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Spiking neural networks for object detection and semantic
segmentation across event-driven and frame-based modalities: a
review
Anguo Zhang1†, Hongwei Cao2,3†, Na Shan4,5, Jiaqi Wang3,6, Mingbo Pu2,3,6 and Yongduan Song7*

 

Abstract: Spiking neural networks (SNNs), drawing inspiration from the energy-efficient and event-driven processing
of  biological  brains,  are  emerging  as  a  compelling  alternative  to  traditional  artificial  neural  networks  (ANNs)  for
resource-constrained artificial intelligence (AI) applications. Their intrinsic properties, including low power consump-
tion, ultra-low latency, and native spatio-temporal information processing capabilities, position them as ideal candi-
dates for critical computer vision tasks such as real-time object detection and semantic segmentation, especially at
the  edge.  This  review  systematically  explores  the  fundamental  principles  of  SNNs,  including  their  unique  neuron
models  and  information  encoding  schemes,  contrasting  them with  the  operational  paradigms  of  ANNs.  We  delve
into the sophisticated mathematical  formulations underpinning key SNN neuron models  and the intricate learning
dynamics  that  differentiate  SNNs.  A  significant  portion is  dedicated to  meticulously  dissecting  recent  architectural
innovations in SNNs tailored for image object detection and semantic segmentation. This includes an in-depth analy-
sis  of  pure  SNN  convolutional  networks,  pragmatic  hybrid  SNN-ANN  models,  and  the  cutting-edge  integration  of
attention mechanisms and Transformer-based designs. Furthermore, we provide an enhanced exposition of crucial
training algorithms, such as advanced surrogate gradient methods and spiking batch normalization, highlighting their
theoretical underpinnings and practical implications. Finally, this review synthesizes the current performance bench-
marks,  identifies  persistent  research challenges,  and delineates promising future directions,  particularly  emphasiz-
ing  the  synergistic  co-design  of  SNN  algorithms  and  neuromorphic  hardware.  We  argue  that  SNNs,  while  not  yet
universally  outperforming ANNs,  hold immense potential  to  revolutionize AI  in  dynamic,  resource-limited environ-
ments, becoming a cornerstone of next-generation intelligent systems.
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 Introduction
The  remarkable  advancements  in  deep  learning  over  the
past decade have profoundly reshaped the landscape of arti-
ficial  intelligence  (AI),  particularly  in  computer  vision1−3

and  natural  language  processing4−7.  Deep  artificial  neural

networks (ANNs) have demonstrated unparalleled capabili-
ties  in  tasks  ranging  from  image  recognition  and  speech
processing  to  complex  decision-making8−11.  However,  this
exceptional performance comes at a significant cost: ANNs
are  inherently  resource-intensive,  demanding  substantial
computational  power,  large  datasets,  and  considerable
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energy  consumption12−14.  This  intrinsic  limitation  poses  a
formidable  challenge  for  real-time  and  edge  AI  applica-
tions,  such  as  autonomous  vehicles15−18,  unmanned  aerial
vehicles  (UAVs)19−22,  and  collaborative  robots23−27,  where
energy efficiency and low latency are paramount for opera-
tional  endurance  and  responsiveness.  The  burgeoning
demand for  edge  AI,  driven by  the  need for  fast,  real-time
responses,  enhanced  data  privacy,  and  reduced  power
consumption,  necessitates  novel  AI  paradigms  that  can
operate  efficiently  within  strict  power  and  computational
budgets28−31. This inherent limitation of traditional DNNs is
not an insurmountable barrier,  but  rather a  powerful  cata-
lyst for innovation, fostering the co-development of alterna-
tive  solutions  across  hardware,  algorithmic,  and  applica-
tion layers.

In  direct  response  to  these  limitations,  SNNs  have
emerged  as  a  highly  promising,  bio-inspired  computing
paradigm,  often  heralded  as  third-generation  neural
networks32,33.  SNNs  distinguish  themselves  by  mimicking
biological  neural  networks,  employing  neuron models  that
communicate  via  discrete,  asynchronous  electrical  pulses-
spikes-rather  than  continuous,  real-valued  activations.
This  event-driven,  sparse  computational  model  inherently
offers  remarkable  energy  efficiency  and  native  compatibil-
ity  with  temporal  information  encoding34−41.  As  a  crucial
link  between  neuroscience  and  machine  learning,  SNNs
portend  a  future  where  AI  development  will  draw  more
deeply  from  biological  intelligence,  potentially  leading
to  the  emergence  of  more  general,  efficient,  and  robust
intelligent systems42−44.

Within  computer  vision,  object  detection  and  semantic
segmentation  are  foundational  tasks,  crucial  for  applica-
tions spanning video surveillance, autonomous driving, and
medical image analysis45−48. Object detection precisely iden-
tifies  and  localizes  objects49−51,  while  semantic  segmenta-
tion assigns class labels to every pixel for fine-grained scene
understanding52−54.  However,  real-world  scenarios  intro-
duce  significant  complexities,  including  scale  variations,
illumination  changes,  and  ambiguous  boundaries55.  Tradi-
tional  DNNs,  despite  their  impressive  results,  often  strug-
gle with these complexities, imposing severe computational
demands  that  render  them  unsuitable  for  resource-
constrained  environments.  This  context  positions  SNNs,
with  their  promise  of  low  power  consumption  and  low
latency,  as  a  potential  transformative  solution56.  The
demand for real-time, dynamic scene understanding aligns
exceptionally  well  with  event  cameras,  which  provide  high
temporal  resolution  and  event-driven  data  streams57−61.
SNNs,  as  an  event-driven  computing  paradigm,  exhibit  a
natural synergy with such data62−64, suggesting superior effi-
ciency  for  dynamic  semantic  segmentation  compared  to
frame-based ANNs.

Historically, SNNs have lagged behind ANNs in complex
tasks, but recent breakthroughs have dramatically narrowed
this  performance gap,  with SNNs achieving comparable  or

superior  results  on  specific  benchmarks  while  significantly
reducing energy consumption65−68. This rapid improvement
is  driven  by  convergent  advances  in  neuromorphic  hard-
ware69,  event  camera  technology70,  and  sophisticated  algo-
rithmic  developments  in  SNN  architectures  and  learning
strategies.  The  diminishing  performance  disparity  signifies
a  pivotal  shift  in  SNN  technology,  from  theoretical  explo-
ration to  practical  viability,  foreshadowing a  surge  in  SNN
research  geared  towards  practical  deployment  and  real-
world  applications.  Given  this  evolving  landscape,  this
comprehensive  review  is  designed  to  provide  an  in-depth
exploration  of  the  latest  advancements  in  SNNs  for  image
object  detection  and  semantic  segmentation.  It  systemati-
cally  covers  fundamental  SNN  concepts,  including  neuron
models  and  information  encoding  schemes,  and  elucidates
their foundational differences from ANNs. We then dissect
recent  architectural  innovations,  advanced  learning  strate-
gies, their synergistic relationship with neuromorphic hard-
ware,  quantitative  performance  benchmarks,  and  critical
future research directions.

Specifically,  this  review  makes  the  following  key  contri-
butions:  1)  a  systematic  and  critical  analysis  of  the  latest
SNN  architectures  for  object  detection  and  semantic
segmentation,  with  a  special  focus  on  hybrid  and  Trans-
former-based  models,  2)  an  in-depth  discussion  of
advanced  training  algorithms  tailored  for  SNNs,  such  as
surrogate gradients and spiking batch normalization, and 3)
a unique focus on the synergy between SNNs and optoelec-
tronic  sensors  (e.g.,  event  cameras),  aligning  with  the
cutting-edge field of Intelligent Opto-Electronics.

 Spiking neural network fundamentals
SNNs  draw  profound  inspiration  from  the  intricate  archi-
tecture  and  dynamic  functionality  of  biological  neural
systems71, distinguishing themselves from traditional ANNs
by  employing  neuron  models  that  communicate  via
discrete,  asynchronous  electrical  pulses,  known  as “spikes”
or “action  potentials”33.  This  fundamental  paradigm  shift
allows  SNNs  to  process  information  in  a  unique  manner,
leveraging the precise timing and frequency of these spikes
to encode and transmit information effectively.

 Core concepts of spiking neuron dynamics

Vm (t)

Vth

The  operational  paradigm  of  SNNs  is  deeply  rooted  in
neurobiological  principles,  offering  a  more  biologically
plausible  model  of  computation.  Central  to  SNNs  is  the
concept  of  a  neuron’s  internal  state,  governed  by  its
membrane potential ( ), which accumulates incoming
synaptic currents over time. When this potential reaches or
exceeds  a  predefined  threshold  ( ),  the  neuron  fires  a
discrete  spike,  after  which  its  membrane  potential  is  typi-
cally  reset.  This  spike  generation  process  introduces  a
crucial non-linearity to the neuron’s dynamics. The general
form for membrane potential dynamics can be described by
a first-order differential equation: 
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τm
dVm (t)

dt
= − (Vm (t)− Vrest) + RmIsyn (t) , (1)

τm Vrest

Rm

Isyn (t)

where  is the membrane time constant,  is the resting
membrane  potential,  is  the  membrane  resistance,  and

 is  the  total  synaptic  current  arriving  at  the  neuron.
The strength of connections between neurons is modulated
by  synaptic  weights,  which  govern  the  influence  of  an
incoming  spike  on  the  postsynaptic  neuron’s  membrane
potential.  Synaptic  inputs  can  be  excitatory  or  inhibitory.
When a presynaptic neuron fires a spike, it induces a tran-
sient change in the membrane potential of the postsynaptic
neuron,  known  as  the  post-synaptic  potential  (PSP).  The
ability  of  synapses  to  strengthen  or  weaken  over  time  is
termed synaptic plasticity, which forms the biological basis
of learning and memory72.

The  inherent  sparsity  and  event-driven  nature  of  SNNs,
where  computations  occur  only  upon  spike  firing,  directly
contribute  to  their  exceptional  energy  efficiency73.  This
stands  in  stark  contrast  to  ANNs,  which  typically  involve
continuous  activation  and  dense  computations  across  all
neurons  at  every  timestep.  However,  the  discrete  and
complex  spike  dynamics  of  SNNs  pose  significant  chal-
lenges  for  direct  application  of  traditional  gradient-based
learning algorithms like backpropagation,  necessitating the
development of specialized training strategies such as surro-
gate gradients.

 Key spiking neuron models
Diverse  spike-based  neuron  models  exist,  each  offering
varying  degrees  of  biological  realism,  computational
complexity,  and  efficiency,  serving  as  the  fundamental
building blocks of SNN architectures33.

 Integrate-and-fire (IF) and leaky integrate-and-fire (LIF)
models

Vm (t)
Vm (t)

Vth

The IF model is the simplest conceptualization of a spiking
neuron.  It  functions  as  a  perfect  integrator,  where  its
membrane potential  accumulates incoming synaptic
current over time. Once  reaches a predefined thresh-
old ,  the  neuron  fires  a  spike  and  its  potential  is  reset.
However,  the  basic  IF  model  lacks  a  crucial  biological
feature:  the  passive  decay  of  membrane  potential
over time74.

Vm (t)

The  LIF  model  addresses  this  by  incorporating  a “leak-
age” term, making it both more biologically realistic and the
most widely adopted neuron model in SNN research due to
its  excellent  balance  of  plausibility  and computational  effi-
ciency75.  The LIF model simulates how a neuron integrates
incoming current  while  its  membrane potential  simultane-
ously “leaks” back towards a resting state. The dynamics of
the  LIF  neuron’s  membrane  potential  are  described
by the differential equation: 

τm
dVm (t)

dt
= − (Vm (t)− Vrest) + Iin (t) , (2)

− (Vm (t)− Vrest)where  the  term  represents  the  passive

Vrest

τm Iin (t)
tf Vm (tf) ≥ Vth

Vreset Vreset ≤ Vrest

leak,  causing  the  potential  to  exponentially  decay  towards
the  resting  potential  with  a  membrane  time  constant

.  is  the  total  input  current  from  presynaptic
neurons. Upon spiking at time  (when ), the
neuron  fires,  and  its  membrane  potential  is  instantly  reset
to  a  lower  value  (where )  and  is  often
clamped for a brief refractory period to prevent immediate
re-firing.

τm Vth

While the IF and LIF models’ simplicity is advantageous,
they  face  limitations  in  complex  deep  networks,  primarily
because  their  fixed  parameters  (e.g., , )  may  require
extensive  manual  tuning  and  can  limit  their  expressive
power  and  adaptability.  Nevertheless,  their  computational
efficiency  has  made  them  a  cornerstone  in  many  pioneer-
ing  SNN  architectures,  such  as  Spiking-YOLO76 and  Spik-
ing-YOLOX77 for  object  detection.  They  are  also  used  in
Spiking  CenterNet78 for  event  data  and  SpikeFPN79 for
adaptive  threshold  mechanisms.  For  classification  and
segmentation,  LIF  neurons  are  employed  in  Spiking-SSeg-
Net80 and  Spiking-UNet  variants  for  image
segmentation81,82.

 Parameterized leaky-integrate-and-fire (PLIF) model

τm Vth

The  PLIF  neuron,  a  further  extension  of  the  LIF  model,
introduces  learnable  parameters  for  the  membrane  time
constant ( ) and the threshold potential ( ) that can be
optimized during training. This allows the neuron’s dynam-
ics to adapt more flexibly to the data and task requirements,
improving the model’s expressive power and training stabil-
ity83. PLIF models have been used in embedded SNN object
detection84 and  in  LT-SNN85,  which  optimizes  learnable
thresholds online. The PLIF model is also a key component
in EvSegSNN86 for semantic segmentation. The PLIF model's
learnable  parameters  enable  it  to  capture  more  complex
neuronal behaviors without significantly increasing the com-
putational overhead, offering a bridge between the simplic-
ity of LIF and the adaptability of more complex models.

 Bistable integrate-and-fire (BIF) model
The  BIF  neurons,  introduced  by  Yasir  et  al.87,  represent  a
novel  approach  by  exhibiting  two  stable  states,  which
enhances  information  transmission  and  stability.  This
mechanism  improves  temporal  coding  and  significantly
enhances  detection  performance  by  optimizing  spike
utilization and encoding more information per spike.

