentation for dynamic scene understanding and real-
time processing, offering a natural advantage for SNN
applications in this domain. Semantic segmentation
demands the capture of dynamic information; event
cameras provide high-temporal-resolution event streams
that SNNs, as event-driven networks, can process with
superior efficiency and potential compared to frame-based
ANNE, especially for dynamic semantic segmentation tasks.

Unique advantages of SNNs in semantic

segmentation

The inherent event-driven nature, low power consumption,
minimal latency, and native spatio-temporal information
processing capabilities of SNNs render them exceptionally
well-suited for handling data originating from event
cameras. This positions SNNs to exhibit substantial poten-
tial in real-time semantic segmentation®. When deployed
on specialized neuromorphic hardware, SNNs can achieve
ultra-low power consumption and latency, which is indis-
pensable for cutting-edge edge AI applications. SNNs
communicate through binary spike signals, enabling them
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Table 2 | Key SNN architectures for object detection.

Architecture type Specific model name Quantitative metrics

Energy efficiency  Relevant datasets Limitations / Challenges

Spiking-YOLO”® N/A

Spiking-YOLOX"’ State-of-the-art mAP

TR Improved accuracy (no
specific mAP)

Embedded SNN&* Small mAP loss

Spiking CenterNet’® 2.6% higher mAP
Pure SNN (S-CNN)
SpikilLi: LIDAR 3D SNN?>  CNN-comparable precision

Multi-patch SNN*#? 98.9% accuracy

Sparse compressed SNN
N/A
Accelerator®
ANN-comparable

EMS-YOLO**®

performance
0.476 mAP@0.5 (MS-
COCO), 0.591 (GEN1)

25.2% accuracy

BN-SNN with BIF

neurons®’

DT-LIF based SSD%

improvement
Direct training high-
) 0.296 mAP
Attention mechanism or performance SNNs*#
transformer-based SNN Tiny SNN with visual N/A

attention’”!
MSD (multi-scale spiking .
o High performance
detector)™’
SFOD (spiking fusion

object detector)'*®

Improved detection

accuracy

Multi-scale feature fusion Spike-BRGNet!* +1.57-1.91% mloU

SpikeFPN” 0.477 mAP

SUHD: Ultralow-latency
30% mAP enhancement
SNN®7

N/A Static & dynamic High training difficulty, persistent

datasets accuracy limitations

Low computational N/A Complex optimization, potential
requirements performance degradation

2.47x lower power  Overhead power Needs direct training with surrogate

consumption lines gradient
o Automotive event . o o
490 mJ/prediction Requires post-training quantization (PTQ)

data

Better power
N/A Requires KD from non-spiking teacher

efficiency

Low inference Primarily simulation-based, needs

LiDAR-based 3D o
latency (3ms) hardware validation

0.336W power Infrared drone  Relies on ANN-SNN conversion, may have

(20FPS) detection latency
Primarily hardware-focused, limited
1.05 m/frame N/A o
generalizability
5.83x less energy (4 N/A May still have accuracy gap for very large

timesteps) datasets

Reduced temporal Primarily conversion-based, may have

MS-COCO, GEN1

steps some conversion loss
N/A Prophesee GEN1 General SNN training difficulties
Requires direct training, may not match
N/A MSCOCO
all ANN performance
Energy-efficient on ) ) . )
) N/A May require dynamic weight adjustment
SpiNNaker
Further exploration of effective model
Low power N/A
construction needed
) ) Complexity in module design, reliance on
N/A Dynamic objects

specific data modalities
17.76x less energy

DDD17, DSEC
than ANN

Relies on event data (no image frames)

GEN1 (automotive
Energy-efficient Relies on direct training with SG

event data)

Complex conversion, may rely on specific
Ultralow latency N/A

datasets

to replace the high-power multiply-accumulate (MAC)
operations prevalent in traditional ANNs with more
energy-efficient accumulate (AC) operations, thereby
significantly enhancing energy efficiency.

The benefits of SNNs in semantic segmentation extend
beyond mere energy efficiency (by avoiding unnecessary
computations) to encompass the low latency afforded by
their event-driven and asynchronous computation. This is
critically important for applications like
autonomous driving, which necessitate rapid decision-
making®. Semantic segmentation in domains such as
autonomous driving demands real-time responsiveness.

real-time

SNNs’ event-driven and sparse computational paradigm
provides low power consumption and low latency, enabling
them to meet the stringent real-time requirements of

semantic segmentation. The synergy between SNNs and
event cameras allows them to demonstrate unparalleled —
and potentially irreplaceable — competitiveness in seman-
tic segmentation tasks under extreme conditions (e.g., high-
speed motion, high dynamic range, low light) where tradi-
tional frame-based cameras struggle. While traditional
frame cameras are limited in these challenging environ-
ments, event cameras excel at capturing dynamic changes.
SNNs’ natural compatibility with event cameras allows
them to provide more refined and real-time scene under-
standing than traditional ANNs in these specific scenarios,
potentially even surpassing them.

Encoder-decoder and U-Net-like SNN architectures
Semantic segmentation tasks commonly employ encoder-
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decoder architectures, where an encoder extracts high-level
semantic features and downsamples spatial resolution, and
a decoder upsamples to restore the original resolution,
generating dense pixel-wise segmentation masks*. U-Net,
with its iconic U-shaped structure and prominent skip
connections, stands as a prime example of such architec-
tures, achieving significant success particularly in medical
image segmentation'*’. SNNs have strategically adopted this
highly successful encoder-decoder paradigm, adapting it to
their unique characteristics to maximize efficiency and
performance. SNNs that adopt U-Net-like encoder-decoder
structures for semantic segmentation are not merely direct
copies but rather undergo strategic “lightweight modifica-
tions” and “spiking transformations” tailored to SNN char-
acteristics.

Event-data optimized SNN-UNet

EvSegSNN® is a bio-inspired encoder-decoder SNN archi-
tecture explicitly designed with a U-Net layout and opti-
mized for event data. It integrates parameterized leaky-inte-
grate-and-fire (PLIF) neurons and lightweight modifica-
tions to the U-Net structure, reducing depth and convolu-
tional layers. The primary motivation is to effectively
process high-temporal-resolution, high-dynamic-range,
and low-latency asynchronous spike events from event
cameras, reducing parameter count while maintaining
performance for real-time applications. These methods
significantly cut down parameters (8.55 million vs. 13.46
million baseline). On the DDDI17 dataset, EvSegSNN
achieved 45.54% MIoU and 89.90% accuracy®c.

