Zhang X M, Bao L X. Integrating hierarchical semantic networks with physical models for MRI reconstruction[J]. Opto-Electron Eng, 2025, 52(5): 250016. doi: 10.12086/oee.2025.250016
Citation: Zhang X M, Bao L X. Integrating hierarchical semantic networks with physical models for MRI reconstruction[J]. Opto-Electron Eng, 2025, 52(5): 250016. doi: 10.12086/oee.2025.250016

Integrating hierarchical semantic networks with physical models for MRI reconstruction

    Fund Project: 2023 Cognition and Intelligence National Key Laboratory Topic (COGOS-2023HE03), Natural Science Foundation of Fujian Province (2023J01471), Special Fund for Key Laboratory Construction Project of Fujian Province for Smart Agriculture and Forestry in Universities (KJG23033A), and Science and Technology Innovation Special Fund of Fujian Agricultural and Forestry University (KFB23159)
More Information
  • To address the challenge of prolonged acquisition times in magnetic resonance imaging (MRI), data-driven algorithms and the model integration have emerged as crucial approaches for achieving high-quality MRI reconstruction. However, existing methods predominantly focus on visual feature extraction while neglecting deep semantic information critical for robust reconstruction. To bridge this gap, this study proposes a model-driven architecture that synergistically combines hierarchical semantic networks with physical model networks, aiming to enhance reconstruction performance while maintaining computational efficiency. The architecture comprises four core modules: a context extraction module to capture rich contextual features and mitigate background interference; a multi-scale aggregation module integrating multi-scale information to preserve coarse-to-fine anatomical details; a semantic graph reasoning module to model semantic relationships for improved tissue differentiation and artifact suppression; a dual-scale attention module to enhance critical feature representation across different detail levels. This hierarchical and semantic-aware design effectively reduces aliasing artifacts and significantly improves image fidelity. Experimental results demonstrate that the proposed method outperforms state-of-the-art approaches in both quantitative metrics and visual quality across diverse datasets with varying sampling rates. For instance, in 4× radial acceleration experiments on the IXI dataset, our approach achieved a peak signal-to-noise ratio (PSNR) of 48.15 dB, surpassing the latest comparison algorithms by approximately 1.00 dB on average, while enabling higher acceleration rates and maintaining reliable reconstruction outcomes.
  • 加载中
  • [1] 张子建, 王天义, 徐欣, 等. 偏振激光照明对多层薄膜结构成像对比度影响[J]. 光电工程, 2023, 50(7): 230089. doi: 10.12086/oee.2023.230089

    CrossRef Google Scholar

    Zhang Z J, Wang T Y, Xu X, et al. Effect of polarized laser illumination on imaging contrast of multilayer thin film structure[J]. Opto-Electron Eng, 2023, 50(7): 230089. doi: 10.12086/oee.2023.230089

    CrossRef Google Scholar

    [2] 张子建, 徐欣, 王吉祥, 等. 光片荧光显微镜研究进展[J]. 光电工程, 2023, 50(5): 220045. doi: 10.12086/oee.2023.220045

    CrossRef Google Scholar

    Zhang Z J, Xu X, Wang J X, et al. Review of the development of light sheet fluorescence microscopy[J]. Opto-Electron Eng, 2023, 50(5): 220045. doi: 10.12086/oee.2023.220045

    CrossRef Google Scholar

    [3] Abraham E, Zhou J X, Liu Z W. Speckle structured illumination endoscopy with enhanced resolution at wide field of view and depth of field[J]. Opto-Electron Adv, 2023, 6(7): 220163. doi: 10.29026/oea.2023.220163

    CrossRef Google Scholar

    [4] 严福华. 深度学习MRI重建算法的临床应用和发展前景[J]. 磁共振成像, 2023, 14(5): 8−10. doi: 10.12015/issn.1674-8034.2023.05.002

    CrossRef Google Scholar

    Yan F H. The clinical application and development prospect of deep learning MRI reconstruction algorithm[J]. Chin J Magn Reson Imaging, 2023, 14(5): 8−10. doi: 10.12015/issn.1674-8034.2023.05.002

    CrossRef Google Scholar

    [5] Lustig M, Donoho D, Pauly J M. Sparse MRI: the application of compressed sensing for rapid MR imaging[J]. Magn Reson Med, 2007, 58(6): 1182−1195. doi: 10.1002/mrm.21391

    CrossRef Google Scholar

    [6] Liu J S, Qin C, Yaghoobi M. High-fidelity MRI reconstruction using adaptive spatial attention selection and deep data consistency prior[J]. IEEE Trans Comput Imaging, 2023, 9: 298−313. doi: 10.1109/TCI.2023.3258839

    CrossRef Google Scholar

    [7] Sandino C M, Cheng J Y, Chen F Y, et al. Compressed sensing: from research to clinical practice with deep neural networks: shortening scan times for magnetic resonance imaging[J]. IEEE Signal Process Mag, 2020, 37(1): 117−127. doi: 10.1109/MSP.2019.2950433