 Multi-threshold spiking neuron
Multi-threshold  spiking  neurons,  as  introduced  in  Lei  et
al.88 and Li  et  al.89,  fire  multiple  spikes based on a series  of
predefined  thresholds.  This  mechanism  is  designed  to
enhance  information  transmission  in  SNNs,  especially
within complex architectures  like  Mask2Former.  By allow-
ing  neurons  to  fire  upon  crossing  different  thresholds,  the
model’s  output  can  better  align  with  ANN  activations,
thereby  streamlining  conversion  and  training  processes.
This  approach,  when  combined  with  connection-wise
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normalization,  helps  prevent  inconsistent  firing  rates  in
skip connections, ensuring faithful information representa-
tion across the network.

 Dynamic threshold leaky-integrate-and-fire (DT-LIF)
model

Vth (t)

To  enhance  adaptability  beyond  fixed  thresholds,  the  DT-
LIF  neuron  dynamically  adjusts  its  firing  threshold  based
on  past  activity,  mimicking  biological  neuronal  adaptation
and  firing-rate  homeostasis90.  The  dynamic  threshold

 for a DT-LIF neuron can be modeled as 

Vth (t) = Vth,0 + Σkηke
−(t−tk)/τadapt , (3)

Vth,0 ηk
tk

τadapt

where  is  the  baseline  threshold,  is  an  increment
added to the threshold after each spike fired at time , and

 is  the  adaptation  time  constant  governing  the  expo-
nential  decay  of  the  threshold.  This  dynamic  adjustment
significantly  enhances  inference  speed  and  accuracy  by
preventing  neurons  from  firing  excessively  or  becoming
“dead” due  to  consistently  high  or  low  membrane  poten-
tials.  After  each  spike,  the  threshold  transiently  increases
and then gradually decays. The DT-LIF model represents a
balance:  it  is “bio-inspired” yet  incorporates  engineering
adjustments  for  computational  efficiency  and  training
performance,  reflecting  a  core  theme  in  SNN  research  to
compromise “pure  biological  realism” for “computational
feasibility”. This model is employed in DT-LIF Based SSD68

to improve detection accuracy and inference speed.

 Analog spiking neuron
In  Ma  et  al.'s91 analog  Spiking  U-Net,  an  analog  spiking
neuron  is  proposed  which  modifies  the  firing  positions  of
neurons and transfers information in floating-point signals,
aiming  to  preserve  detailed  information.  This  model  inte-
grates  analog  CBAM  (convolutional  block  attention
module)  and  spiking  ViTBlock  (vision  transformer  block)
to  enhance  semantic  segmentation.  The  analog  CBAM  is
specifically  designed  to  handle  floating-point  signals  from
ANNs  before  conversion  to  spikes,  enabling  the  use  of
traditional  ANN  modules  without  corrupting  spike  distri-
bution. This innovative approach seeks to bridge the infor-
mation gap often encountered when converting continuous
ANN activations to discrete SNN spikes.

The  continuous  evolution  of  SNN  neuron  models
directly  addresses  inherent  training  difficulties  and  perfor-
mance  limitations92.  The  progression  from  basic  LIF  to
adaptable  PLIF,  and  the  introduction  of  multi-threshold,
analog,  and  NSNP  neurons,  reflect  ongoing  efforts  to
balance  computational  efficiency  with  complex  network
performance,  bridging  the  gap  with  ANNs  and  enhancing
task-specific capabilities.

 Information encoding schemes
In  SNNs,  information  is  represented  and  communicated
through spikes,  necessitating efficient encoding schemes to
translate  input  data  into  spike  trains  and  decode  output

spike  trains  into  meaningful  representations93.  These
schemes leverage SNNs’ unique spatio-temporal properties,
typical  rate  encoding  and  temporal  encoding  mechanisms
are as shown in Fig. 1.
  

Input signal
(Intensity)

Pixel 1

Rate coding Temporal coding
(Latency)

Pixel 2

Pixel 3

Pixel 4

Informat ion
is in the spike

frequency

Time window (T)

Informat ion is in
the spike frequency

Time window

Informat ion is in
the spike t iming

Fig. 1 | The  rate  encoding  and  temporal  encoding  mechanisms  of  input
signal for SNNs.

 
 Rate encoding

R

Rate  encoding  schemes  represent  information  through  the
average  firing  rate  or  frequency  of  spikes  within  a  given
time window, where a higher firing rate typically signifies a
stronger signal. The firing rate  of a neuron can be simply
expressed as 

R =
Nspikes

Twindow
, (4)

Nspikes

Twindow

where  is  the  number  of  spikes  fired  within  a  time
window . While simpler to implement and often used
for  compatibility  with  rate-based  ANN  concepts,  this
method  can  potentially  lose  the  fine-grained  temporal
information inherent in spike sequences94. Rate-based spike
coding  is  used  in  SpikiLi95 for  LiDAR-based  3D  object
detection.  However,  rate  encoding  faces  challenges  with
datasets  of  varying  intensities81.  To  address  this,  constant
current  injection82 or  normalized  voxel  grids96 are  used  to
ensure uniformity in scale and mitigate outliers.

 Temporal encoding
Temporal  encoding schemes leverage the precise  timing of
spikes  or  the  relative  timing  between  spikes  to  represent
information.  This  approach is  highly information-rich and
inherently  compatible  with  the  dynamic  nature  of  biologi-
cal  neural  networks.  This  includes  latency  coding,  where
information is encoded in the time of the first spike relative
to  a  reference  point  or  stimulus  (shorter  latencies  often
correspond  to  stronger  input  signals),  and  rank-order
coding,  which encodes information in the relative order of
firing  of  different  neurons  (the  first  neuron  to  fire  might
carry  the  most  salient  information).  Temporal  encoding  is
particularly  powerful  for  capturing dynamic spatio-tempo-
ral  information,  making  SNNs  naturally  adept  at  process-
ing  time-series  data  and  dynamic  scenes.  Its  energy  effi-
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ciency  stems  from  the  fact  that  neurons  only  fire  when
necessary,  minimizing activity.  Spike-time-dependent  inte-
grated  (STDI)  coding,  proposed  by  Qu  et  al.97,  further
augments  information  capacity  in  individual  spikes  for
ultralow-latency SNNs.

The  choice  between  encoding  schemes  involves  a  trade-
off between performance and energy efficiency. Rate encod-
ing is simpler but may sacrifice temporal precision, whereas
temporal  encoding  is  information-rich  but  can  be  more
complex  to  implement  and  train.  This  trade-off  directly
influences  model  accuracy  and  computational  efficiency,
driving  future  research  to  explore  more  efficient  and  task-
adaptive hybrid encoding schemes98.

 Fundamental differences and advantages over ANNs
SNNs fundamentally diverge from ANNs in several critical
aspects, which collectively contribute to their unique advan-
tages and challenges.

 Fundamental differences
SNNs communicate via discrete, binary, and asynchronous
electrical  pulses  (spikes),  contrasted  with  ANNs’ continu-
ous,  real-valued,  and  typically  synchronous  activations.
This event-driven nature means SNNs process information
only  when  a  spike  occurs,  leading  to  sparse  and  asyn-
chronous computations, unlike ANNs’ dense, synchronous
processing.  SNNs  are  designed  to  more  closely  mimic
biological brains, guiding their core architectural and learn-
ing  principles,  while  ANNs  are  abstract  mathematical
models. The discrete and non-differentiable nature of spike
generation in SNNs complicates direct application of tradi-
tional gradient-based learning algorithms like backpropaga-
tion, necessitating specialized SNN training techniques.

 Key advantages
As  shown  in Fig. 2,  energy  efficiency  is  a  cornerstone
advantage,  as  SNNs  transmit  information  and  perform
computations  only  when a  neuron fires,  leading  to  signifi-
cantly  fewer  operations  and  orders  of  magnitude  lower
energy consumption, crucial for power-constrained edge AI
devices99−100. For instance, sparse compressed SNN accelera-
tors  have  achieved  26x  model  size  reduction  and  high
energy  efficiency  for  object  detection101.  Spiking-YOLO
adaptations  have  shown  280x  less  energy  consumption  on
TrueNorth102.  Spiking-UNet  achieved  a  10x  energy  reduc-
tion  compared  to  its  CNN  counterpart82.  SNNs  replace
high-power  MAC  operations  with  more  energy-efficient
AC  operations,  particularly  for  neuromorphic  hardware91.
PSSD-Transformer  consumes  17.76×  less  energy  than
ANN-based models103.

Low latency is another key benefit, on specialized neuro-
morphic hardware, SNNs can achieve extremely low latency
processing,  outperforming  ANNs  in  real-time  applications
by processing information as events occur rather than wait-
ing  for  full-frame  data.  SUHD97,  an  ultralow-latency  and
high-accuracy  SNN  for  object  detection,  achieves  750×

timestep  reduction  and  30%  mAP  enhancement.  Low
latency in  SNNs is  also  achieved by using Neurons-Shared
Blocks and transfer learning, enabling rapid inference with
fewer time steps80.

Sparsity  in  SNNs  is  a  natural  characteristic  inherited
from  biological  neural  networks,  contributing  to  their
computational  efficiency  and  reduced  memory  footprint.
Addressing information loss in sparse spiking is a key area
of  research,  with  solutions  like  spike-driven  deformable
transformer  encoder  (SDTE)  and  spike-driven  mask
embedding  (SDME)  enhancing  segmentation
performance88.  Pure  sparse  self  attention  (PSSA)  and
dynamic spiking membrane shortcut (DSMS) ensure spike-
based processing without floating-point computations103.

Temporal  data  processing  is  an  intrinsic  strength  of
SNNs, as they encode information in spike timings, making
them  well-suited  for  processing  spatio-temporal  data  and
complex  dynamic  patterns,  ideal  for  sequential  or  event-
based  sensory  inputs.  SNNs  for  image  segmentation
demonstrate  dynamic  event-driven  processing  and  tempo-
ral  axis  capacity,  opening  new  horizons  for  models  with
exponential  memorization81.  Spiking-LSTM  models
combine SNN and LSTM to capture spatio-temporal infor-
mation  effectively  for  tasks  like  hyperspectral  image
segmentation104.

Compatibility  with  event-driven  sensors  is  another  key
advantage. SNNs’ event-driven operational paradigm makes
them  highly  compatible  with  data  streams  from  event
cameras,  which  generate  asynchronous  event-based  data,
offering  superior  performance  in  challenging  conditions
like  high-speed  motion,  high  dynamic  range,  and  low
light64,105.  EvSegSNN86 highlighted  SNNs’ suitability  for
event-based  sensors  due  to  their  asynchronous  spike
computation  and  speed  of  spread,  making  them  ideal  for
low-power,  real-time semantic  segmentation tasks.  Beyond
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Fig. 2 | Difference and advantages of SNN compared to ANN.
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image-based  tasks,  SNNs  also  process  raw  sensor  data
directly,  as  exemplified  by106 for  automotive  radar  object
detection.

The spiking object detection and semantic segmentation
pipelines with event-driven data input is presented in Fig. 3,
a  comparative  overview  of  SNNs  and  ANNs/DNNs,  high-
lighting  their  distinct  characteristics  and  advantages,  is

presented in Table 1.
While the biological plausibility that garners SNNs much

praise  is  simultaneously  the  root  cause  of  their  primary
challenges,  training  difficulty  and  non-differentiability  due
to discrete  spiking and complex dynamics,  this  fundamen-
tal  trade-off  lies  at  the  heart  of  SNN  research107,108.  The
discrete  nature  and  complex  dynamics  of  SNN  spikes
render  traditional  gradient  descent  methods  impractical,
propelling researchers to develop alternative gradient-based
or  gradient-free  approaches.  These  methods,  by  necessity,
often involve some level of compromise on pure biological
realism in  favor  of  computational  feasibility.  Crucially,  the
full  realization  of  SNNs’ energy  efficiency  and  low-latency
advantages  is  heavily  contingent  on  specialized  neuromor-
phic  hardware109,110.  Traditional  computing  platforms  like
GPUs and CPUs are not optimized for event-driven, sparse
computation,  thus  hindering  SNNs  from  demonstrating
their full potential energy savings. Consequently, the future
trajectory of SNN development is inextricably linked to the
synergistic  co-design  of  algorithms  and  hardware,  along-
side  the  broader  commercialization  and  accessibility  of
neuromorphic chips111.

 SNN architectures for object detection
Object  detection,  a  cornerstone  task  in  computer  vision,
demands  both  high  accuracy  and  real-time  performance.
SNNs,  with  their  inherent  energy  efficiency  and  event-
driven  nature,  are  uniquely  positioned  to  address  the
computational  demands  of  deploying  object  detection
models on edge devices. This section reviews the evolution
of  SNN  architectures  for  object  detection,  from  early
conceptual  models  to  advanced  hybrid  and  Transformer-
based designs.

 Early SNN architectures for vision tasks
The  initial  foray  of  SNNs  into  computer  vision  primarily
focused  on  simpler  recognition  and  classification  tasks,
such as handwritten digit recognition (e.g., MNIST dataset)
or basic pattern classification112−113. Meftah et al.114 explored
SNNs  for  image  segmentation  and  edge  detection  using
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Fig. 3 | The spiking object detection and semantic segmentation pipelines
with  event-driven  data  input.  This  concrete  visual  representation  illus-
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Table 1 | Comparison of SNNs and ANNs/DNNs for object detection and semantic segmentation.
 

Feature SNNs ANNs/DNNs

Communication mechanism Discrete spikes, asynchronous Continuous values, synchronous

Neuron activation Threshold-based, event-driven Continuous activation functions (e.g., ReLU)

Information processing Sparse, temporal (Timing/Frequency) Dense, rate-based (Activation Strength)

Learning paradigm STDP, surrogate gradients, ANN-to-SNN conversion Backpropagation (Gradient Descent)

Energy consumption Low (inherently efficient) High (resource-intensive)

Latency Ultra-low (especially on neuromorphic hardware) Higher (due to synchronous processing)

Biological Plausibility High (mimics biological brains) Low (abstract mathematical models)

Training difficulty High (non-differentiable spikes) Lower (well-established methods)

Hardware compatibility Neuromorphic processors, edge devices GPUs, CPUs, TPUs

Typical performance (accuracy) Rapidly improving, approaching/exceeding ANNs on specific tasks High, state-of-the-art across many tasks

Data modality suitability Event-based data, time-series Frame-based data, Static images
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unsupervised  Hebbian-based  winner-take-all  learning  with
LIF  neurons.  Pioneering  conversion  work  by  Cao  et  al.115

demonstrated an early  method to convert  deep CNNs into
SNNs for energy-efficient object recognition, achieving two
orders  of  magnitude  lower  energy  consumption  compared
to  FPGA-based  CNNs while  maintaining  similar  accuracy.
These  foundational  efforts  were  crucial  for  demonstrating
the  feasibility  of  spike-based  computation  in  the  visual
domain,  setting  the  groundwork  for  adapting  successful
deep  learning  concepts  to  the  SNN  framework  despite  the
inherent  architectural  simplicity  that  limited  their  applica-
bility to more complex object detection problems.