Efficient spiking encoder-decoder networks

Spiking encoder-decoder network (SpikingEDN)** is an
efficient spiking encoder-decoder network specifically
developed for large-scale event-based semantic segmenta-
tion tasks. The aim is to optimize spiking operations for
dense prediction, addressing the challenge of efficiently
processing large-scale event data while achieving competi-
tive semantic segmentation performance. Its design
achieves an impressive 72.57% MIoU on the DDD17
dataset and 58.32% on the DSEC-Semantic dataset, demon-
strating competitive performance against state-of-the-art
ANNSs with significantly reduced computational demands.

Lightweight transformer-based SNN for segmentation

Spike-driven lightweight transformer-based semantic
segmentation network (SLTNet)!** introduces a hierarchi-
cal single-branch SNN with an encoder-decoder frame-
work. The encoder uses spike-driven convolutional blocks
(SCBs) for local detail and spike-driven transformer blocks
(STBs) for long-range context. SLTNet aims to fully capital-
ize on SNNs’ strengths, particularly the low computational
cost of its SCBs and STBs, while leveraging transformer-like
mechanisms to capture global context, a common chal-
lenge for SNN-CNNGs. A lightweight spiking decoder recov-
ers spatial details via feature fusion, and its spike-LD

module enables multi-scale feature capture. On the DDD17
and DSEC-Semantic datasets, SLTNet achieved a signifi-
cant mloU improvement, reduced energy consumption by
4.58 times, and boasted an inference speed of 114 FPS, with
substantially lower parameter counts and FLOPs compared
to existing methods.

Spiking-UNet architectures

Chakravarty et al.*! proposed a modified U-net architecture
within an SNN framework tailored to operate without
dense layers, producing segmented images as output. Dakic
et al.® utilized a Spiking-UNet architecture with LIF
neurons and constant current injection encoding for spec-
trum occupancy monitoring. Li et al.*’ introduced a Spik-
ing-UNet for image processing, combining SNNs with the
U-Net architecture. These models adapt the highly success-
ful U-Net paradigm to SNNs to leverage its effective
encoder-decoder structure for segmentation tasks while
aiming for SNN’s characteristic energy efficiency and low
latency. Chakravarty et al’s model uses approximated
gradients. Dakic et al’s model employs constant current
injection encoding and BCE+Dice loss, achieving a 10x
energy reduction compared to CNNs. Li et al’s model
addresses information propagation and training challenges
by proposing multi-threshold spiking neurons and a
conversion/fine-tuning  pipeline with connection-wise
normalization, reducing inference time by approxi-
mately 90%.

Transformer and NSNP-based SNNs for segmentation
Lei et al.* introduced Spike2Former, an efficient spiking
Transformer for image segmentation, adapted from
Mask2Former, using spike-driven deformable transformer
encoder (SDTE) and spike-driven mask embedding
(SDME). Sun et al.'*® proposed NSNPFormer, a Trans-
former-based semantic segmentation method integrating
the convolutional nonlinear spiking neural P (NSNP)
model. These architectures seek to overcome the limita-
tions of traditional SNN-CNNss in capturing global context
and long-range dependencies, essential for accurate and
complex image segmentation. They also aim to enhance
information representation and training stability in deep
SNNs. Spike2Former uses normalized integer LIF (NI-LIF)
neurons for training stability and achieved state-of-the-art
accuracy across ADE20K, VOC2012, and CityScapes
datasets with significant energy efficiency. NSNPFormer
uses parallel ConvNSNP and transformer channels with
residual connections for local and global feature extraction,
achieving mIoU scores of 53.7% on ADE20K and 58.06%
on Pascal Context datasets.

Specialized SNNs for medical image segmentation

Li et al.'*® developed ODCS-NSNP, a deep segmentation
network for optic disc and cup segmentation based on
nonlinear spiking neural P systems. Yang et al.'*® proposed
SLP-Net for skin lesion segmentation, introducing a multi-
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channel SNP-type convolution (MCConvSNP) neuron
model and a lightweight asymmetric encoder-decoder
design. These models address the critical need for efficient
and accurate segmentation in medical imaging, where
precision and computational efficiency are paramount for
diagnostic tools. ODCS-NSNP features a densely connected
depth-separable network unit (SDN-Unit) and a redesigned
resampling operator (SRS-Operator) to improve boundary
accuracy and multi-scale feature extraction. SLP-Net
utilizes EMFE, MFF, and SCF modules for feature fusion,
achieving high accuracy with low parameters and FLOPs.

Advanced spiking-SSegNet and analog SNN-UNet

Ye et al.®® proposed Spiking-SSegNet, a U-shaped full-
convolutional semantic segmentation network built on the
Spiking-NSNet model, utilizing a hybrid attenuation factor
setting. Ma et al.”’ proposed Analog Spiking U-Net (AS U-
Net), which integrates Analog CBAM and Spiking ViT
modules into an SNN framework. These models aim to
improve mIoU with low latency and minimize information
loss, respectively, pushing the boundaries of SNN perfor-
mance in semantic segmentation tasks. Spiking-SSegNet
leverages the hybrid attenuation factor for improved mloU
with low latency. AS U-Net adjusts neuron firing positions
to transfer information as floating-point signals, minimiz-
ing information loss, and achieved high accuracy on
diabetic retinal vessel segmentation datasets, demonstrat-
ing SOTA energy efficiency.

Although SNNs historically faced performance chal-
lenges in dense prediction tasks like semantic segmentation,
the advent of models such as SpikingEDN and SLTNet,
through optimized architectural design and effective utiliza-
tion of event data properties, have achieved “competitive”
or even “superior” performance compared to state-of-the-
art ANNs'*". This marks a significant maturation of SNNs
in complex visual tasks, indicating broad and promising
prospects for their application in dense prediction fields.

Hybrid SNN-ANN/transformer architectures in

semantic segmentation

To fully capitalize on the respective strengths of ANNs and
SNNs, researchers have extensively explored hybrid archi-
tectures for semantic segmentation. In these configurations,
SNNs are often employed in the encoder section to process
event data efficiently, while ANNs are utilized in the
decodersectionforrobustreconstructiontasks. Thisburgeoning
interest in hybrid architectures reflects a broader trend
within the AI landscape, shifting from the pursuit
of a singular, optimal model towards the exploration
of multi-paradigm, heterogeneous computing solutions.

Event-frame fusion hybrid framework

The event-frame fusion hybrid framework® combines an
SNN branch for event data and an ANN branch for frame
data to leverage complementary information from both
modalities. Existing event-based semantic segmentation

methods frequently fail to leverage the complementary
information provided by both event and frame data. A
single event stream may lack crucial visual detail, while
traditional frame data processing is computationally expen-
sive. This framework addresses these limitations by inte-
grating both modalities for comprehensive scene under-
standing. Specialized modules like the adaptive temporal
weighting (ATW) injector (dynamically integrating event
temporal features into frame features), event-driven sparse
(EDS) injector (combining sparse event data with rich
frame features), and channel selection fusion (CSF) module
(selective feature fusion) facilitate robust interaction and
information exchange between branches, aiming for
comprehensive and accurate scene understanding.