 Pure SNN convolutional networks (S-CNNs)
As  depicted  in Fig. 4,  inspired  by  the  immense  success  of
Convolutional  Neural  Networks  (CNNs)  in  conventional
computer vision, researchers began translating these power-
ful architectures into the SNN paradigm, giving rise to deep
Spiking  Convolutional  Neural  Networks  (S-CNNs).  These
models have demonstrated notable energy efficiency advan-
tages,  particularly  in  event-driven  object  detection  tasks.
The  development  trajectory  of  S-CNNs  involved  adapting
or simplifying successful ANN detectors, leading to a strate-
gic  shift  within  the  SNN  field  toward  optimizing  for  its
unique characteristics.
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Fig. 4 | Generic  ANN-to-SNN conversion pipeline.  This  diagram illustrates
the  transformation  process,  highlighting  how  a  pre-trained  ANN  is
adapted  to  an  SNN,  typically  involving  threshold  mapping  and  weight
transfer to leverage existing deep learning successes.

 
 Spiking-YOLO and its variants
Spiking-YOLO76 is  an  SNN  adaptation  of  the  popular
YOLO  (You  only  look  once)  object  detection  architecture.
It introduces a “meta-SNN block,” a channel normalization
scheme,  and  unbalanced  threshold  sign  neurons.  The
primary motivation was to leverage YOLO’s efficiency and
accuracy  for  object  detection  within  the  SNN  framework,
addressing  the  inefficiencies  of  traditional  normalization

methods  and  enhancing  adaptability  to  diverse  datasets.
This  aimed  to  resolve  challenges  in  building  deep  SNNs
capable  of  complex  vision  tasks  while  maintaining  the
energy  efficiency  inherent  to  spiking  neurons.  It  simplifies
the YOLO architecture to suit SNN characteristics by incor-
porating  specific  SNN-friendly  components  like  the  meta-
SNN  block  and  custom  normalization.  This  allows  for
direct training of deep SNNs without ANN-to-SNN conver-
sion. However, it still faces high training complexity and an
accuracy  gap  compared  to  its  ANN counterparts.  Building
on this, Bi et al.116 adapted YOLOv5’s C3 module using LIF
neurons,  achieving  2.47×  lower  power  consumption  and
improved  accuracy  for  foreign  object  detection  on  over-
head  power  lines.  Liu  et  al.102 further  adapted  spiking-
YOLO  for  mobile  robot  deployment,  demonstrating  280×
less  energy  consumption  on  TrueNorth.  Miao  et  al.77

advanced  spiking-YOLOX  by  integrating  ternary  signed
spiking  neurons  and  fast  fourier  convolution  (FFC)  for
enhanced  feature  extraction  and  state-of-the-art  object
detection.  Additionally,  Qu  et  al.97 proposed  SUHD,  an
ultralow-latency  SNN  that  enhances  SPPF  conversion  effi-
ciency  through  timestep  compression  and  spike-time-
dependent integrated (STDI) coding.

 Multi-scale spiking detectors
The multi-scale spiking detector (MSD) framework117 inte-
grates  spiking  multi-scale  fusion  with  dedicated  spiking
detectors.  Traditional  SNNs  often  struggle  with  detecting
objects of varying sizes in complex scenes due to their focus
on  local  features.  MSD  was  developed  to  enhance  deep
feature extraction across multiple scales, which is crucial for
robust  object  detection.  It  achieves  high  performance  with
low energy consumption by utilizing On-chip neuromorphic
network  blocks  (ONNB)  and  a  multi-scale  spiking  fusion
mechanism,  directly  training deep SNNs.  This  allows for  a
more  comprehensive  understanding  of  visual  scenes.  As  a
related model, the spiking fusion object detector (SFOD)118

combines a spiking denseNet backbone with an SSD (single
shot MultiBox detector) detection head. Its innovative spik-
ing  fusion  module  enables  multi-scale  feature  fusion  not
only  spatially  but  also  temporally,  improving  detection
accuracy  for  dynamic  objects  by  fusing  transient  move-
ments  from  shallow  layers  with  broader  actions  from
deeper layers. Fan et al.119 introduced SFDNet, a fully spik-
ing  RGB-event  fusion-based  detection  network  featuring
the  leaky  integrate-and-multi-fire  (LIMF)  neuron  model
and  a  multi-scale  hierarchical  spiking  residual  attention
network,  achieving  state-of-the-art  low-power  and  robust
detection.  Furthermore,  Fan  et  al.120 introduced  SpikeDet,
which  optimizes  firing  patterns  using  a  Membrane-based
deformed shortcut residual network (MDSNet) and spiking
multi-direction fusion module (SMFM), achieving high AP
with reduced power consumption.

 Other notable contributions to pure SNNs for object
detection
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Pure  SNNs  have  seen  diverse  advancements  for  object
detection.  Bulzomi  et  al.121 proposed  a  lightweight  SNN
using visual attention mechanisms to filter noise, achieving
a  24×  smaller  model  size.  Courtois  et  al.84 demonstrated
embedded  SNN  object  detection  with  a  SpikeThin-VGG
backbone  on  an  FPGA-based  SPLEAT  accelerator,  achiev-
ing  490  mJ/prediction  for  automotive  event  data.  Bodden
et  al.78 introduced  Spiking  CenterNet,  utilizing  an  M2U-
Net-based  decoder  and  knowledge  distillation  to  achieve
2.6%  higher  mAP.  Zhang  et  al.79 proposed  SpikeFPN  for
automotive  event-based  object  detection,  which  uses  an
FPN  architecture  and  an  adaptive  threshold  mechanism,
achieving  0.477  mAP  on  the  GEN1  dataset.  Mohapatra  et
al.95 presented SpikiLi, an SNN for LiDAR-based 3D object
detection,  leveraging  CNN-to-SNN  conversion  and  quan-
tized weights for efficient autonomous driving. Feng et al.122

proposed a multi-patch localization SNN for infrared drone
object  detection,  decoupling  classification  and  localization
tasks  to  achieve  98.9%  accuracy  with  low  power.  Lien  and
Chang101 demonstrated a sparse compressed SNN accelera-
tor, achieving 26× model size reduction and 1.05 mJ/frame
energy efficiency.  Su et  al.123 proposed EMS-YOLO, a deep
directly-trained  SNN  for  object  detection  that  achieves
ANN-comparable  performance  with  5.83x  less  energy.
Zhang  et  al.124 introduced  SG  ResNet  with  a  binary  selec-
tion gate, addressing gradient vanishing and achieving high
accuracy.  Qu  et  al.97 proposed  SUHD,  an  ultralow-latency
SNN  achieving  750×  timestep  reduction  and  30%  mAP
enhancement.  Yasir  et  al.87 introduced  BN-SNN,  integrat-
ing  bistable  integrate-and-fire  (BIF)  neurons  to  enhance
information  transmission  and  improve  detection  perfor-
mance.  Wang  et  al.125 developed  Spike-BRGNet,  an  event-
based  semantic  segmentation  network  for  traffic  scenes,
featuring  a  three-branch  spiking  encoder  and  a  spiking
multi-scale  context  aggregation  (SMSCA)  module,  outper-
forming  SOTA  SNN  methods  by  +1.57%-1.91%  mIoU
while  consuming  17.76×  less  energy  than  ANN-based
models.

A  notable  limitation  of  early  spiking  CNNs  is  their
propensity  to  focus  on local  and single-scale  features.  This
inherent  bias  makes  it  challenging  to  achieve  high  detec-
tion accuracy, especially for objects with varying sizes or in
complex, cluttered scenes. While traditional CNNs excel at
local  feature  extraction,  their  SNN  counterparts  inherited
this  characteristic,  which  proves  particularly  problematic
for  object  detection  where  understanding  the  global  scene
context  is  paramount for  accurate  localization and classifi-
cation. This limitation in feature representation has directly
spurred  the  development  of  more  advanced  architectures,
including  the  integration  of  feature  pyramids  and  Trans-
former-based  designs.  The  early  development  trajectory  of
S-CNNs  involved  adapting  or  simplifying  successful  ANN
detectors  (e.g.,  YOLO,  SSD).  While  this  expedited  SNN
application to complex tasks, its inherent limitations drove
researchers  to  explore  more “native” SNN  designs  like

MSD’s spike-based multi-scale fusion and ARSNN’s unique
approach  to  temporal  alignment  loss.  This  indicates  a
strategic  shift  within  the  SNN  field  toward  optimizing  for
its unique characteristics rather than mere transplantation.

 Hybrid SNN-ANN Architectures
Recognizing the complementary strengths of SNNs (energy
efficiency, temporal processing) and ANNs (high accuracy,
robust  training,  mature  learning  algorithms),  researchers
have explored integrating these two paradigms into hybrid
architectures (typically as shown in Fig. 5). The core philos-
ophy  behind  these  hybrid  models  is  to  leverage  SNNs’
power-efficient,  event-driven  processing  capabilities,  typi-
cally for extracting low-level, spatio-temporal features from
event  data,  with  ANNs’ established  efficient  learning  and
powerful  representation  capabilities,  often  for  high-level
tasks like object classification and bounding box regression.
Hybrid  architectures  represent  a  pragmatic  engineering
compromise,  meticulously  crafted  to  mitigate  the  perfor-
mance  disparity  of  SNNs  while  concurrently  preserving
their inherent efficiency advantages.
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Fig. 5 | Generic  hybrid  SNN-ANN  architecture.  This  conceptual  diagram
illustrates  how  SNN  components,  often  used  for  efficient  low-level
feature  extraction,  are  integrated  with  ANN  components,  typically
handling high-level tasks, to balance performance and energy efficiency.

 
A common hybrid approach involves using an SNN as a

lightweight  and  efficient  backbone  for  extracting  features
from  event  data,  which  are  then  fed  into  an  ANN-based
head for final object detection tasks. This architecture aims
to  achieve  performance  comparable  to  pure  ANNs  while
significantly  reducing  the  number  of  parameters,  latency,
and power consumption. The driving force is to bridge the
gap  between  SNNs’ efficiency  and  ANNs’ superior  accu-
racy  and  robust  training  for  complex  tasks.  For  instance,
Liu  et  al.102 proposed  a  Spiking-YOLO  model  for  mobile
robot object detection by leveraging DNN-to-SNN conver-
sion  for  energy  efficiency  on  neuromorphic  hardware  like
TrueNorth.  Similarly,  Zhang  et  al.’s124 spiking  RetinaNet
combines  an SG ResNet  backbone with an ANN detection
head, achieving 0.296 mAP on MSCOCO. Another notable
example is the DT-LIF Based SSD68, which utilizes the DT-
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LIF neuron model  within a  hybrid  SNN based on the  SSD
framework.  This  model  significantly  improves  detection
accuracy  and  inference  speed  by  employing  spiking  VGG
and spiking DenseNet backbones, along with batch normal-
ization  (BN),  spiking  convolutional  (SC)  layers,  and  DT-
LIF neurons, demonstrating a 25.2% improvement in object
detection accuracy on the Prophesee GEN1 dataset.

The success of hybrid architectures underscores a critical
insight:  SNNs  and  ANNs  should  often  be  viewed  as
complementary  modules,  with  SNNs  excelling  at  low-level
event  feature  extraction  and  ANNs  at  high-level  classifica-
tion  and  regression.  Their  synergistic  combination,  as
exemplified  by  hybrid  SNNs,  achieves  an  optimal  balance
between  performance  and  energy  efficiency.  This  modular
design  philosophy  can  be  readily  extended  to  design  more
intricate heterogeneous systems, potentially deploying SNN
components  on  neuromorphic  chips  and  ANN  compo-
nents on GPUs for optimized overall system performance.

 Attention mechanisms and transformer-based SNN
Integration
The  revolutionary  success  of  transformer  architectures
across diverse computer vision domains has naturally led to
their  integration  into  SNNs.  As  presented  in Fig. 6,  this
integration  primarily  aims  to  address  the  limitations  of
spiking CNNs in processing global  context  and long-range
dependencies126.  This  convergence  indicates  that  SNN
development  is  proactively  embracing  and  adapting  to  the
latest  advancements  in  modern  deep  learning,  striving  for
comprehensive competitiveness.

 Spiking vision transformer (S-ViT)
Spiking vision Transformers (S-ViTs) are adaptations of the
vision  transformer  architecture  for  SNNs,  focusing  on
reducing the number of timesteps for processing. The core
motivation  is  to  capture  global  dependencies  efficiently,  a

known  limitation  of  traditional  SNN-CNNs,  while  main-
taining or  improving latency and energy efficiency.  This  is
crucial  for  handling  complex  visual  tasks  that  require  a
broader understanding of the image context. These models
adapt  the  self-attention mechanism to  operate  with  spikes,
aiming  to  capture  global  dependencies  efficiently.  While
powerful,  training  convergence  and  stability  in  deeper  S-
ViTs remain significant research challenges. Active research
explores  S-ViTs  to  improve  latency  and  energy
efficiency127−133. Yu et al.134 introduced SpikingViT, a multi-
scale  spiking  vision  transformer  model  for  event-based
object detection, which enhances spatio-temporal informa-
tion  processing  through  a  multi-stage  feature  extraction
(MFE)  module  and  a  temporal  memory  spiking  neuron
(TMSN) block.

 Spike-TransCNN architectures
Spike-TransCNN  architectures  are  hybrid  designs  that
combine  spiking  Transformers  with  spiking  CNNs.  These
models  address  the  inherent  bias  of  SNN-CNNs  towards
local  features  and  their  difficulty  in  integrating  global  and
high-level  semantic  information.  The  aim  is  to  effectively
integrate  both  global  and  multi-scale  local  features  for
enhanced detection accuracy and energy efficiency, particu-
larly  for  sparse  event  data.  They  achieve  this  by  adeptly
combining the global information extraction capabilities of
spiking  Transformers  with  the  local  feature  extraction
advantages  inherent  in  spiking  CNNs.  For  example,  in
Wang  et  al.103,  a  PSSD-transformer  is  proposed  for  image
semantic  segmentation,  incorporating  pure  sparse  self
attention (PSSA) and dynamic spiking membrane shortcut
(DSMS) to handle floating-point computations with sparse
spikes.  Nonetheless,  potential  limitations  may  include
restricted  architectural  innovation  and  suboptimal  perfor-
mance  on  very  large  datasets  compared  to  ANN  counter-
parts.
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Fig. 6 | Attention mechanism and Transformer-based SNNs. This diagram illustrates how spiking versions of self-attention are integrated into SNN architec-
tures, allowing for the efficient capture of global dependencies while preserving the energy efficiency of spike-based computation.
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 Other attention mechanisms
Beyond  full  transformer  integration,  various  attention
mechanisms  have  been  incorporated  into  hybrid  SNN-
ANN  backbones.  Attention-based  SNN-ANN  bridging
modules  are  designed  to  capture  sparse  spatio-temporal
relationships  within  SNN  layers  and  efficiently  convert
them  into  dense  feature  maps  for  the  ANN  component.
This  allows  for  targeted  information  flow  and  highlights
salient features while maintaining SNN efficiency. The goal
is  to  improve  the  interpretability  and  feature  weighting
within  SNNs  for  better  performance.  Bulzomi  et  al.121

proposed  visual  attention  mechanisms  for  lightweight
SNNs for object detection to filter noise and reduce activa-
tions. Miao et al.77 employed fast fourier convolution (FFC)
in  SpikingYOLOX  to  provide  a  global  receptive  field,
implicitly  functioning  as  an  attention  mechanism  for
enhanced  feature  extraction.  Zhang  et  al.124 introduced  an
attention  spike  decoder  (ASD)  to  dynamically  assign
weights  to  spiking  signals  along  temporal,  channel,  and
spatial  dimensions for effective decoding. Fan et al.119 inte-
grated  a  multi-scale  hierarchical  spiking  residual  attention
network within SFDNet. Furthermore, in Li et al.96, special-
ized  modules  like  the  adaptive  temporal  weighting  (ATW)
injector,  event-driven  sparse  (EDS)  injector,  and  channel
selection  fusion  (CSF)  module  facilitate  robust  interaction
between SNN and ANN branches. The ATW Injector inte-
grates event temporal features into frame features, the EDS
Injector  combines  sparse  event  data  with  rich  frame
features, and the CSF module selectively fuses features from
both  branches.  In  Ma et  al.91,  an  Analog  CBAM (convolu-
tional  block  attention  module135)  combines  channel  and
spatial  attention  mechanisms,  designed  to  handle  floating-
point  signals  from  ANNs  to  integrate  attention  mecha-
nisms without corrupting spike distributions. Lastly, Wang
et  al.125 introduced  a  dynamic  surrogate  gradient  function
(EvAF)  and  a  boundary  region-guided  loss  to  optimize
training,  which  involves  attention  to  relevant  boundary
areas.

The  integration  of  transformer  architectures  serves  as  a
direct  response  to  the  challenges  SNNs  face  in  handling
global  context  and  long-range  dependencies.  A  recognized
weakness  of  SNN-CNNs  is  their  inherent  bias  towards
“local and single-scale features,” as well as their difficulty in
“integrating  global  and  high-level  semantic  information”.
Transformers,  by  their  nature,  excel  at  capturing  global
attention mechanisms and long-range dependencies. While
S-CNNs  demonstrate  robust  performance  in  local  feature
extraction, they often lack sufficient global contextual infor-
mation,  which  is  paramount  for  many  object  detection
tasks.  The introduction of transformers into SNNs (e.g.,  S-
ViT, Spike-TransCNN) directly compensates for the limita-
tions  of  S-CNNs,  thereby  enhancing  performance  on
complex visual tasks.

 Multi-scale feature fusion in SNN detectors
Robust  object  detection,  especially  in  real-world  scenarios
characterized  by  objects  of  diverse  sizes,  critically  depends
on  effective  multi-scale  feature  fusion136,  with  the  pipeline
showed in Fig. 7.  Emerging SNN architectures  are  increas-
ingly  incorporating  sophisticated  multi-scale  processing
capabilities. Multi-scale feature fusion is a pivotal solution to
the challenge of scale variation in object detection, moving
beyond the limitations of single-scale feature extraction.
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Fig. 7 | Multi-scale  feature  fusion  in  SNN.  This  diagram  illustrates  how
features  extracted  at  different  resolutions  are  integrated  within  SNN
architectures to robustly detect objects across a wide range of sizes.

 
 Hierarchical feature integration
This  approach involves  integrating  features  extracted  from
different  depths  of  the  network.  The  multi-scale  spiking
detector  framework117 pioneered  this  concept  to  enable  a
hierarchical  understanding  of  the  visual  scene,  which  is
essential  for  detecting  objects  across  various  scales.  The
integration  of  feature  pyramid  structures,  such  as  feature
pyramid networks (FPNs)136,  has become a prevalent strat-
egy  in  SNNs  to  facilitate  multi-scale  feature  extraction137.
This approach is directly inspired by successful methodolo-
gies  in  ANNs and enables  SNNs to  process  information at
multiple  resolutions,  enhancing  the  detection  of  objects
across  a  wide  range  of  scales.  Zhang  et  al.79 integrated  an
FPN  architecture  within  their  SpikeFPN  for  automotive
event-based object detection, enhancing multi-scale feature
extraction.

 Spiking fusion modules
Spiking fusion object detector (SFOD)118 and similar fusion
mechanisms are being developed to integrate spike features
from  different  scales.  The  goal  is  to  ensure  a  comprehen-
sive object representation, especially for dynamic objects, by
combining  both  spatial  and  temporal  cues  from  various
scales.  This  addresses  the  challenge  of  accurately  detecting
moving targets where both their shape and motion patterns
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are crucial. SFOD’s spiking fusion module not only achieves
spatial  fusion  but  also  enhances  multi-scale  features  in  the
temporal domain, allowing the integration of temporal cues
(e.g.,  motion  patterns)  from  different  scales  to  improve
detection  accuracy  for  dynamic  objects.  Fan  et  al.120 inte-
grated  the  spiking  multi-direction  fusion  module  (SMFM)
within  SpikeDet  to  enhance  multi-scale  feature  fusion  and
preserve neuron firing patterns for object detection. Miao et
al.77 integrated  SPP-SNN  (spatial  pyramid  pooling  spiking
neural  network)  within  their  SpikingYOLOX  to  enhance
multi-scale  feature  fusion  capabilities  for  object  detection.
Qu  et  al.97 addressed  limitations  in  SPPF  (spatial  pyramid
pooling  fast)  conversion  by  introducing  a  spike-maxpool-
ing  mechanism,  enabling  lossless  conversion  and  enhanc-
ing multi-scale feature fusion in ultralow-latency SNNs. Fan
et al.119 developed a lightweight spiking aggregation module
within  SFDNet  for  efficient  RGB-event  fusion  in  object
detection.

 Lightweight multi-fusion architectures
SLP-Net  (lightweight  multi-fusion  UNet  based  on  spiking
neural  systems)138 introduces  a  multi-channel  SNP-type
convolution  (MCConvSNP)  neuron  model  within  a
lightweight  asymmetric  encoder-decoder  design.  This
architecture  aims  for  high  accuracy  with  low  parameters
and FLOPs, particularly for tasks like skin lesion segmenta-
tion,  by  optimizing  feature  extraction  and  fusion  across
multiple  levels.  It  uses  an  efficient  multi-scale  feature
extraction block (EMFE) with dilated convolutions for deep
stage  multi-scale  feature  extraction,  and  a  multi-level
feature  fusion module  (MFF) in  skip connections  for  hier-
archical  fusion.  A  spatial-channel  fusion  module  (SCF)
further  optimizes  feature  fusion across  spatial  and channel
dimensions.  Wang  et  al.125 utilized  a  spiking  multi-scale
context aggregation (SMSCA) module to fuse features from
different  scales  and  enhance  contextual  information.  The
module  obtains  multiple  scales  of  receptive  fields  through
average pooling with different kernel sizes and strides. Ye et
al.80 introduced  spiking-SegNet  for  image  segmentation,
employing a  U-shaped full-convolutional  architecture with
a  spiking  encoder-decoder  that  extracts  multi-scale  infor-
mation  via  convolutional  and  transposed  convolutional
layers.

The inherent  ability  of  SNNs to process  spatio-temporal
information  means  that  their  multi-scale  fusion  extends
beyond mere spatial dimensions; it can also integrate infor-
mation  across  different  layers  and  time  points,  forming  a
“temporal  perception” across  scales.  This  spatio-temporal
multi-scale fusion capability represents a unique advantage
for SNNs in dynamic object detection, potentially leading to
more  precise  and  real-time  detection  of  moving  objects
than traditional ANNs.

 SNN architectures for image semantic
segmentation
Semantic  segmentation,  a  crucial  computer  vision  task,

aims to assign a class label to every pixel in an image, facili-
tating  a  fine-grained  understanding  of  the  scene47.  Unlike
object  detection,  semantic  segmentation  typically  does  not
distinguish between individual instances of the same object
category, instead treating all pixels belonging to a class (e.g.,
all  pixels  of “road”)  as  a  single  entity55.  Traditional
approaches  to  semantic  segmentation  predominantly  rely
on  deep  learning  methods,  particularly  CNN  architectures
based on encoder-decoder structures like FCN47,  SegNet139,
U-Net140,  DeepLab141,  and PSPNet142.  Among these,  U-Net,
with  its  iconic  U-shaped  structure  and  prominent  skip
connections, has achieved significant success particularly in
medical image segmentation143.

Semantic  segmentation  finds  extensive  applications  in
critical domains such as autonomous driving, drone naviga-
tion, medical image analysis, and augmented reality. While
traditional CNNs have demonstrated commendable perfor-
mance in semantic segmentation,  they face inherent trade-
offs  concerning  latency,  accuracy,  and  energy  efficiency,
particularly  in  real-time  systems  like  autonomous  vehicles
and drones55. SNNs, with their low-power and event-driven
characteristics,  offer  a  novel  avenue  to  circumvent  these
bottlenecks.  The  substantial  computational  demands  of
traditional CNNs often render them unsuitable for deploy-
ment on edge devices requiring real-time performance and
high  efficiency.  Consequently,  SNNs’ low-power  and  low-
latency attributes position them as a promising solution for
deploying  semantic  segmentation  in  resource-constrained
environments.

Event cameras, which capture dynamic scene changes by
outputting  asynchronous  streams  of  brightness  changes,
provide  data  with  high  temporal  resolution,  low  latency,
and  low  power  consumption.  This  data  modality  aligns
exceptionally  well  with  the  requirements  of  semantic
segmentation  for  dynamic  scene  understanding  and  real-
time  processing,  offering  a  natural  advantage  for  SNN
applications  in  this  domain.  Semantic  segmentation
demands  the  capture  of  dynamic  information;  event
cameras  provide  high-temporal-resolution  event  streams
that  SNNs,  as  event-driven  networks,  can  process  with
superior  efficiency  and potential  compared to  frame-based
ANNs, especially for dynamic semantic segmentation tasks.

 Unique advantages of SNNs in semantic
segmentation
The inherent event-driven nature, low power consumption,
minimal  latency,  and  native  spatio-temporal  information
processing  capabilities  of  SNNs  render  them  exceptionally
well-suited  for  handling  data  originating  from  event
cameras.  This positions SNNs to exhibit  substantial  poten-
tial  in  real-time  semantic  segmentation86.  When  deployed
on  specialized  neuromorphic  hardware,  SNNs  can  achieve
ultra-low  power  consumption  and  latency,  which  is  indis-
pensable  for  cutting-edge  edge  AI  applications.  SNNs
communicate  through  binary  spike  signals,  enabling  them
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to  replace  the  high-power  multiply-accumulate  (MAC)
operations  prevalent  in  traditional  ANNs  with  more
energy-efficient  accumulate  (AC)  operations,  thereby
significantly enhancing energy efficiency.

The  benefits  of  SNNs  in  semantic  segmentation  extend
beyond  mere  energy  efficiency  (by  avoiding  unnecessary
computations)  to  encompass  the  low  latency  afforded  by
their  event-driven  and  asynchronous  computation.  This  is
critically  important  for  real-time  applications  like
autonomous  driving,  which  necessitate  rapid  decision-
making55.  Semantic  segmentation  in  domains  such  as
autonomous  driving  demands  real-time  responsiveness.
SNNs’ event-driven  and  sparse  computational  paradigm
provides low power consumption and low latency, enabling
them  to  meet  the  stringent  real-time  requirements  of

semantic  segmentation.  The  synergy  between  SNNs  and
event cameras allows them to demonstrate unparalleled —
and potentially  irreplaceable  — competitiveness  in seman-
tic segmentation tasks under extreme conditions (e.g., high-
speed motion,  high dynamic range,  low light)  where tradi-
tional  frame-based  cameras  struggle.  While  traditional
frame  cameras  are  limited  in  these  challenging  environ-
ments,  event  cameras  excel  at  capturing  dynamic  changes.
SNNs’ natural  compatibility  with  event  cameras  allows
them  to  provide  more  refined  and  real-time  scene  under-
standing than traditional  ANNs in these specific  scenarios,
potentially even surpassing them.

 Encoder-decoder and U-Net-like SNN architectures
Semantic  segmentation  tasks  commonly  employ  encoder-

 

Table 2 | Key SNN architectures for object detection.
 