Hybrid spiking fully convolutional neural networks

The hybrid SFCNN (spiking fully convolutional neural
network)!¥” employs a hybrid architecture for semantic
segmentation, leveraging binary information transmission
in its encoder. This architecture seeks to combine the
energy efficiency of SNNs with the robust learning capabili-
ties of FCNs for dense prediction tasks, overcoming the
limitations of pure SNNs in complex segmentation. It uses a
surrogate gradient method for direct backpropagation
training. On the VOC2012 dataset, this model achieved a
significant mIoU improvement (almost 30% higher than
existing spiking FCNs), demonstrating the feasibility of
end-to-end optimization.

NSNPFormer with transformer integration

NSNPFormer'*® integrates the convolutional nonlinear
spiking neural P (NSNP) model with transformers for se-
mantic segmentation. This model addresses the need for
both local feature extraction (using ConvNSNP) and global
contextual information capture (using transformers), which
are crucial for accurate semantic segmentation. It features
parallel ConvNSNP and transformer channels with residual
connections, enabling efficient local feature extraction and
global contextual information. NSNPFormer achieved no-
table mIoU scores on ADE20K and pascal context datasets.

Spiking-LSTM for hyperspectral image segmentation
The Spiking-LSTM model'™ combines SNN and LSTM
architectures for hyperspectral image segmentation. This
architecture is designed to effectively capture spatio-tempo-
ral information inherent in hyperspectral images, enabling
accurate early-stage detection of plant diseases like Sclero-
tinia, while maintaining energy efficiency. It replaces tradi-
tional LSTM gating functions with spiking neurons and
uses surrogate gradients for backpropagation. The model
achieves 94.3% mAP for Sclerotinia detection on rapeseed
leaves, extracting early infected areas. It demonstrates high
accuracy with significantly lower energy consumption (one-
fifth of traditional LSTM), highlighting its potential for effi-
cient disease detection.

This burgeoning interest in hybrid architectures reflects a
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broader trend within the AI landscape, shifting from the
pursuit of a singular, optimal model towards the explo-
ration of multi-paradigm, heterogeneous computing solu-
tions. Future research will likely witness the emergence of
even more intricate hybrid models, not only combining
different neural network types but also integrating across
distinct hardware platforms. For instance, SNN compo-
nents might be deployed on neuromorphic chips, while
ANN components reside on GPUs, optimizing overall
system performance.

Multi-scale feature fusion and contextual dependency

handling

Multi-scale representations are fundamental for accurately
segmenting objects of varying sizes within an image.
Furthermore, effectively capturing long-range pixel depen-
dencies and channel-wise feature similarities is crucial for
enhancing pixel-level region understanding and improving
the overall performance of segmentation models. SNNs
address these critical challenges in semantic segmentation
through several innovative approaches.

SLTNet’s multi-scale modules

SLTNet’s Spike-LD module'* introduces a novel three-
branch structure that integrates dilated and depthwise sepa-
rable convolutions. Its spike-driven transformer blocks
(STBs) are specifically designed to bolster long-range
contextual feature interactions. These modules are essential
for capturing multi-scale features across different receptive
fields and for efficiently processing and fusing information
at various scales, which is critical for enhancing segmenta-
tion accuracy. STBs address the need for global spatial rela-
tionships, a weakness of traditional CNNs. The spike-LD
module enables simultaneous processing and fusion of
information at various scales. STBs use a spike-driven
multi-head self-attention module (SDMSA) to efficiently
capture global spatial relationships, augmented by a multi-
layer perceptron (MLP) for channel-wise information.
SDMSA effectively reduces computational complexity to
O (N) (where N is the number of tokens/features), and the
entire block primarily involves floating-point addition
operations, leading to significant reductions in energy
consumption and improved efficiency .

Feature enhancement and aggregation

Within the decoder of certain SNN segmentation architec-
tures, a feature enhancement (FE) module restores fine
spatial details and integrates features from different hierar-
chical levels. EMSNet (enhanced multi-scale networks)!*®
employs an integration of enhanced regional module
(IERM) and multi-scale convolution module (MSCM).
These modules are crucial for producing refined segmenta-
tion masks by integrating fine-grained details from early
layers with high-level semantic information, and for
robustly handling objects of varying scales. The FE module
contributes to a more refined processing of multi-scale

information. IERM enhances fused feature representation
through dynamic convolutional structures, while MSCM
gathers multi-scale contextual information using
deformable deep convolutions and multi-branch deep
asymmetric convolutions.

Spiking neural P systems for multi-scale features
ODCS-NSNP'¢ introduces a redesigned resampling opera-
tor (SRS-Operator) based on ConvSNP that resamples
multiple features from large regions into multiple output
features. Spike-BRGNet!** includes a spiking multi-scale
context aggregation (SMSCA) module. These systems aim
to capture long-term dependencies and preserve fine spatial
details, improving segmentation boundary accuracy, espe-
cially for complex anatomical structures in medical images,
or for robust scene understanding in traffic environments.
The SRS-Operator, based on ConvSNP, captures long-term
dependencies and preserves fine spatial details. The SMSCA
module aggregates features from five different scales using
average pooling and BN-LIF-Conv processing, enabling the
network to capture global contextual information and
multi-scale features for accurate segmentation.

Multi-scale feature fusion is a pivotal solution to the chal-
lenge of scale variation in object detection. Traditional
CNN:s, often limited to local and single-scale features, in-
herently suffer from restricted detection accuracy. SNNs are
actively overcoming these limitations by adopting success-
ful strategies from ANNS, such as dilated convolutions and
Transformer-like mechanisms, and adapting them for
spike-based computation'*. SLTNet’s ablation studies
confirm the complementary roles of transformer-like and
convolutional blocks in SNNs, which collectively enhance
performance!*:. Given SNNs’ inherent capacity to process
spatio-temporal information, their multi-scale feature
fusion and contextual dependency handling extend beyond
mere spatial dimensions to integrate information across the
temporal axis. This ability is particularly advantageous
for understanding semantic changes in dynamic scenes
(e.g., the movement of obstacles in autonomous driving),
potentially enabling SNNs to provide more precise and real-
time detection of moving objects than traditional ANNs.

Learning algorithms and training
strategies for SNNs

The training of SNNs presents one of the most significant
challenges for their widespread adoption, primarily due to
the inherent discrete and non-differentiable nature of spike
generation, which renders traditional gradient-based opti-
mization methods, such as backpropagation, directly inap-
plicable. To overcome these fundamental difficulties, a
diverse array of innovative learning algorithms and train-
ing strategies are developed.