Architecture type Specific model name Quantitative metrics Energy efficiency Relevant datasets Limitations / Challenges

Pure SNN (S-CNN)

Spiking-YOLO76 N/A N/A
Static & dynamic

datasets

High training difficulty, persistent

accuracy limitations

Spiking-YOLOX77 State-of-the-art mAP
Low computational

requirements
N/A

Complex optimization, potential

performance degradation

YOLO-C3 SNN116
Improved accuracy (no

specific mAP)

2.47x lower power

consumption

Overhead power

lines

Needs direct training with surrogate

gradient

Embedded SNN84 Small mAP loss 490 mJ/prediction
Automotive event

data
Requires post-training quantization (PTQ)

Spiking CenterNet78 2.6% higher mAP
Better power

efficiency
N/A Requires KD from non-spiking teacher

SpikiLi: LiDAR 3D SNN95 CNN-comparable precision
Low inference

latency (3ms)
LiDAR-based 3D

Primarily simulation-based, needs

hardware validation

Multi-patch SNN122 98.9% accuracy
0.336W power

(20FPS)

Infrared drone

detection

Relies on ANN-SNN conversion, may have

latency

Sparse compressed SNN

Accelerator101
N/A 1.05 mJ/frame N/A

Primarily hardware-focused, limited

generalizability

EMS-YOLO123
ANN-comparable

performance

5.83x less energy (4

timesteps)
N/A

May still have accuracy gap for very large

datasets

BN-SNN with BIF

neurons87
0.476 mAP@0.5 (MS-

COCO), 0.591 (GEN1)

Reduced temporal

steps
MS-COCO, GEN1

Primarily conversion-based, may have

some conversion loss

DT-LIF based SSD68
25.2% accuracy

improvement
N/A Prophesee GEN1 General SNN training difficulties

Attention mechanism or

transformer-based SNN

Direct training high-

performance SNNs124
0.296 mAP N/A MSCOCO

Requires direct training, may not match

all ANN performance

Tiny SNN with visual

attention121
N/A

Energy-efficient on

SpiNNaker
N/A May require dynamic weight adjustment

Multi-scale feature fusion

MSD (multi-scale spiking

detector)117
High performance Low power N/A

Further exploration of effective model

construction needed

SFOD (spiking fusion

object detector)118
Improved detection

accuracy
N/A Dynamic objects

Complexity in module design, reliance on

specific data modalities

Spike-BRGNet125 +1.57-1.91% mIoU
17.76x less energy

than ANN
DDD17, DSEC Relies on event data (no image frames)

SpikeFPN79 0.477 mAP Energy-efficient
GEN1 (automotive

event data)
Relies on direct training with SG

SUHD: Ultralow-latency

SNN97
30% mAP enhancement Ultralow latency N/A

Complex conversion, may rely on specific

datasets
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decoder architectures, where an encoder extracts high-level
semantic  features  and downsamples  spatial  resolution,  and
a  decoder  upsamples  to  restore  the  original  resolution,
generating  dense  pixel-wise  segmentation  masks47.  U-Net,
with  its  iconic  U-shaped  structure  and  prominent  skip
connections,  stands  as  a  prime  example  of  such  architec-
tures,  achieving  significant  success  particularly  in  medical
image segmentation140. SNNs have strategically adopted this
highly successful encoder-decoder paradigm, adapting it to
their  unique  characteristics  to  maximize  efficiency  and
performance. SNNs that adopt U-Net-like encoder-decoder
structures for semantic  segmentation are not merely direct
copies  but  rather  undergo  strategic “lightweight  modifica-
tions” and “spiking transformations” tailored to SNN char-
acteristics.

 Event-data optimized SNN-UNet
EvSegSNN86 is  a  bio-inspired  encoder-decoder  SNN archi-
tecture  explicitly  designed  with  a  U-Net  layout  and  opti-
mized for event data. It integrates parameterized leaky-inte-
grate-and-fire  (PLIF)  neurons  and  lightweight  modifica-
tions  to  the  U-Net  structure,  reducing depth and convolu-
tional  layers.  The  primary  motivation  is  to  effectively
process  high-temporal-resolution,  high-dynamic-range,
and  low-latency  asynchronous  spike  events  from  event
cameras,  reducing  parameter  count  while  maintaining
performance  for  real-time  applications.  These  methods
significantly  cut  down  parameters  (8.55  million  vs.  13.46
million  baseline).  On  the  DDD17  dataset,  EvSegSNN
achieved 45.54% MIoU and 89.90% accuracy86.

 Efficient spiking encoder-decoder networks
Spiking  encoder-decoder  network  (SpikingEDN)64 is  an
efficient  spiking  encoder-decoder  network  specifically
developed  for  large-scale  event-based  semantic  segmenta-
tion  tasks.  The  aim  is  to  optimize  spiking  operations  for
dense  prediction,  addressing  the  challenge  of  efficiently
processing  large-scale  event  data  while  achieving  competi-
tive  semantic  segmentation  performance.  Its  design
achieves  an  impressive  72.57%  MIoU  on  the  DDD17
dataset and 58.32% on the DSEC-Semantic dataset, demon-
strating  competitive  performance  against  state-of-the-art
ANNs with significantly reduced computational demands.

 Lightweight transformer-based SNN for segmentation
Spike-driven  lightweight  transformer-based  semantic
segmentation  network  (SLTNet)144 introduces  a  hierarchi-
cal  single-branch  SNN  with  an  encoder-decoder  frame-
work.  The  encoder  uses  spike-driven  convolutional  blocks
(SCBs) for local detail and spike-driven transformer blocks
(STBs) for long-range context. SLTNet aims to fully capital-
ize on SNNs’ strengths,  particularly the low computational
cost of its SCBs and STBs, while leveraging transformer-like
mechanisms  to  capture  global  context,  a  common  chal-
lenge for SNN-CNNs. A lightweight spiking decoder recov-
ers  spatial  details  via  feature  fusion,  and  its  spike-LD

module enables multi-scale feature capture. On the DDD17
and  DSEC-Semantic  datasets,  SLTNet  achieved  a  signifi-
cant  mIoU improvement,  reduced  energy  consumption  by
4.58 times, and boasted an inference speed of 114 FPS, with
substantially lower parameter counts and FLOPs compared
to existing methods.

 Spiking-UNet architectures
Chakravarty et al.81 proposed a modified U-net architecture
within  an  SNN  framework  tailored  to  operate  without
dense layers, producing segmented images as output. Dakic
et  al.82 utilized  a  Spiking-UNet  architecture  with  LIF
neurons  and constant  current  injection encoding  for  spec-
trum  occupancy  monitoring.  Li  et  al.89 introduced  a  Spik-
ing-UNet  for  image  processing,  combining  SNNs  with  the
U-Net architecture. These models adapt the highly success-
ful  U-Net  paradigm  to  SNNs  to  leverage  its  effective
encoder-decoder  structure  for  segmentation  tasks  while
aiming  for  SNN’s  characteristic  energy  efficiency  and  low
latency.  Chakravarty  et  al.’s  model  uses  approximated
gradients.  Dakic  et  al.’s  model  employs  constant  current
injection  encoding  and  BCE+Dice  loss,  achieving  a  10x
energy  reduction  compared  to  CNNs.  Li  et  al.’s  model
addresses  information propagation and training challenges
by  proposing  multi-threshold  spiking  neurons  and  a
conversion/fine-tuning  pipeline  with  connection-wise
normalization,  reducing  inference  time  by  approxi-
mately 90%.

 Transformer and NSNP-based SNNs for segmentation
Lei  et  al.88 introduced  Spike2Former,  an  efficient  spiking
Transformer  for  image  segmentation,  adapted  from
Mask2Former,  using  spike-driven  deformable  transformer
encoder  (SDTE)  and  spike-driven  mask  embedding
(SDME).  Sun  et  al.145 proposed  NSNPFormer,  a  Trans-
former-based  semantic  segmentation  method  integrating
the  convolutional  nonlinear  spiking  neural  P  (NSNP)
model.  These  architectures  seek  to  overcome  the  limita-
tions of traditional SNN-CNNs in capturing global context
and  long-range  dependencies,  essential  for  accurate  and
complex  image  segmentation.  They  also  aim  to  enhance
information  representation  and  training  stability  in  deep
SNNs. Spike2Former uses normalized integer LIF (NI-LIF)
neurons  for  training  stability  and  achieved  state-of-the-art
accuracy  across  ADE20K,  VOC2012,  and  CityScapes
datasets  with  significant  energy  efficiency.  NSNPFormer
uses  parallel  ConvNSNP  and  transformer  channels  with
residual connections for local and global feature extraction,
achieving  mIoU  scores  of  53.7%  on  ADE20K  and  58.06%
on Pascal Context datasets.

 Specialized SNNs for medical image segmentation
Li  et  al.146 developed  ODCS-NSNP,  a  deep  segmentation
network  for  optic  disc  and  cup  segmentation  based  on
nonlinear spiking neural P systems. Yang et al.138 proposed
SLP-Net for skin lesion segmentation, introducing a multi-
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channel  SNP-type  convolution  (MCConvSNP)  neuron
model  and  a  lightweight  asymmetric  encoder-decoder
design.  These  models  address  the  critical  need for  efficient
and  accurate  segmentation  in  medical  imaging,  where
precision  and  computational  efficiency  are  paramount  for
diagnostic tools. ODCS-NSNP features a densely connected
depth-separable network unit (SDN-Unit) and a redesigned
resampling  operator  (SRS-Operator)  to  improve  boundary
accuracy  and  multi-scale  feature  extraction.  SLP-Net
utilizes  EMFE,  MFF,  and  SCF  modules  for  feature  fusion,
achieving high accuracy with low parameters and FLOPs.

 Advanced spiking-SSegNet and analog SNN-UNet
Ye  et  al.80 proposed  Spiking-SSegNet,  a  U-shaped  full-
convolutional  semantic  segmentation network built  on  the
Spiking-NSNet model,  utilizing a hybrid attenuation factor
setting. Ma et al.91 proposed Analog Spiking U-Net (AS U-
Net),  which  integrates  Analog  CBAM  and  Spiking  ViT
modules  into  an  SNN  framework.  These  models  aim  to
improve mIoU with low latency and minimize information
loss,  respectively,  pushing  the  boundaries  of  SNN  perfor-
mance  in  semantic  segmentation  tasks.  Spiking-SSegNet
leverages the hybrid attenuation factor for improved mIoU
with low latency. AS U-Net adjusts neuron firing positions
to  transfer  information  as  floating-point  signals,  minimiz-
ing  information  loss,  and  achieved  high  accuracy  on
diabetic  retinal  vessel  segmentation  datasets,  demonstrat-
ing SOTA energy efficiency.

Although  SNNs  historically  faced  performance  chal-
lenges in dense prediction tasks like semantic segmentation,
the  advent  of  models  such  as  SpikingEDN  and  SLTNet,
through optimized architectural design and effective utiliza-
tion  of  event  data  properties,  have  achieved “competitive”
or  even “superior” performance  compared  to  state-of-the-
art  ANNs144.  This  marks  a  significant  maturation  of  SNNs
in  complex  visual  tasks,  indicating  broad  and  promising
prospects for their application in dense prediction fields.

 Hybrid SNN-ANN/transformer architectures in
semantic segmentation
To fully capitalize on the respective strengths of ANNs and
SNNs,  researchers  have  extensively  explored  hybrid  archi-
tectures for semantic segmentation. In these configurations,
SNNs are often employed in the encoder section to process
event  data  efficiently,  while  ANNs  are  utilized  in  the
decoder section for robust reconstruction tasks. This burgeoning
interest  in  hybrid  architectures  reflects  a  broader  trend
within  the  AI  landscape,  shifting  from  the  pursuit
of  a  singular,  optimal  model  towards  the  exploration
of  multi-paradigm,  heterogeneous  computing  solutions.

 Event-frame fusion hybrid framework
The  event-frame  fusion  hybrid  framework96 combines  an
SNN branch for  event  data  and an ANN branch for  frame
data  to  leverage  complementary  information  from  both
modalities.  Existing  event-based  semantic  segmentation

methods  frequently  fail  to  leverage  the  complementary
information  provided  by  both  event  and  frame  data.  A
single  event  stream  may  lack  crucial  visual  detail,  while
traditional frame data processing is computationally expen-
sive.  This  framework  addresses  these  limitations  by  inte-
grating  both  modalities  for  comprehensive  scene  under-
standing.  Specialized  modules  like  the  adaptive  temporal
weighting  (ATW)  injector  (dynamically  integrating  event
temporal  features  into frame features),  event-driven sparse
(EDS)  injector  (combining  sparse  event  data  with  rich
frame features), and channel selection fusion (CSF) module
(selective  feature  fusion)  facilitate  robust  interaction  and
information  exchange  between  branches,  aiming  for
comprehensive and accurate scene understanding.

 Hybrid spiking fully convolutional neural networks
The  hybrid  SFCNN  (spiking  fully  convolutional  neural
network)147 employs  a  hybrid  architecture  for  semantic
segmentation,  leveraging  binary  information  transmission
in  its  encoder.  This  architecture  seeks  to  combine  the
energy efficiency of SNNs with the robust learning capabili-
ties  of  FCNs  for  dense  prediction  tasks,  overcoming  the
limitations of pure SNNs in complex segmentation. It uses a
surrogate  gradient  method  for  direct  backpropagation
training.  On  the  VOC2012  dataset,  this  model  achieved  a
significant  mIoU  improvement  (almost  30%  higher  than
existing  spiking  FCNs),  demonstrating  the  feasibility  of
end-to-end optimization.

 NSNPFormer with transformer integration
NSNPFormer145 integrates  the  convolutional  nonlinear
spiking  neural  P  (NSNP)  model  with  transformers  for  se-
mantic  segmentation.  This  model  addresses  the  need  for
both local feature extraction (using ConvNSNP) and global
contextual information capture (using transformers), which
are  crucial  for  accurate  semantic  segmentation.  It  features
parallel ConvNSNP and transformer channels with residual
connections,  enabling  efficient  local  feature  extraction  and
global  contextual  information.  NSNPFormer  achieved  no-
table mIoU scores on ADE20K and pascal context datasets.

 Spiking-LSTM for hyperspectral image segmentation
The  Spiking-LSTM  model104 combines  SNN  and  LSTM
architectures  for  hyperspectral  image  segmentation.  This
architecture is designed to effectively capture spatio-tempo-
ral  information  inherent  in  hyperspectral  images,  enabling
accurate  early-stage  detection  of  plant  diseases  like  Sclero-
tinia, while maintaining energy efficiency. It replaces tradi-
tional  LSTM  gating  functions  with  spiking  neurons  and
uses  surrogate  gradients  for  backpropagation.  The  model
achieves  94.3%  mAP  for  Sclerotinia  detection  on  rapeseed
leaves,  extracting early infected areas.  It  demonstrates high
accuracy with significantly lower energy consumption (one-
fifth of traditional LSTM), highlighting its potential for effi-
cient disease detection.

This burgeoning interest in hybrid architectures reflects a
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broader  trend  within  the  AI  landscape,  shifting  from  the
pursuit  of  a  singular,  optimal  model  towards  the  explo-
ration  of  multi-paradigm,  heterogeneous  computing  solu-
tions.  Future  research  will  likely  witness  the  emergence  of
even  more  intricate  hybrid  models,  not  only  combining
different  neural  network  types  but  also  integrating  across
distinct  hardware  platforms.  For  instance,  SNN  compo-
nents  might  be  deployed  on  neuromorphic  chips,  while
ANN  components  reside  on  GPUs,  optimizing  overall
system performance.

 Multi-scale feature fusion and contextual dependency
handling
Multi-scale  representations  are  fundamental  for  accurately
segmenting  objects  of  varying  sizes  within  an  image.
Furthermore,  effectively  capturing long-range pixel  depen-
dencies  and  channel-wise  feature  similarities  is  crucial  for
enhancing pixel-level  region understanding and improving
the  overall  performance  of  segmentation  models.  SNNs
address  these  critical  challenges  in  semantic  segmentation
through several innovative approaches.

 SLTNet’s multi-scale modules

O (N)

SLTNet’s  Spike-LD  module144 introduces  a  novel  three-
branch structure that integrates dilated and depthwise sepa-
rable  convolutions.  Its  spike-driven  transformer  blocks
(STBs)  are  specifically  designed  to  bolster  long-range
contextual feature interactions. These modules are essential
for capturing multi-scale features across different receptive
fields and for efficiently processing and fusing information
at various scales,  which is  critical  for enhancing segmenta-
tion accuracy. STBs address the need for global spatial rela-
tionships,  a  weakness  of  traditional  CNNs.  The  spike-LD
module  enables  simultaneous  processing  and  fusion  of
information  at  various  scales.  STBs  use  a  spike-driven
multi-head  self-attention  module  (SDMSA)  to  efficiently
capture global  spatial  relationships,  augmented by a multi-
layer  perceptron  (MLP)  for  channel-wise  information.
SDMSA  effectively  reduces  computational  complexity  to

 (where N is the number of tokens/features), and the
entire  block  primarily  involves  floating-point  addition
operations,  leading  to  significant  reductions  in  energy
consumption and improved efficiency .

 Feature enhancement and aggregation
Within the decoder of  certain SNN segmentation architec-
tures,  a  feature  enhancement  (FE)  module  restores  fine
spatial details and integrates features from different hierar-
chical  levels.  EMSNet  (enhanced  multi-scale  networks)148

employs  an  integration  of  enhanced  regional  module
(IERM)  and  multi-scale  convolution  module  (MSCM).
These modules are crucial for producing refined segmenta-
tion  masks  by  integrating  fine-grained  details  from  early
layers  with  high-level  semantic  information,  and  for
robustly handling objects of varying scales. The FE module
contributes  to  a  more  refined  processing  of  multi-scale

information.  IERM  enhances  fused  feature  representation
through  dynamic  convolutional  structures,  while  MSCM
gathers  multi-scale  contextual  information  using
deformable  deep  convolutions  and  multi-branch  deep
asymmetric convolutions.

 Spiking neural P systems for multi-scale features
ODCS-NSNP146 introduces a redesigned resampling opera-
tor  (SRS-Operator)  based  on  ConvSNP  that  resamples
multiple  features  from  large  regions  into  multiple  output
features.  Spike-BRGNet125 includes  a  spiking  multi-scale
context  aggregation  (SMSCA)  module.  These  systems  aim
to capture long-term dependencies and preserve fine spatial
details,  improving  segmentation  boundary  accuracy,  espe-
cially for complex anatomical structures in medical images,
or  for  robust  scene  understanding  in  traffic  environments.
The SRS-Operator, based on ConvSNP, captures long-term
dependencies and preserves fine spatial details. The SMSCA
module  aggregates  features  from five  different  scales  using
average pooling and BN-LIF-Conv processing, enabling the
network  to  capture  global  contextual  information  and
multi-scale features for accurate segmentation.

Multi-scale feature fusion is a pivotal solution to the chal-
lenge  of  scale  variation  in  object  detection.  Traditional
CNNs,  often  limited  to  local  and  single-scale  features,  in-
herently suffer from restricted detection accuracy. SNNs are
actively  overcoming  these  limitations  by  adopting  success-
ful strategies from ANNs, such as dilated convolutions and
Transformer-like  mechanisms,  and  adapting  them  for
spike-based  computation144.  SLTNet’s  ablation  studies
confirm  the  complementary  roles  of  transformer-like  and
convolutional  blocks  in  SNNs,  which  collectively  enhance
performance144.  Given  SNNs’ inherent  capacity  to  process
spatio-temporal  information,  their  multi-scale  feature
fusion and contextual dependency handling extend beyond
mere spatial dimensions to integrate information across the
temporal  axis.  This  ability  is  particularly  advantageous
for  understanding  semantic  changes  in  dynamic  scenes
(e.g.,  the  movement  of  obstacles  in  autonomous  driving),
potentially enabling SNNs to provide more precise and real-
time  detection  of  moving  objects  than  traditional  ANNs.

 Learning algorithms and training
strategies for SNNs
The  training  of  SNNs  presents  one  of  the  most  significant
challenges  for  their  widespread  adoption,  primarily  due  to
the inherent discrete and non-differentiable nature of spike
generation,  which  renders  traditional  gradient-based  opti-
mization methods,  such as  backpropagation,  directly  inap-
plicable.  To  overcome  these  fundamental  difficulties,  a
diverse  array  of  innovative  learning  algorithms  and  train-
ing strategies are developed.

 Surrogate gradient methods
The  core  challenge  in  training  SNNs  with  gradient-based
methods stems from the spike generation function, which is
typically  a  Heaviside  step  function.  This  function  can  be
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defined as 

S (Vm) = H (Vm − Vth) =

{
1 if Vm ≥ Vth

0 if Vm < Vth
. (5)

dS/dVm

Vm = Vth

The derivative of the heaviside function, , is zero
everywhere  except  at  the  threshold ,  where  it  is
undefined (an impulse or dirac delta function).  This  prop-
erty  effectively  blocks  gradient  propagation  during  back-
propagation.  To  circumvent  this  issue,  surrogate  gradient
(SG) methods have been proposed150−151. The central idea of
SG  is  to  approximate  the  non-differentiable  derivative  of
the heaviside function with a continuous and differentiable
function  during  the  backward  pass  (gradient  calculation),

while keeping the forward pass (spike generation) intact.

dS/dVm

σ' (Vm)

Specifically, for the backward pass, instead of computing
, a smooth, differentiable surrogate derivative func-

tion  is used:
 

∂L
∂Vm

=
∂L
∂S

· σ' (Vm) , (6)

L
σ' (Vm)

where  is  the  loss  function.  Common  choices  for  the
surrogate derivative function  include152:

σ' (Vm)

1)  Rectangular  (e.g.,  identity  function  for  a  limited
range): simplest approximation, where  is a constant
or  linear  function  within  a  narrow  window  around  the
threshold and zero elsewhere.

 

Table 3 | Key SNN architectures for semantic segmentation.
 

Architecture type Specific model name Quantitative metrics Energy efficiency Relevant datasets Limitations / Challenges

Pure SNN

EvSegSNN86
45.54% MIoU, 89.90%

Accuracy
Reduced parameters DDD17

Higher average firing rate than ideal

sparse SNNs

SpikingEDN64

72.57% MIoU (DDD17),

58.32% MIoU (DSEC-

Semantic)

Reduced

computational

resources

DDD17, DSEC-Semantic
Training stability, generalization on

complex scenes

Spiking-UNet (Seg)81 99% DSC N/A
EM segmentation 2015,

Data Science Bowl 2018
Encoding real-life datasets is difficult

Spiking-UNet

(Spectrum)82
Similar TPr to CNN

10x energy reduction

vs CNN
Spectrum monitoring Optimization process intricate

Spiking-UNet (Multi-

threshold)89
Comparable to non-spiking

U-Net

90% inference time

reduction
N/A

Complex to determine optimal

thresholds, may overfit

Early SNN

(Unsupervised)114
Basic pattern classification N/A N/A Limited to simple tasks, fixed parameters

Spiking-SSegNet80
43.2% mIoU (PASCAL

VOC2012), 53.4% mIoU

(DDD17)

Low latency (2 time

steps)
PASCAL VOC2012, DDD17 No explicit limitations mentioned

Hybrid SNN

Event-frame fusion

Hybrid framework149
Improved accuracy Improved efficiency N/A

Complex training strategies, increased

computational cost

Hybrid SFCNN147
30% mIoU improvement over

SNN FCNs
N/A VOC2012

Training difficulty persists, performance

needs improvement

NSNPFormer145
53.7% mIoU (ADE20K),

58.06% mIoU (Pascal

Context)

N/A ADE20K, pascal context
Relies on ResNet backbone, limited to

specific datasets

Spiking-LSTM104 94.3% mAP

1/5th of

conventional LSTM

energy

Rapeseed leaves

(Sclerotinia)

Requires multiple simulation steps, may

not exceed 90% mAP

Attention mechanism or

transformer-based SNNs

Spike2Former88 SOTA accuracy 5.0x-6.6x efficiency
ADE20K, VOC2012,

CityScapes

Still underperforms ANNs in complex

tasks, challenges in deep S-ViTs

SLTNet144
Significant mIoU

improvement

4.58x energy

reduction, 114 FPS
DDD17, DSEC-semantic

Lacks visual detail, computation can be

expensive or rely on auxiliary images

Analog spiking U-Net

(AS U-Net)91
90.4% mIoU, 98.3% PixAcc

SOTA energy

efficiency

Diabetic retinal vessel

segmentation
No explicit limitations mentioned

Multi-scale feature fusion

SLP-Net138 93.87% Acc, 88.21% DSC

Low parameters

(0.1M), fast

processing

ISIC2018 (skin lesion)

Asymmetric design may cause

information loss, relies on supervised

data

ODCS-NSNP146
0.9817 Dice (OD), 0.9859

Dice (OC) (RIM-ONE-r3)
N/A

RIM-ONE-r3, Drishti-GS,

REFUGE
No explicit limitations mentioned
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σ' (x) = σ (x) (1− σ (x))
2) Sigmoid derivative: the derivative of the sigmoid func-

tion, , provides a bell-shaped curve.

Vm Vth

3)  Arctan  derivative:  a  widely  used  and  effective  surro-
gate  gradient  function  is  the  derivative  of  the  arctangent
function. For a membrane potential  and threshold ,
a common form is 

σ' (Vm) =
1
π

1

1+
(
Vm − μ

α

)2 , (7)

μ Vth αwhere  is typically set to , and  is a scaling factor that
controls  the  width  of  the  peak.  This  function  exhibits  a
smooth,  bell-shaped  peak  around  the  threshold,  allowing
gradients  to  propagate  effectively  when  the  neuron’s
membrane  potential  is  close  to  firing.  As  the  potential
moves  away  from  the  threshold,  the  gradient  smoothly
decays  to  zero,  preventing  issues  like  vanishing  or  explod-
ing gradients.

4)  Piecewise  exponential  (PiecewiseExp)  and  Gaussian
error:  Zhang  et  al.104 compared  PiecewiseExp  and  Erf  as
surrogate  gradient  functions  for  training  Spiking-LSTM,
finding  PiecewiseExp  to  consistently  yield  better  detection
accuracy and stability.

5)  Evolutionary  asymptotic  function  (EvAF):  Wang  et
al.125 introduced  EvAF  as  a  dynamic  surrogate  gradient
function  that  replaces  infinite  gradient  values  with  real
numbers,  allowing  effective  weight  updates  during  initial
training  and  improving  accuracy  in  backward  gradient
computation.

Recent  works  extensively  employing  surrogate  gradient
methods  include  direct  training  of  deep  SNNs  for  object
detection123−124, SpikeFPN79, SFDNet119, LT-SNN with Sepa-
rate  Gradient  Path85,  SUHD97,  and  Hybrid  SFCNN  for
semantic  segmentation147.  Chakravarty  et  al.81 explored
modern backpropagation techniques  in  SNNs,  focusing on
surrogate  or  approximate  gradient  methods  to  overcome
non-differentiable  functions.  Lei  et  al.88 employed  surro-
gate  gradients  to  approximate  derivatives  of  non-differen-
tiable  spike  functions,  enabling  training  of  complex  SNN
architectures  for  image  segmentation.  Ye  et  al.80 used
spatio-temporal  backpropagation  (STBP)  for  direct  SNN
training,  fusing  spatial  and  temporal  domains  and
addressing  non-differentiability  with  triangular  surrogate
gradients.

SG methods enable SNNs to be trained using established
deep  learning  frameworks  like  Backpropagation  Through
Time  (BPTT)153−155 or  Spatio-Temporal  BackproPagation
(STBP)156−157,  thus  overcoming  a  core  impediment  to  deep
SNN  adoption.  While  practical,  SGs  are  approximations,
sometimes leading to accuracy degradation or convergence
issues.  Future  research  aims  to  develop  more  precise  and
efficient  SG  functions  or  gradient-free  methods  to  balance
performance and biological realism.

 Spiking batch normalization
Batch normalization (BN)158 has been instrumental in stabi-
lizing  and  accelerating  deep  ANN  training,  improving

convergence  and  generalization.  However,  its  direct  appli-
cation  to  SNNs  poses  significant  challenges  due  to  the
sparse  and discrete  nature  of  SNN activations  (spikes)  and
the complex dynamics of membrane potentials. Traditional
BN, which normalizes  activations to have a  mean of  0 and
variance  of  1,  can  cause  membrane  potentials  to  become
excessively high or low, disrupting spike firing patterns and
leading  to “dead  neurons” (neurons  that  never  fire)  or
“bursting neurons” (neurons that fire too frequently)159.

Vm

To  mitigate  these  issues,  threshold-dependent  batch
normalization (tdBN) was specifically designed for SNNs159.
The  core  principle  of  tdBN  is  to  normalize  the  membrane
potential  of neurons not to a fixed mean and variance,  but
relative  to  their  firing  threshold.  This  ensures  that  the
membrane  potentials  are  kept  within  an  optimal  range,
allowing  for  stable  and  balanced  spike  activity.  The  tdBN
operation for a membrane potential  can be formulated
as: 

V̂m = γ
Vm − μB

σB
+ β , (8)

μB σB
Vm γ β

where  and  are  the  batch  mean  and  standard  devia-
tion of ,  and  and  are  learnable  scaling  and shifting
parameters, similar to conventional BN. However, in tdBN,
these  parameters  or  the  normalization  targets  are  dynami-
cally  adjusted  based  on  the  neuron’s  threshold  or  desired
firing rate. For instance, tdBN can normalize the membrane
potential such that it fluctuates around the neuron’s specific
firing  threshold,  thereby  stabilizing  spike  generation.  This
customized normalization helps maintain appropriate spik-
ing activity levels across the network, preventing issues like
vanishing or exploding gradients and significantly improv-
ing  the  training  stability  and  performance  of  large-scale
deep SNNs.

Recent  works  that  employ  tdBN  include  spiking-
YOLOX77,  which  integrates  learnable  decay  parameters
along  with  tdBN  for  computational  efficiency.  Zhang  et
al.79’s  SpikeFPN  utilizes  an  adaptive  threshold  mechanism
for  stable  training.  Yu  et  al.134 employ  tdBN  in  their  Spik-
ingViT model to ensure stable pulse signal propagation. Fan
et al.119 introduced separated batch normalization (SeBN) in
SFDNet,  which  normalizes  feature  maps  independently
across  multiple  time  steps  and  optimizes  integration  with
residual  structures  to  capture  temporal  dynamics  more
effectively.  Li  et  al.89 proposed  a  connection-wise  normal-
ization  method  for  Spiking-UNet  to  prevent  inconsistent
firing rates in skip connections, ensuring accurate informa-
tion  representation  by  normalizing  weights  based  on  scale
factors.  Lei  et  al.88 addressed  training  stability  in  complex
SNN  architectures  by  proposing  Normalized  Integer  LIF
(NI-LIF)  neurons,  which  normalize  integer  activations
during training to ensure precise feature representation and
mitigate quantization error.