Surrogate gradient methods

The core challenge in training SNNs with gradient-based
methods stems from the spike generation function, which is
typically a Heaviside step function. This function can be
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Table 3 | Key SNN architectures for semantic segmentation.

Architecture type Specific model name Quantitative metrics Energy efficiency Relevant datasets Limitations / Challenges
45.54% MloU, 89.90% Higher average firing rate than ideal
EvSegSNN®® Reduced parameters DDD17
Accuracy sparse SNNs
72.57% MloU (DDD17), Reduced o y o
i ) . Training stability, generalization on
SpikingEDN® 58.32% MloU (DSEC- computational DDD17, DSEC-Semantic
complex scenes
Semantic) resources
- EM segmentation 2015, . . o
Spiking-UNet (Seg)®* 99% DSC N/A . Encoding real-life datasets is difficult
Data Science Bowl 2018
Spiking-UNet o 10x energy reduction o o o
Pure SNN Similar TPr to CNN Spectrum monitoring Optimization process intricate
(Spectrum)®? vs CNN
Spiking-UNet (Multi- Comparable to non-spiking 90% inference time N/A Complex to determine optimal
threshold)® U-Net reduction thresholds, may overfit
Early SNN
. Basic pattern classification N/A N/A Limited to simple tasks, fixed parameters
(Unsupervised)***
43.2% mloU (PASCAL
Low latency (2 time
Spiking-SSegNet®° V0C2012), 53.4% mloU ) PASCAL VOC2012, DDD17 No explicit limitations mentioned
steps
(DDD17) P
Event-frame fusion Complex training strategies, increased
Improved accuracy Improved efficiency N/A
Hybrid framework'#® computational cost
. 30% mloU improvement over Training difficulty persists, performance
Hybrid SFCNN#/ N/A VOC2012
SNN FCNs needs improvement
) 53.7% mloU (ADE20K),
Hybrid SNN Relies on ResNet backbone, limited to
NSNPFormer!* 58.06% mloU (Pascal N/A ADE20K, pascal context -
specific datasets
Context)
1/5th of
. ) Rapeseed leaves Requires multiple simulation steps, may
Spiking-LSTM %4 94.3% mAP conventional LSTM

Spike2Former®® SOTA accuracy

Attention mechanism or Significant mloU

SLTNet*#

transformer-based SNNs improvement

Analog spiking U-Net
90.4% mloU, 98.3% PixAcc
(AS U-Net)™*

SLP-Net?®® 93.87% Acc, 88.21% DSC
Multi-scale feature fusion
0.9817 Dice (OD), 0.9859

Dice (OC) (RIM-ONE-r3)

ODCS-NSNP?#6

4.58x energy
reduction, 114 FPS
SOTA energy
efficiency

Low parameters

(Sclerotinia) not exceed 90% MAP

energy

ADE20K, VOC2012,
CityScapes

Still underperforms ANNs in complex

5.0x-6.6x efficiency

tasks, challenges in deep S-ViTs

~ Lacks visual detail, computation can be
DDD17, DSEC-semantic ) o
expensive or rely on auxiliary images

Diabetic retinal vessel o .
. No explicit limitations mentioned
segmentation

Asymmetric design may cause

(0.1M), fast ISIC2018 (skin lesion) information loss, relies on supervised
processing data
RIM-ONE-r3, Drishti-GS,
N/A No explicit limitations mentioned

REFUGE

defined as

1 if Vv, > Vy

$(Va) = H(Ven = V) = { 0 if Vi < Vi

The derivative of the heaviside function, dS/dV,,, is zero
everywhere except at the threshold V,, = Vy,, where it is
undefined (an impulse or dirac delta function). This prop-
erty effectively blocks gradient propagation during back-
propagation. To circumvent this issue, surrogate gradient
(SG) methods have been proposed'**~'>!. The central idea of
SG is to approximate the non-differentiable derivative of
the heaviside function with a continuous and differentiable
function during the backward pass (gradient calculation),

(5)

while keeping the forward pass (spike generation) intact.

Specifically, for the backward pass, instead of computing
dS/dV,,, a smooth, differentiable surrogate derivative func-
tion o' (V,,) is used:

oL 0L
Ve  0S
where L is the loss function. Common choices for the
surrogate derivative function ¢' (V,,) include'
1) Rectangular (e.g., identity function for a limited
range): simplest approximation, where ¢' (V) is a constant

o (V) (6)

or linear function within a narrow window around the
threshold and zero elsewhere.
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2) Sigmoid derivative: the derivative of the sigmoid func-
tion, ¢ (x) = o (x) (1 — 0 (x)), provides a bell-shaped curve.

3) Arctan derivative: a widely used and effective surro-
gate gradient function is the derivative of the arctangent
function. For a membrane potential V,, and threshold Vy,
a common form is

1 1
o (Va) = =

B
()
(24

where y is typically set to Vy,, and « is a scaling factor that
controls the width of the peak. This function exhibits a
smooth, bell-shaped peak around the threshold, allowing
gradients to propagate effectively when the neuron’s
membrane potential is close to firing. As the potential
moves away from the threshold, the gradient smoothly
decays to zero, preventing issues like vanishing or explod-
ing gradients.

4) Piecewise exponential (PiecewiseExp) and Gaussian
error: Zhang et al.' compared PiecewiseExp and Erf as
surrogate gradient functions for training Spiking-LSTM,
finding PiecewiseExp to consistently yield better detection
accuracy and stability.

5) Evolutionary asymptotic function (EvAF): Wang et
al.'® introduced EvAF as a dynamic surrogate gradient
function that replaces infinite gradient values with real
numbers, allowing effective weight updates during initial
training and improving accuracy in backward gradient
computation.

Recent works extensively employing surrogate gradient
methods include direct training of deep SNNs for object
detection'?*-124, SpikeFPN”, SFDNet!'", LT-SNN with Sepa-
rate Gradient Path®, SUHD*, and Hybrid SFCNN for
semantic segmentation'’. Chakravarty et al®' explored
modern backpropagation techniques in SNNs, focusing on
surrogate or approximate gradient methods to overcome
non-differentiable functions. Lei et al.*® employed surro-
gate gradients to approximate derivatives of non-differen-
tiable spike functions, enabling training of complex SNN
architectures for image segmentation. Ye et al®® used
spatio-temporal backpropagation (STBP) for direct SNN
training, fusing spatial and temporal domains and
addressing non-differentiability with triangular surrogate
gradients.

SG methods enable SNNs to be trained using established
deep learning frameworks like Backpropagation Through
Time (BPTT)"-1> or Spatio-Temporal BackproPagation
(STBP)'**-1%7, thus overcoming a core impediment to deep
SNN adoption. While practical, SGs are approximations,
sometimes leading to accuracy degradation or convergence
issues. Future research aims to develop more precise and
efficient SG functions or gradient-free methods to balance
performance and biological realism.