The  development  of  tdBN  exemplifies  a  crucial  trend:
instead  of  merely  porting  successful  ANN  techniques  to
SNNs, researchers are carefully adapting them to align with
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SNNs’ unique  computational  mechanisms.  This  tailored
approach  effectively  addresses  SNN-specific  training
hurdles. tdBN, alongside surrogate gradient methods, forms
a  critical  dual  pillar  supporting  the  resolution  of  SNNs’
training  complexity,  underscoring  the  necessity  of
multi-faceted,  systemic  solutions  rather  than  relying  on  a
singular algorithmic breakthrough.

 Other training optimization techniques
Beyond  surrogate  gradients  and  tdBN,  research  is  actively
exploring  a  variety  of  other  training  optimization  tech-
niques to further enhance SNN performance and stability:

 ANN-to-SNN conversion
ANN-to-SNN conversion is a widely adopted training strat-
egy  that  involves  first  training  a  high-performing  tradi-
tional  ANN  with  standard  backpropagation,  and  then
converting its weights and activations into an SNN160.  This
method leverages the maturity and robust training capabili-
ties  of  ANNs,  though  it  can  incur  some  accuracy  loss  and
increased SNN inference time for complex tasks. Key tech-
niques  include  weight  normalization,  which  scales  weights
to  maximize  firing  rates  in  the  SNN  after  conversion,  and
threshold  calibration,  which  adjusts  neuron  thresholds  to
match  the  dynamic  range  of  ANN  activations.  Examples
include early conversion for energy-efficient object recogni-
tion115,  Spiking-YOLO  for  mobile  robots102,  LiDAR-based
3D  object  detection95,  sparse  compressed  SNN
accelerators101,  spike  calibration161 and  bistable  integrate-
and-fire neurons87. Spiking-UNet89 adopts a conversion and
fine-tuning  pipeline,  leveraging  pre-trained  U-Net  models
to  reduce  time  steps  while  preserving  performance.  Lei  et
al.88 address  challenges  in  complex  SNN  architectures  by
normalizing integer spiking neurons during conversion. Ye
et  al.80 introduce  a  transfer  learning  approach  for  Spiking-
SSegNet,  where  pre-trained  Spiking-NSNet  weights  are
fine-tuned  for  semantic  segmentation,  improving  perfor-
mance and reducing training costs.

 Event-driven backpropagation
This approach aims for higher biological fidelity by directly
propagating  errors  through  discrete  spike  events,  rather
than  relying  on  surrogate  gradients162−165.  This  typically
involves  more  complex  theoretical  frameworks,  such  as
event-based  error  propagation  rules  or  credit  assignment
mechanisms sensitive  to  spike timings.  While  conceptually
appealing for its biological realism, its implementation and
training remain more intricate than SG methods.

 Hardware-aware training
As  neuromorphic  hardware  matures,  training  strategies
increasingly  incorporate  hardware-specific  constraints  and
advantages.  This  involves  designing  algorithms  optimized
for  the  unique  parallel  processing,  memory  architectures,
and  communication  mechanisms  of  neuromorphic  chips

(e.g.,  Intel  Loihi69,  IBM TrueNorth166),  thereby maximizing
SNNs’ potential on these specialized platforms.

 Recurrent SNNs and backpropagation through time
(BPTT)
For tasks requiring sequence processing or memory, recur-
rent  SNNs  (RSNNs)  are  utilized.  Training  RSNNs  often
involves  BPTT,  where  gradients  are  unrolled  over  time.
While powerful, this can be computationally expensive and
suffer from vanishing/exploding gradients, similar to recur-
rent  ANNs,  requiring  careful  regularization  and  optimiza-
tion153.  Chakravarty  et  al.81 highlight  spike-timing-depen-
dent  plasticity  (STDP)  and various  backpropagation forms
adapted  for  non-differentiable  spike  functions.  Ye  et  al.80

introduce a temporal correlated loss (TC) algorithm to opti-
mize SNN direct training, ensuring faster convergence and
improved  robustness  by  adjusting  neuronal  membrane
potential distribution at each time step.

 Loss functions for SNNs
Various loss functions are employed to optimize SNN train-
ing  for  specific  tasks.  Chakravarty  et  al.81 implement  a
modified  U-net  architecture  that  uses  surrogate/approxi-
mate  gradient  methods  to  calculate  gradients  for  the  error
function.  Dakic  et  al.82 employ  a  combined  Binary  Cross
Entropy (BCE) and Dice loss function for image segmenta-
tion tasks. Li et al.96 utilize the LCE (total BCE loss) for their
event-frame  fusion  framework.  Lei  et  al.88 use  categorical
cross-entropy loss to fine-tune converted SNN models. Sun
et  al.145 employ  a  cross-entropy  loss  function  to  optimize
ODCS-NSNP.  Yang  et  al.138 utilize  accuracy,  sensitivity,
specificity, jaccard, and dice similarity coefficient as evalua-
tion  metrics,  with  the  final  loss  being  a  weighted  sum  of
losses from different stages. Wang et al.125 introduce a novel
boundary region-guided loss function, combined with regu-
lar  and  early-stage  cross-entropy  semantic  losses,  to  opti-
mize  the  network.  Zhang  et  al.104 use  a  weighted  cross-
entropy  loss  function  to  address  data  imbalance  in  Sclero-
tinia detection.

The intricate nature of SNN training necessitates a multi-
pronged  research  effort.  The  aforementioned  methods,
ranging  from  biologically  inspired  rules  to  clever  adapta-
tions of existing deep learning techniques, collectively form
a strategic response to SNNs’ training challenges. This flexi-
bility  and  innovation  are  crucial  for  overcoming  technical
hurdles.  Importantly,  these  methods  are  not  mutually
exclusive but often complementary, jointly accelerating the
advancement of  SNN training technology.  While  ANN-to-
SNN conversion offers a pragmatic path, its inherent accu-
racy  loss  and  increased  inference  timesteps  limit  its  long-
term  viability  for  achieving  cutting-edge  performance.
Consequently,  the  prevailing  research  trend  is  gravitating
towards more efficient, end-to-end direct training methods
that can fully leverage the intrinsic advantages of SNNs.
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 Current capabilities, challenges, and
future outlook
SNNs  have  demonstrated  immense  potential  in  image
object detection and semantic segmentation, particularly in
terms  of  energy  efficiency  and  real-time  processing.  This
positions them as a pivotal technology for edge computing
and  autonomous  systems  operating  under  strict  resource
constraints.

 Current performance benchmarks and application
potential
In  terms  of  architectural  innovation,  SNNs  have  made
significant  strides.  The  evolution  from  rudimentary  S-
CNNs  to  sophisticated  hybrid  SNN-ANN  models,  and
further  to  the  integration  of  transformer-based  and  atten-
tion  mechanisms,  reflects  a  continuous  exploration  by
researchers  for  more  efficient  and  accurate  architectures.
Hybrid  architectures,  such  as  the  general  Hybrid-SNN
designs  and  the  DT-LIF  Based  SSD,  effectively  bridge  the
performance  gap  of  pure  SNNs  by  synergistically  combin-
ing SNNs’ energy efficiency with ANNs’ powerful represen-
tation capabilities.

Despite  SNNs  having  historically  lagged  behind  DNNs
on  certain  complex  tasks,  the  performance  disparity  is
rapidly diminishing. On specific benchmarks (e.g., Prophe-
see Gen1 dataset), SNNs have even achieved results compa-
rable  to  or  surpassing  ANNs,  while  concurrently  demon-
strating substantial reductions in energy consumption. This
swift  improvement  in  SNN  performance,  particularly  the
trend of “disappearing performance differences”, signifies a
critical transition in SNN technology from purely theoreti-
cal  research  to  practical  viability.  This  makes  SNNs  an
increasingly  competitive  and  compelling  choice  in  scenar-
ios with stringent energy efficiency requirements.

The  event-driven  nature  of  SNNs  makes  them  highly
compatible  with  specialized  neuromorphic  chips,  such  as
Intel  Loihi69 and  IBM  TrueNorth166,  enabling  ultra-low
power consumption and minimal latency. This capability is
indispensable  for  edge  AI  applications.  The  synergistic
interplay between hardware and algorithms is a key driving
force  behind  SNNs’ performance  enhancements  and  the
expansion  of  their  application  potential.  While  SNNs  may
not  yet  universally  outperform  ANNs  across  all  general
visual  tasks,  their  advantages  are  significantly  amplified  in
challenging  specific  scenarios,  including  high-speed
processing, low-light conditions, and edge deployments. In
these  contexts,  their  integration  with  event  cameras  and
neuromorphic hardware provides a unique and compelling
solution  for  addressing  persistent “pain  points” in  tradi-
tional AI systems.

 Performance benchmarks for object detection
Significant  progress  has  been  made  in  SNN-based  object
detection.  Spiking  CenterNet78 achieves  2.6%  higher  mAP
than  comparable  SNNs  with  better  power  efficiency.

SpikeFPN79 attains  0.477  mAP  on  GEN1,  demonstrating
energy  efficiency  for  automotive  event  data.  SpikiLi95

achieves  CNN-comparable  precision  with  3ms  inference
latency  for  LiDAR-based  3D  object  detection.  The  multi-
patch localization SNN122 yields 98.9% accuracy with 0.336
W  power  and  20FPS  for  infrared  drone  detection.  The
sparse  compressed  SNN  accelerator101 achieves  26x  model
size  reduction  and  1.05  mJ/frame  energy  efficiency.  EMS-
YOLO123 shows  ANN-comparable  performance  with  5.83x
less  energy  and  4  timesteps.  Directly  trained  high-perfor-
mance  SNNs124 solve  gradient  vanishing  and  achieve  high
accuracy,  with  spiking  RetinaNet  reaching  0.296  mAP  on
MSCOCO.  SUHD97 reduces  timesteps  by  750x  and
enhances  mAP  by  30%,  providing  ultralow  latency.  BN-
SNN with  BIF  neurons87 achieves  0.476  mAP@0.5  on  MS-
COCO  and  0.591  on  GEN1  with  reduced  temporal  steps.
SpikingYOLOX77 achieves  state-of-the-art  performance
among  SNN-based  methods.  SFDNet119 achieves  SOTA
low-power  and  robust  RGB-event  fusion-based  object
detection.  Spike-BRGNet125 achieves  SOTA  results  on
DDD17  and  DSEC  datasets,  outperforming  existing  SNN
methods  by  +1.57%  and  +1.91%  mIoU  respectively,  while
consuming 17.76x less energy than ANN-based models.

 Performance benchmarks for semantic segmentation
In  semantic  segmentation,  SNNs  have  also  made  notable
advances.  EvSegSNN86 achieves  45.54%  MIoU  and  89.90%
accuracy  on  the  DDD17  dataset  with  reduced  parameters.
SpikingEDN64 achieves  72.57%  MIoU  on  DDD17  and
58.32%  on  DSEC-Semantic,  demonstrating  competitive
performance  with  reduced  computational  demands.
SLTNet144 achieves  significant  mIoU  improvement,  4.58x
energy  reduction,  and 114  FPS for  semantic  segmentation.
The Hybrid SFCNN147 achieves an mIoU almost 30% higher
than  existing  spiking  FCNs  on  VOC2012.  Chakravarty  et
al.81 achieve DSC close to 99% on “EM segmentation 2015”
and “Data  Science  Bowl  2018” for  image  segmentation.
Dakic  et  al.82 demonstrate  similar  performance  to  CNNs
while  significantly  outperforming  energy  detection  meth-
ods in spectrum monitoring.  Li  et  al.89 achieve comparable
performance  to  non-spiking  U-Net  models,  surpassing
existing  SNN  methods,  and  reduce  inference  time  by
approximately  90%.  Lei  et  al.88 achieve  state-of-the-art
performance  on  ADE20K,  VOC2012,  and  CityScapes
datasets, highlighting SNN potential for complex segmenta-
tion  with  5.0x-6.6x  efficiency.  Sun  et  al.145 achieve  mIoU
scores of 53.7% on ADE20K and 58.06% on pascal context.
Li  et  al.146 achieve  average  dice  scores  of  0.9817  (OD)  and
0.9859  (OC)  on  RIM-ONE-r3,  0.9673  (OD)  and  0.9317
(OC) on Drishti-GS, and 0.9687 (OD) and 0.9190 (OC) on
REFUGE. Yang et al.138 achieve high acc (93.87%) and DSC
(88.21%)  on  ISIC2018,  demonstrating  superior  perfor-
mance  and  fast  processing  speed.  Ye  et  al.80 achieve  43.2%
mIoU on PASCAL VOC2012 and 53.4% mIoU on DDD17,
with only 2 time steps. Ma et al.91 achieve 90.4% mIoU and
98.3%  PixAcc  on  diabetic  retinal  vessel  segmentation
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datasets,  demonstrating  SOTA  energy  efficiency.  Zhang  et
al.104 achieve  94.3%  mAP  for  Sclerotinia  detection,  with
high accuracy and low energy consumption.

The  synergistic  interplay  between  hardware  and  algo-
rithms  is  a  key  driving  force  behind  SNNs’ performance
enhancements  and  the  expansion  of  their  application
potential.  While SNNs may not yet  universally outperform
ANNs  across  all  general  visual  tasks,  their  advantages  are
significantly  amplified  in  challenging  specific  scenarios,
including  high-speed  processing,  low-light  conditions,  and
edge deployments.  In these contexts,  their integration with
event  cameras  and  neuromorphic  hardware  provides  a
unique  and  compelling  solution  for  addressing  persistent
“pain points” in traditional AI systems.

 Synergy with optoelectronic sensors and neuromorphic
hardware
To  emphasize  the  unique  position  of  SNNs  within  intelli-
gent  opto-electronic  systems,  this  subsection  discusses  the
synergy between SNNs, optoelectronic sensors,  and neuro-
morphic  hardware.  SNNs  are  inherently  well-suited  to
process  data  from  event-driven  optoelectronic  sensors,
which  generate  sparse,  asynchronous  data  streams  that
mirror the spiking nature of SNNs. This natural compatibil-
ity positions SNNs as ideal  candidates for low-power,  real-
time perception in scenarios where traditional frame-based
systems struggle.

We explicitly outline the critical functional requirements
for SNN-compatible sensors:

1)  High  temporal  resolution  and  low  latency:  These
sensors  must  efficiently  capture  fast-changing  dynamic
scenes  without  motion  blur,  providing  data  streams  that
match  the  ability  of  SNNs  to  process  information  with
minimal delay.

2)  Event-driven/asynchronous  data  output:  The  sensors
should  fundamentally  align  with  the  SNN  computational
paradigm  by  only  transmitting  data  (events/spikes)  when
changes  occur,  avoiding  redundant  information  transmis-
sion.

3) High dynamic range and low power consumption: To
meet the demands of edge AI devices, these sensors need to
operate effectively in challenging lighting conditions (from
dim  to  bright  environments)  while  consuming  minimal
power.

These  sensor  characteristics  perfectly  complement  the
design  philosophy  of  neuromorphic  hardware  (e.g.,  Intel
Loihi), which is optimized for sparse, event-driven compu-
tation.  The  synergy  allows  for  the  creation  of  highly  effi-
cient,  end-to-end  perception-and-computation  systems
where data is  processed directly in the spike domain,  from
sensor  to  network,  enabling  unparalleled  energy  savings
and real-time responsiveness for intelligent opto- electronics.

 Key challenges ahead
Despite  the  remarkable  progress,  SNNs  in  image  object
detection and semantic segmentation still face several critical

challenges that need to be addressed for broader adoption.

 Training difficulty
The inherent discrete and non-differentiable nature of spike
operations makes SNN training substantially more complex
than  ANNs.  Issues  like  vanishing/exploding  gradients
persist, particularly in very large and deep SNNs, requiring
considerable  optimization81.  The  challenges  include  ensur-
ing  high-fidelity  information  propagation,  formulating
effective  training  strategies89,  and  managing  complex
neuronal  dynamics  and  binary  activations  that  lead  to
performance  degradation  and  non-convergence88.  SNNs
often struggle with training efficiency due to non-differen-
tiable  spikes  and  high  memory  overhead,  hindering  deep
SNN training138.

 Performance gap and generalization ability
While  SNNs  have  shown  excellent  results  on  specific
datasets,  their  generalization  ability  and  absolute  perfor-
mance  on  larger,  more  diverse,  and  complex  real-world
datasets still need to improve to fully match state-of-the-art
ANNs.  This  disparity  currently  limits  the  widespread
deployment  of  SNNs  in  general-purpose  object  detection
and semantic segmentation tasks. Existing SNN models for
image  segmentation  tend  to  perform  poorly,  often  under-
performing  ANNs88.  Transformer  models  may  cause  local
information loss,  while CNNs struggle with global context,
posing  challenges  for  semantic  segmentation  accuracy145.
SNNs  generally  struggle  with  generalization  on  small
datasets compared to pre-trained models138.

 Hardware support and commercialization
Despite  the  promising  future  of  neuromorphic  hardware,
its commercial availability and widespread adoption remain
limited. This constraint prevents SNNs from fully realizing
their  energy  efficiency  advantages  when  executed  on
conventional GPU/CPU platforms, thereby hindering their
broader  real-world  application.  Implementing  efficient
training  algorithms  for  specialized  neuromorphic  proces-
sors  remains  a  key  challenge82.  Deploying  complex  SNN
architectures  on  neuromorphic  chips  requires  significant
computational  resources  and memory,  making it  challeng-
ing  for  real-time  applications91.  The  synergistic  interplay
between  hardware  and  algorithms  is  a  key  driving  force
behind  SNNs’ performance  enhancements  and  the  expan-
sion of their application potential.

 Information fidelity in spatio-temporal event streams
When  SNNs  process  sparse  event  data,  there  is  a  risk  of
information  loss,  especially  within  discrete  binary  activa-
tions  and  complex  spatio-temporal  dynamics167.  This  can
adversely  affect  the  model’s  accuracy  and  its  capacity  to
capture  fine-grained  details  necessary  for  pixel-level  tasks
like  semantic  segmentation.  Creating  a  universal  encoder-
decoder  for  SNNs  is  difficult  for  complex  and  RGB
datasets81.  Inconsistent  spike  firing  rates  in  skip  connec-
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tions  due  to  data  distribution  variability  can  lead  to  infor-
mation  loss89.  Spike  degradation  phenomenon  occurs  in
Mask2Former’s deformable attention and mask embedding
layers,  leading  to  information  loss  and  reduced  firing
rates88. Traditional CNNs struggle to capture global features
due to kernel size limitations, and Transformer models may
lose local information145.

 Long Simulation Timesteps
Many  SNNs,  especially  those  relying  on  rate  coding  or
ANN-to-SNN  conversion,  require  a  significant  number  of
simulation  timesteps  to  accumulate  sufficient  information
for accurate inference. This can negate some of the latency
advantages and increase computational overhead in practi-
cal  scenarios88.  SNNs  often  require  multiple  time  steps  for
neuron accumulation before firing, which increases compu-
tational  delay138.  ANN-to-SNN  conversion  requires  a  large
number of time-steps for forward inference, leading to high
computational  redundancy80.  Spiking-LSTM  necessitates
multiple  simulation  steps  to  achieve  desired  spike  firing
rates, increasing time, training, and application costs104.

These challenges are not isolated but rather deeply inter-
connected. Training difficulty directly impacts SNNs’ perfor-
mance  and  generalization  capabilities.  Concurrently,
limited  neuromorphic  hardware  support  restricts  the  full
exploitation  of  SNNs’ energy  efficiency  benefits,  which,  in
turn, constrains their practical adoption and the generation
of  large-scale  datasets,  further  impeding generalization.  To
achieve  a  breakthrough  in  SNN  technology,  simultaneous
advancements  across  multiple  interconnected  layers
are  imperative:  algorithms  (e.g.,  training  algorithms,
neuron  models),  models  (e.g.,  architectural  design),  and
hardware  (e.g.,  co-design,  commercialization).  Addressing
these  systemic  bottlenecks  comprehensively  is  critical
for SNNs’ maturation.

 Future research directions
Future  research  in  Spiking  Neural  Networks  for  image
object  detection  and  semantic  segmentation  will  predomi-
nantly  concentrate  on  several  pivotal  areas  to  overcome
existing  challenges  and  fully  unlock  their  transformative
potential.  Additionally,  beyond vision tasks,  SNNs demon-
strate  significant  potential  in  other  domains  such  as
robotics  (for  rapid  response  and  control),  autonomous
driving (for robust sensor fusion and decision-making), and
biomedical  signal  processing  (e.g.,  for  brain-computer
interfaces),  providing  relevant  citations  for  further  explo-
ration.  This  versatility  highlights  the  broad  applicability  of
SNN technology.

 Efficient and Scalable Training Algorithms
Continued  efforts  will  focus  on  developing  novel  learning
rules and optimization strategies to tackle inherent training
difficulties, aiming for stable and highly efficient training of
large-scale,  deep  SNNs.  This  includes  refining  surrogate
gradient  methods  (e.g.,  exploring  adaptive  or  learnable

surrogate  functions)  and  further  optimizing  Threshold-
Dependent  Batch  Normalization.  Additionally,  investigat-
ing  meta-learning  or  neural  architecture  search  (NAS)
specifically for SNNs could automate and optimize training
processes.  Online  optimization  of  learnable  thresholds  for
improved  hardware  compatibility  and  superior  perfor-
mance is a promising avenue85. Future research should also
focus  on  universal  encoder-decoder  frameworks  for  SNNs
capable of converting any RGB image into spiking domain
representations  with  high  fidelity81.  Extending  SNNs  to
dense  prediction  tasks  with  sophisticated  designs  focusing
on  reducing  information  loss88,  and  deploying  Spiking-
UNet  on  neuromorphic  chips  for  image  super-resolution89

are  also  crucial.  NSNPFormer  can  be  extended  to  other
vision  tasks  and  integrated  with  alternative  Transformer
backbones to enhance local information capture145.  Further
promotion of SNP application in attention mechanisms and
pre-training  models138,  and  exploring  deployment  on
neuromorphic  chips  for  Spiking-NSNet  and  Spiking-SSeg-
Net80 are also vital. Extending Spike-BRGNet to other fields
like  simultaneous  localization  and mapping,  and flow esti-
mation will broaden SNN applications125.

 Novel Neuron Models and Architectures for Optical
Perception
Research  will  persist  in  exploring  and  developing  more
advanced  neuron  models,  such  as  dynamic  threshold  LIF
(DT-LIF)  and  parameterized  LIF  (PLIF)  neurons.  These
models  enhance  adaptability  by  allowing  membrane
dynamics  and  thresholds  to  be  learned,  significantly
improving  inference  speed  and  accuracy,  particularly  in
deeper SNNs. Concurrently, new SNN architectures will be
designed  to  better  capture  and  process  spatio-temporal
information,  including  further  optimizing  convolutional
SNNs  (S-CNNs)  to  overcome  their  local  and  single-scale
feature limitations, and exploring more effective multi-scale
feature fusion mechanisms. Innovations in recurrent SNNs
for  temporal  reasoning  and  graph  SNNs  for  relational
learning  are  also  promising  avenues.  Specific  directions
include  dynamic  threshold  LIF  neurons  and  novel  fusion
architectures  for  multi-modal  optical  data  (e.g.,  event
streams + hyperspectral imaging).

 Deepened Hybrid Paradigm Integration
Further  research  will  explore  the  advanced  integration  of
SNNs  with  traditional  ANNs  and  state-of-the-art  models
like  Transformers.  This  approach  aims  to  synergistically
combine  SNNs’ energy  efficiency  and  temporal  processing
capabilities  (often  for  low-level  feature  extraction  from
event data) with ANNs’ high precision and robust training
(for  high-level  tasks  like  classification  and  regression),
thereby  achieving  an  optimal  balance  of  performance  and
energy  efficiency.  This  might  involve  developing  more
sophisticated  cross-modal  fusion  techniques  (e.g.,  event-
frame fusion) and dynamic switching mechanisms between
SNN  and  ANN  components  based  on  task  complexity  or

Zhang AG et al. Intell Opto-Electron 1, 250007 (2025) https://doi.org/10.29026/ioe.2025.250007

250007 (Page 21 of 27)

https://doi.org/10.29026/ioe.2025.250007


input characteristics.

 Hardware-algorithm co-design and commercialization
for intelligent optoelectronics
As neuromorphic chips continue to mature, the synergistic
co-design of SNN algorithms and specialized hardware will
become  increasingly  critical.  This  aims  to  fully  exploit
SNNs’ low  power  consumption  and  real-time  processing
potential  on  edge  devices.  Collaborative  efforts  between
academia  and  industry  will  focus  on  accelerating  the
commercialization and widespread adoption of  neuromor-
phic  hardware,  making  it  more  accessible  for  practical
applications. Research into hardware-aware neural architec-
ture  search  and  quantization  for  SNNs  will  also  be  vital.
This  also  discusses  specific  pathways  for  combining  algo-
rithmic  optimizations  (like  quantization-aware  training)
with the design of neuromorphic photonic chips to acceler-
ate commercialization.

 Optical computing for snns (neuromorphic photonics)
A burgeoning frontier in SNN research involves leveraging
optical  computing  for  neuromorphic  systems.  Optical
SNNs (OSNNs) exploit  the speed of  light  and the inherent
parallelism  of  photonic  integrated  circuits  to  potentially
overcome  the  bandwidth  and  energy  consumption  limita-
tions of electronic systems168. By encoding and transmitting
spikes as optical pulses, OSNNs offer ultra-high speed, low
power  consumption,  and  increased  connectivity,  which
could  lead  to  unprecedented  computational  densities169.
This  direction  aims  to  realize  SNNs  on  neuromorphic
photonic platforms, where neurons and synapses are imple-
mented  using  optical  components  like  vertical-cavity
surface  emitting  lasers  (VCSELs)  or  degenerate  optical
parametric  oscillators  (DOPOs)170.  Challenges  include
robust  optical  neuron  activation  functions,  efficient  light-
matter  interaction  for  synaptic  weights,  and  integration
with  existing  electronic  interfaces171−172.  However,  the
potential  for  massively  parallel,  high-throughput,  and
energy-efficient  SNNs  that  bypass  electrical  bottlenecks
makes neuromorphic photonics a highly promising avenue
for future SNN acceleration and deployment173−174.

 Benchmark datasets and standardization
The  establishment  of  more  comprehensive,  diverse,  and
challenging neuromorphic  datasets,  alongside unified eval-
uation  metrics  and  standards,  is  essential.  This  will  foster
fair  comparisons  among  different  SNN  models  and  algo-
rithms,  accelerating  progress  across  the  field.  Developing
benchmarks  that  specifically  emphasize  real-time  perfor-
mance, energy efficiency, and robustness to noisy or incom-
plete event data will be particularly valuable175.

 Robustness, interpretability, and explainability
As  SNNs  move  toward  safety-critical  applications  like
autonomous  driving,  enhancing  their  robustness  to  adver-

sarial  attacks176,  improving  their  interpretability  (under-
standing  neuron  behavior  and  spike  patterns)177−179,  and
providing  explainable  decisions  will  become  paramount
research areas.

 Biological plausibility and scalability
Striking a balance between biological realism and computa-
tional scalability remains a challenge. Future research might
explore  incorporating  more  complex  biological  mecha-
nisms  (e.g.,  dendritic  computation180,  neuromodulation181)
while  ensuring  the  models  remain  scalable  for  large-scale
real-world problems182.

These prospective research directions are not isolated but
intricately  interdependent.  For  instance,  innovations  in
novel  neuron  models  and  architectural  designs  lay  the
groundwork  for  more  efficient  training  algorithms.
Concurrently,  the  integration  of  hybrid  paradigms  capital-
izes  on  the  strengths  of  existing  ANNs  to  accelerate  SNN
adoption. Hardware-algorithm co-design is fundamental to
realizing SNNs’ ultimate potential, while robust benchmark
datasets are indispensable for advancing all research fronts.
The long-term evolution of SNNs is envisioned as a contin-
uous,  iterative,  and  convergent  process.  SNNs  are  unlikely
to entirely supplant ANNs but are poised to deliver optimal
solutions in specific, niche application scenarios, fostering a
complementary  coexistence  within  the  broader  AI  ecosys-
tem. The ultimate aspiration is to construct AI systems that
are  more  aligned with  biological  intelligence,  exceptionally
efficient, and remarkably versatile.
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