@)

Spiking batch normalization
Batch normalization (BN)'*® has been instrumental in stabi-
lizing and accelerating deep ANN training, improving

convergence and generalization. However, its direct appli-
cation to SNNs poses significant challenges due to the
sparse and discrete nature of SNN activations (spikes) and
the complex dynamics of membrane potentials. Traditional
BN, which normalizes activations to have a mean of 0 and
variance of 1, can cause membrane potentials to become
excessively high or low, disrupting spike firing patterns and
leading to “dead neurons” (neurons that never fire) or
“bursting neurons” (neurons that fire too frequently)**°.

To mitigate these issues, threshold-dependent batch
normalization (tdBN) was specifically designed for SNNs!**.
The core principle of tdBN is to normalize the membrane
potential of neurons not to a fixed mean and variance, but
relative to their firing threshold. This ensures that the
membrane potentials are kept within an optimal range,
allowing for stable and balanced spike activity. The tdBN
operation for a membrane potential V,, can be formulated
as:

Vi —
=yt g (8)
Op

5<>

where 4, and oy are the batch mean and standard devia-
tion of V,,, and y and f are learnable scaling and shifting
parameters, similar to conventional BN. However, in tdBN,
these parameters or the normalization targets are dynami-
cally adjusted based on the neuron’s threshold or desired
firing rate. For instance, tdBN can normalize the membrane
potential such that it fluctuates around the neuron’s specific
firing threshold, thereby stabilizing spike generation. This
customized normalization helps maintain appropriate spik-
ing activity levels across the network, preventing issues like
vanishing or exploding gradients and significantly improv-
ing the training stability and performance of large-scale
deep SNNGs.

Recent works that employ tdBN include spiking-
YOLOX”, which integrates learnable decay parameters
along with tdBN for computational efficiency. Zhang et
al.””s SpikeFPN utilizes an adaptive threshold mechanism
for stable training. Yu et al.'** employ tdBN in their Spik-
ingViT model to ensure stable pulse signal propagation. Fan
et al.'” introduced separated batch normalization (SeBN) in
SFDNet, which normalizes feature maps independently
across multiple time steps and optimizes integration with
residual structures to capture temporal dynamics more
effectively. Li et al.* proposed a connection-wise normal-
ization method for Spiking-UNet to prevent inconsistent
firing rates in skip connections, ensuring accurate informa-
tion representation by normalizing weights based on scale
factors. Lei et al.®® addressed training stability in complex
SNN architectures by proposing Normalized Integer LIF
(NI-LIF) neurons, which normalize integer activations
during training to ensure precise feature representation and
mitigate quantization error.

The development of tdBN exemplifies a crucial trend:
instead of merely porting successful ANN techniques to
SNNG, researchers are carefully adapting them to align with
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SNNs’ unique computational mechanisms. This tailored
approach effectively addresses SNN-specific training
hurdles. tdBN, alongside surrogate gradient methods, forms
a critical dual pillar supporting the resolution of SNNs’
training complexity, underscoring the necessity of
multi-faceted, systemic solutions rather than relying on a
singular algorithmic breakthrough.

Other training optimization techniques

Beyond surrogate gradients and tdBN, research is actively
exploring a variety of other training optimization tech-
niques to further enhance SNN performance and stability:

ANN-to-SNN conversion

ANN-to-SNN conversion is a widely adopted training strat-
egy that involves first training a high-performing tradi-
tional ANN with standard backpropagation, and then
converting its weights and activations into an SNN'®°. This
method leverages the maturity and robust training capabili-
ties of ANNs, though it can incur some accuracy loss and
increased SNN inference time for complex tasks. Key tech-
niques include weight normalization, which scales weights
to maximize firing rates in the SNN after conversion, and
threshold calibration, which adjusts neuron thresholds to
match the dynamic range of ANN activations. Examples
include early conversion for energy-efficient object recogni-
tion'’®, Spiking-YOLO for mobile robots!®?, LiDAR-based
3D object detection®™, sparse compressed SNN
accelerators'’!, spike calibration'®! and bistable integrate-
and-fire neurons®. Spiking-UNet* adopts a conversion and
fine-tuning pipeline, leveraging pre-trained U-Net models
to reduce time steps while preserving performance. Lei et
al.’8 address challenges in complex SNN architectures by
normalizing integer spiking neurons during conversion. Ye
et al.** introduce a transfer learning approach for Spiking-
SSegNet, where pre-trained Spiking-NSNet weights are
fine-tuned for semantic segmentation, improving perfor-
mance and reducing training costs.

Event-driven backpropagation

This approach aims for higher biological fidelity by directly
propagating errors through discrete spike events, rather
than relying on surrogate gradients'®>-'®*. This typically
involves more complex theoretical frameworks, such as
event-based error propagation rules or credit assignment
mechanisms sensitive to spike timings. While conceptually
appealing for its biological realism, its implementation and
training remain more intricate than SG methods.

Hardware-aware training

As neuromorphic hardware matures, training strategies
increasingly incorporate hardware-specific constraints and
advantages. This involves designing algorithms optimized
for the unique parallel processing, memory architectures,
and communication mechanisms of neuromorphic chips

(e.g., Intel Loihi®, IBM TrueNorth'*®), thereby maximizing
SNNs’ potential on these specialized platforms.

Recurrent SNNs and backpropagation through time
(BPTT)

For tasks requiring sequence processing or memory, recur-
rent SNNs (RSNNs) are utilized. Training RSNNs often
involves BPTT, where gradients are unrolled over time.
While powerful, this can be computationally expensive and
suffer from vanishing/exploding gradients, similar to recur-
rent ANNs, requiring careful regularization and optimiza-
tion'*’. Chakravarty et al.’! highlight spike-timing-depen-
dent plasticity (STDP) and various backpropagation forms
adapted for non-differentiable spike functions. Ye et al.*
introduce a temporal correlated loss (T'C) algorithm to opti-
mize SNN direct training, ensuring faster convergence and
improved robustness by adjusting neuronal membrane
potential distribution at each time step.

Loss functions for SNNs

Various loss functions are employed to optimize SNN train-
ing for specific tasks. Chakravarty et al.®! implement a
modified U-net architecture that uses surrogate/approxi-
mate gradient methods to calculate gradients for the error
function. Dakic et al.*» employ a combined Binary Cross
Entropy (BCE) and Dice loss function for image segmenta-
tion tasks. Li et al.”® utilize the LCE (total BCE loss) for their
event-frame fusion framework. Lei et al.’® use categorical
cross-entropy loss to fine-tune converted SNN models. Sun
et al.'** employ a cross-entropy loss function to optimize
ODCS-NSNP. Yang et al.*® utilize accuracy, sensitivity,
specificity, jaccard, and dice similarity coefficient as evalua-
tion metrics, with the final loss being a weighted sum of
losses from different stages. Wang et al.!*® introduce a novel
boundary region-guided loss function, combined with regu-
lar and early-stage cross-entropy semantic losses, to opti-
mize the network. Zhang et al.'* use a weighted cross-
entropy loss function to address data imbalance in Sclero-
tinia detection.

The intricate nature of SNN training necessitates a multi-
pronged research effort. The aforementioned methods,
ranging from biologically inspired rules to clever adapta-
tions of existing deep learning techniques, collectively form
a strategic response to SNNs’ training challenges. This flexi-
bility and innovation are crucial for overcoming technical
hurdles. Importantly, these methods are not mutually
exclusive but often complementary, jointly accelerating the
advancement of SNN training technology. While ANN-to-
SNN conversion offers a pragmatic path, its inherent accu-
racy loss and increased inference timesteps limit its long-
term viability for achieving cutting-edge performance.
Consequently, the prevailing research trend is gravitating
towards more efficient, end-to-end direct training methods
that can fully leverage the intrinsic advantages of SNNs.
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Current capabilities, challenges, and
future outlook

SNNs have demonstrated immense potential in image
object detection and semantic segmentation, particularly in
terms of energy efficiency and real-time processing. This
positions them as a pivotal technology for edge computing
and autonomous systems operating under strict resource
constraints.

Current performance benchmarks and application

potential

In terms of architectural innovation, SNNs have made
significant strides. The evolution from rudimentary S-
CNNs to sophisticated hybrid SNN-ANN models, and
further to the integration of transformer-based and atten-
tion mechanisms, reflects a continuous exploration by
researchers for more efficient and accurate architectures.
Hybrid architectures, such as the general Hybrid-SNN
designs and the DT-LIF Based SSD, effectively bridge the
performance gap of pure SNNs by synergistically combin-
ing SNNs’ energy efficiency with ANNSs’ powerful represen-
tation capabilities.

Despite SNNs having historically lagged behind DNNs
on certain complex tasks, the performance disparity is
rapidly diminishing. On specific benchmarks (e.g., Prophe-
see Genl dataset), SNNs have even achieved results compa-
rable to or surpassing ANNs, while concurrently demon-
strating substantial reductions in energy consumption. This
swift improvement in SNN performance, particularly the
trend of “disappearing performance differences”, signifies a
critical transition in SNN technology from purely theoreti-
cal research to practical viability. This makes SNNs an
increasingly competitive and compelling choice in scenar-
ios with stringent energy efficiency requirements.

The event-driven nature of SNNs makes them highly
compatible with specialized neuromorphic chips, such as
Intel Loihi® and IBM TrueNorth!*, enabling ultra-low
power consumption and minimal latency. This capability is
indispensable for edge AI applications. The synergistic
interplay between hardware and algorithms is a key driving
force behind SNNs’ performance enhancements and the
expansion of their application potential. While SNNs may
not yet universally outperform ANNs across all general
visual tasks, their advantages are significantly amplified in
challenging specific scenarios, including high-speed
processing, low-light conditions, and edge deployments. In
these contexts, their integration with event cameras and
neuromorphic hardware provides a unique and compelling
solution for addressing persistent “pain points” in tradi-
tional AT systems.

Performance benchmarks for object detection

Significant progress has been made in SNN-based object
detection. Spiking CenterNet’ achieves 2.6% higher mAP
than comparable SNNs with better power efficiency.

SpikeFPN” attains 0.477 mAP on GENI, demonstrating
energy efficiency for automotive event data. SpikiLi”
achieves CNN-comparable precision with 3ms inference
latency for LiDAR-based 3D object detection. The multi-
patch localization SNN'?2 yields 98.9% accuracy with 0.336
W power and 20FPS for infrared drone detection. The
sparse compressed SNN accelerator'”! achieves 26x model
size reduction and 1.05 mJ/frame energy efficiency. EMS-
YOLO'* shows ANN-comparable performance with 5.83x
less energy and 4 timesteps. Directly trained high-perfor-
mance SNNs'?* solve gradient vanishing and achieve high
accuracy, with spiking RetinaNet reaching 0.296 mAP on
MSCOCO. SUHDY reduces timesteps by 750x and
enhances mAP by 30%, providing ultralow latency. BN-
SNN with BIF neurons® achieves 0.476 mAP@0.5 on MS-
COCO and 0.591 on GEN1 with reduced temporal steps.
SpikingYOLOX”” achijeves state-of-the-art performance
among SNN-based methods. SFDNet!” achieves SOTA
low-power and robust RGB-event fusion-based object
detection. Spike-BRGNet!?* achieves SOTA results on
DDD17 and DSEC datasets, outperforming existing SNN
methods by +1.57% and +1.91% mloU respectively, while
consuming 17.76x less energy than ANN-based models.

Performance benchmarks for semantic segmentation

In semantic segmentation, SNNs have also made notable
advances. EvSegSNN® achieves 45.54% MIoU and 89.90%
accuracy on the DDD17 dataset with reduced parameters.
SpikingEDN®* achieves 72.57% MIoU on DDDI17 and
58.32% on DSEC-Semantic, demonstrating competitive
performance with reduced computational demands.
SLTNet!* achieves significant mIoU improvement, 4.58x
energy reduction, and 114 FPS for semantic segmentation.
The Hybrid SFCNN'* achieves an mIoU almost 30% higher
than existing spiking FCNs on VOC2012. Chakravarty et
al.®! achieve DSC close to 99% on “EM segmentation 2015
and “Data Science Bowl 2018” for image segmentation.
Dakic et al.?? demonstrate similar performance to CNNs
while significantly outperforming energy detection meth-
ods in spectrum monitoring. Li et al.* achieve comparable
performance to non-spiking U-Net models, surpassing
existing SNN methods, and reduce inference time by
approximately 90%. Lei et al.®® achieve state-of-the-art
performance on ADE20K, VOC2012, and CityScapes
datasets, highlighting SNN potential for complex segmenta-
tion with 5.0x-6.6x efficiency. Sun et al.'*> achieve mloU
scores of 53.7% on ADE20K and 58.06% on pascal context.
Li et al.'*¢ achieve average dice scores of 0.9817 (OD) and
0.9859 (OC) on RIM-ONE-r3, 0.9673 (OD) and 0.9317
(OC) on Drishti-GS, and 0.9687 (OD) and 0.9190 (OC) on
REFUGE. Yang et al.'*® achieve high acc (93.87%) and DSC
(88.21%) on ISIC2018, demonstrating superior perfor-
mance and fast processing speed. Ye et al.** achieve 43.2%
mloU on PASCAL VOC2012 and 53.4% mlIoU on DDD17,
with only 2 time steps. Ma et al.’! achieve 90.4% mIoU and
98.3% PixAcc on diabetic retinal vessel segmentation
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datasets, demonstrating SOTA energy efficiency. Zhang et
al.'* achieve 94.3% mAP for Sclerotinia detection, with
high accuracy and low energy consumption.

The synergistic interplay between hardware and algo-
rithms is a key driving force behind SNNs’ performance
enhancements and the expansion of their application
potential. While SNNs may not yet universally outperform
ANNSs across all general visual tasks, their advantages are
significantly amplified in challenging specific scenarios,
including high-speed processing, low-light conditions, and
edge deployments. In these contexts, their integration with
event cameras and neuromorphic hardware provides a
unique and compelling solution for addressing persistent
“pain points” in traditional Al systems.

Synergy with optoelectronic sensors and neuromorphic
hardware

To emphasize the unique position of SNNs within intelli-
gent opto-electronic systems, this subsection discusses the
synergy between SNNs, optoelectronic sensors, and neuro-
morphic hardware. SNNs are inherently well-suited to
process data from event-driven optoelectronic sensors,
which generate sparse, asynchronous data streams that
mirror the spiking nature of SNNs. This natural compatibil-
ity positions SNNs as ideal candidates for low-power, real-
time perception in scenarios where traditional frame-based
systems struggle.

We explicitly outline the critical functional requirements
for SNN-compatible sensors:

1) High temporal resolution and low latency: These
sensors must efficiently capture fast-changing dynamic
scenes without motion blur, providing data streams that
match the ability of SNNs to process information with
minimal delay.

2) Event-driven/asynchronous data output: The sensors
should fundamentally align with the SNN computational
paradigm by only transmitting data (events/spikes) when
changes occur, avoiding redundant information transmis-
sion.

3) High dynamic range and low power consumption: To
meet the demands of edge AI devices, these sensors need to
operate effectively in challenging lighting conditions (from
dim to bright environments) while consuming minimal
power.

These sensor characteristics perfectly complement the
design philosophy of neuromorphic hardware (e.g., Intel
Loihi), which is optimized for sparse, event-driven compu-
tation. The synergy allows for the creation of highly effi-
cient, end-to-end perception-and-computation systems
where data is processed directly in the spike domain, from
sensor to network, enabling unparalleled energy savings
and real-time responsiveness for intelligent opto- electronics.

Key challenges ahead
Despite the remarkable progress, SNNs in image object
detection and semantic segmentation still face several critical

challenges that need to be addressed for broader adoption.

Training difficulty

The inherent discrete and non-differentiable nature of spike
operations makes SNN training substantially more complex
than ANNs. Issues like vanishing/exploding gradients
persist, particularly in very large and deep SNNs, requiring
considerable optimization®. The challenges include ensur-
ing high-fidelity information propagation, formulating
effective training strategies®’, and managing complex
neuronal dynamics and binary activations that lead to
performance degradation and non-convergence®. SNNs
often struggle with training efficiency due to non-differen-
tiable spikes and high memory overhead, hindering deep
SNN training'.

Performance gap and generalization ability

While SNNs have shown excellent results on specific
datasets, their generalization ability and absolute perfor-
mance on larger, more diverse, and complex real-world
datasets still need to improve to fully match state-of-the-art
ANNs. This disparity currently limits the widespread
deployment of SNNs in general-purpose object detection
and semantic segmentation tasks. Existing SNN models for
image segmentation tend to perform poorly, often under-
performing ANNs*. Transformer models may cause local
information loss, while CNNs struggle with global context,
posing challenges for semantic segmentation accuracy'®.
SNNs generally struggle with generalization on small
datasets compared to pre-trained models'**.

Hardware support and commercialization

Despite the promising future of neuromorphic hardware,
its commercial availability and widespread adoption remain
limited. This constraint prevents SNNs from fully realizing
their energy efficiency advantages when executed on
conventional GPU/CPU platforms, thereby hindering their
broader real-world application. Implementing efficient
training algorithms for specialized neuromorphic proces-
sors remains a key challenge®. Deploying complex SNN
architectures on neuromorphic chips requires significant
computational resources and memory, making it challeng-
ing for real-time applications’’. The synergistic interplay
between hardware and algorithms is a key driving force
behind SNNs’ performance enhancements and the expan-
sion of their application potential.

Information fidelity in spatio-temporal event streams

When SNNs process sparse event data, there is a risk of
information loss, especially within discrete binary activa-
tions and complex spatio-temporal dynamics'®”. This can
adversely affect the model’s accuracy and its capacity to
capture fine-grained details necessary for pixel-level tasks
like semantic segmentation. Creating a universal encoder-
decoder for SNNs is difficult for complex and RGB
datasets®!. Inconsistent spike firing rates in skip connec-
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tions due to data distribution variability can lead to infor-
mation loss®. Spike degradation phenomenon occurs in
Mask2Former’s deformable attention and mask embedding
layers, leading to information loss and reduced firing
rates®. Traditional CNNs struggle to capture global features
due to kernel size limitations, and Transformer models may
lose local information'®.

Long Simulation Timesteps
Many SNNs, especially those relying on rate coding or
ANN-to-SNN conversion, require a significant number of
simulation timesteps to accumulate sufficient information
for accurate inference. This can negate some of the latency
advantages and increase computational overhead in practi-
cal scenarios®. SNNs often require multiple time steps for
neuron accumulation before firing, which increases compu-
tational delay'**. ANN-to-SNN conversion requires a large
number of time-steps for forward inference, leading to high
computational redundancy®. Spiking-LSTM necessitates
multiple simulation steps to achieve desired spike firing
rates, increasing time, training, and application costs'*.
These challenges are not isolated but rather deeply inter-
connected. Training difficulty directly impacts SNNs’ perfor-
mance and generalization capabilities. Concurrently,
limited neuromorphic hardware support restricts the full
exploitation of SNNs’ energy efficiency benefits, which, in
turn, constrains their practical adoption and the generation
of large-scale datasets, further impeding generalization. To
achieve a breakthrough in SNN technology, simultaneous
advancements across multiple interconnected layers
are imperative: algorithms (e.g., training algorithms,
neuron models), models (e.g., architectural design), and
hardware (e.g., co-design, commercialization). Addressing
these systemic bottlenecks comprehensively is critical
for SNNs’ maturation.

Future research directions

Future research in Spiking Neural Networks for image
object detection and semantic segmentation will predomi-
nantly concentrate on several pivotal areas to overcome
existing challenges and fully unlock their transformative
potential. Additionally, beyond vision tasks, SNNs demon-
strate significant potential in other domains such as
robotics (for rapid response and control), autonomous
driving (for robust sensor fusion and decision-making), and
biomedical signal processing (e.g., for brain-computer
interfaces), providing relevant citations for further explo-
ration. This versatility highlights the broad applicability of
SNN technology.

Efficient and Scalable Training Algorithms

Continued efforts will focus on developing novel learning
rules and optimization strategies to tackle inherent training
difficulties, aiming for stable and highly efficient training of
large-scale, deep SNNs. This includes refining surrogate
gradient methods (e.g., exploring adaptive or learnable

surrogate functions) and further optimizing Threshold-
Dependent Batch Normalization. Additionally, investigat-
ing meta-learning or neural architecture search (NAS)
specifically for SNNs could automate and optimize training
processes. Online optimization of learnable thresholds for
improved hardware compatibility and superior perfor-
mance is a promising avenue®. Future research should also
focus on universal encoder-decoder frameworks for SNNs
capable of converting any RGB image into spiking domain
representations with high fidelity®!. Extending SNNs to
dense prediction tasks with sophisticated designs focusing
on reducing information loss®, and deploying Spiking-
UNet on neuromorphic chips for image super-resolution®
are also crucial. NSNPFormer can be extended to other
vision tasks and integrated with alternative Transformer
backbones to enhance local information capture'®. Further
promotion of SNP application in attention mechanisms and
pre-training models*$, and exploring deployment on
neuromorphic chips for Spiking-NSNet and Spiking-SSeg-
Net® are also vital. Extending Spike-BRGNet to other fields
like simultaneous localization and mapping, and flow esti-
mation will broaden SNN applications'?.

Novel Neuron Models and Architectures for Optical
Perception

Research will persist in exploring and developing more
advanced neuron models, such as dynamic threshold LIF
(DT-LIF) and parameterized LIF (PLIF) neurons. These
models enhance adaptability by allowing membrane
dynamics and thresholds to be learned, significantly
improving inference speed and accuracy, particularly in
deeper SNNs. Concurrently, new SNN architectures will be
designed to better capture and process spatio-temporal
information, including further optimizing convolutional
SNNs (S-CNNs) to overcome their local and single-scale
feature limitations, and exploring more effective multi-scale
feature fusion mechanisms. Innovations in recurrent SNNs
for temporal reasoning and graph SNNs for relational
learning are also promising avenues. Specific directions
include dynamic threshold LIF neurons and novel fusion
architectures for multi-modal optical data (e.g., event
streams + hyperspectral imaging).

Deepened Hybrid Paradigm Integration

Further research will explore the advanced integration of
SNNs with traditional ANNs and state-of-the-art models
like Transformers. This approach aims to synergistically
combine SNNs’ energy efficiency and temporal processing
capabilities (often for low-level feature extraction from
event data) with ANNS’ high precision and robust training
(for high-level tasks like classification and regression),
thereby achieving an optimal balance of performance and
energy efficiency. This might involve developing more
sophisticated cross-modal fusion techniques (e.g., event-
frame fusion) and dynamic switching mechanisms between
SNN and ANN components based on task complexity or
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input characteristics.

Hardware-algorithm co-design and commercialization
for intelligent optoelectronics

As neuromorphic chips continue to mature, the synergistic
co-design of SNN algorithms and specialized hardware will
become increasingly critical. This aims to fully exploit
SNNs’ low power consumption and real-time processing
potential on edge devices. Collaborative efforts between
academia and industry will focus on accelerating the
commercialization and widespread adoption of neuromor-
phic hardware, making it more accessible for practical
applications. Research into hardware-aware neural architec-
ture search and quantization for SNNs will also be vital.
This also discusses specific pathways for combining algo-
rithmic optimizations (like quantization-aware training)
with the design of neuromorphic photonic chips to acceler-
ate commercialization.

Optical computing for snns (neuromorphic photonics)

A burgeoning frontier in SNN research involves leveraging
optical computing for neuromorphic systems. Optical
SNNs (OSNNs) exploit the speed of light and the inherent
parallelism of photonic integrated circuits to potentially
overcome the bandwidth and energy consumption limita-
tions of electronic systems!®. By encoding and transmitting
spikes as optical pulses, OSNNs offer ultra-high speed, low
power consumption, and increased connectivity, which
could lead to unprecedented computational densities'®”.
This direction aims to realize SNNs on neuromorphic
photonic platforms, where neurons and synapses are imple-
mented using optical components like vertical-cavity
surface emitting lasers (VCSELs) or degenerate optical
parametric oscillators (DOPOs)'”?. Challenges include
robust optical neuron activation functions, efficient light-
matter interaction for synaptic weights, and integration
with existing electronic interfaces'”'"'”2. However, the
potential for massively parallel, high-throughput, and
energy-efficient SNNs that bypass electrical bottlenecks
makes neuromorphic photonics a highly promising avenue
for future SNN acceleration and deployment!”*-174,

Benchmark datasets and standardization

The establishment of more comprehensive, diverse, and
challenging neuromorphic datasets, alongside unified eval-
uation metrics and standards, is essential. This will foster
fair comparisons among different SNN models and algo-
rithms, accelerating progress across the field. Developing
benchmarks that specifically emphasize real-time perfor-
mance, energy efficiency, and robustness to noisy or incom-
plete event data will be particularly valuable!”°.

Robustness, interpretability, and explainability
As SNNs move toward safety-critical applications like
autonomous driving, enhancing their robustness to adver-

sarial attacks'’®, improving their interpretability (under-
standing neuron behavior and spike patterns)””-'”%, and
providing explainable decisions will become paramount
research areas.

Biological plausibility and scalability

Striking a balance between biological realism and computa-
tional scalability remains a challenge. Future research might
explore incorporating more complex biological mecha-
nisms (e.g., dendritic computation'*’, neuromodulation'®!)
while ensuring the models remain scalable for large-scale
real-world problems'®.

These prospective research directions are not isolated but
intricately interdependent. For instance, innovations in
novel neuron models and architectural designs lay the
groundwork for more efficient training algorithms.
Concurrently, the integration of hybrid paradigms capital-
izes on the strengths of existing ANNs to accelerate SNN
adoption. Hardware-algorithm co-design is fundamental to
realizing SNNs’ ultimate potential, while robust benchmark
datasets are indispensable for advancing all research fronts.
The long-term evolution of SNNs is envisioned as a contin-
uous, iterative, and convergent process. SNNs are unlikely
to entirely supplant ANNs but are poised to deliver optimal
solutions in specific, niche application scenarios, fostering a
complementary coexistence within the broader Al ecosys-
tem. The ultimate aspiration is to construct Al systems that
are more aligned with biological intelligence, exceptionally
efficient, and remarkably versatile.
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