    CrossRef Google Scholar

    [8] Goujon A, Neumayer S, Bohra P, et al. A neural-network-based convex regularizer for inverse problems[J]. IEEE Trans Comput Imaging, 2023, 9: 781−795. doi: 10.1109/TCI.2023.3306100

    CrossRef Google Scholar

    [9] Hou R Z, Li F, Zhang G X. Truncated residual based plug-and-play ADMM algorithm for MRI reconstruction[J]. IEEE Trans Comput Imaging, 2022, 8: 96−108. doi: 10.1109/TCI.2022.3145187

    CrossRef Google Scholar

    [10] Xie J F, Zhang J, Zhang Y B, et al. PUERT: probabilistic under-sampling and explicable reconstruction network for CS-MRI[J]. IEEE J Sel Top Signal Process, 2022, 16(4): 737−749. doi: 10.1109/JSTSP.2022.3170654

    CrossRef Google Scholar

    [11] Li P, Chen W G, Ng M K. Compressive total variation for image reconstruction and restoration[J]. Comput Math Appl, 2020, 80(5): 874−893. doi: 10.1016/j.camwa.2020.05.006

    CrossRef Google Scholar

    [12] Xu H H, Jiang J W, Feng Y C, et al. Tensor completion via hybrid shallow-and-deep priors[J]. Appl Intell, 2023, 53(13): 17093−17114. doi: 10.1007/s10489-022-04331-4

    CrossRef Google Scholar

    [13] Sandilya M, Nirmala S R. Compressed sensing MRI reconstruction using convolutional dictionary learning and Laplacian prior[M]//Senjyu T, Mahalle P, Perumal T, et al. IOT with Smart Systems: Proceedings of ICTIS 2021, Volume 2. Singapore: Springer, 2022: 661–669. https://doi.org/10.1007/978-981-16-3945-6_65.

    Google Scholar

    [14] Zhang X M, Ma J W, Zhang H. Curvature-regularized manifold for seismic data interpolation[J]. Geophysics, 2023, 88(1): WA37−WA53. doi: 10.1190/geo2022-0002.1

    CrossRef Google Scholar

    [15] Jiang J W, He Z H, Quan Y Q, et al. PGIUN: physics-guided implicit unrolling network for accelerated MRI[J]. IEEE Trans Comput Imaging, 2024, 10: 1055−1068. doi: 10.1109/TCI.2024.3422840

    CrossRef Google Scholar

    [16] Pramanik A, Aggarwal H K, Jacob M. Deep generalization of structured low-rank algorithms (Deep-SLR)[J]. IEEE Trans Med Imaging, 2020, 39(12): 4186−4197. doi: 10.1109/TMI.2020.3014581

    CrossRef Google Scholar

    [17] Chen Y W, He Y, Ye H, et al. Unified deep learning model for predicting fundus fluorescein angiography image from fundus structure image[J]. J Innov Opt Health Sci, 2024, 17(3): 2450003. doi: 10.1142/S1793545824500032

    CrossRef Google Scholar

    [18] Geng C H, Jiang M F, Fang X, et al. HFIST-Net: high-throughput fast iterative shrinkage thresholding network for accelerating MR image reconstruction[J]. Comput Methods Programs Biomed, 2023, 232: 107440. doi: 10.1016/j.cmpb.2023.107440

    CrossRef Google Scholar

    [19] Zhang J, Zhang Z Y, Xie J F, et al. High-throughput deep unfolding network for compressive sensing MRI[J]. IEEE J Sel Top Signal Process, 2022, 16(4): 750−761. doi: 10.1109/JSTSP.2022.3170227

    CrossRef Google Scholar

    [20] Arabi H, Zeng G D, Zheng G Y, et al. Novel adversarial semantic structure deep learning for MRI-guided attenuation correction in brain PET/MRI[J]. Eur J Nucl Med Mol Imaging, 2019, 46(13): 2746−2759. doi: 10.1007/s00259-019-04380-x

    CrossRef Google Scholar

    [21] Panić M, Aelterman J, Crnojević V, et al. Sparse recovery in magnetic resonance imaging with a Markov random field prior[J]. IEEE Trans Med Imaging, 2017, 36(10): 2104−2115. doi: 10.1109/TMI.2017.2743819

    CrossRef Google Scholar

    [22] Ke Z W, Huang W Q, Cui Z X, et al. Learned low-rank priors in dynamic MR imaging[J]. IEEE Trans Med Imaging, 2021, 40(12): 3698−3710. doi: 10.1109/TMI.2021.3096218

    CrossRef Google Scholar

    [23] Abdullah S, Arif O, Mehmud T, et al. Compressed sensing MRI reconstruction using low dimensional manifold model[C]//Proceedings of 2019 IEEE EMBS International Conference on Biomedical & Health Informatics, 2019: 1–4. https://doi.org/10.1109/BHI.2019.8834498.

    Google Scholar

    [24] Wang J, Zong Y, He Y, et al. Domain adaptation-based automated detection of retinal diseases from optical coherence tomography images[J]. Curr Eye Res, 2023, 48(9): 836−842. doi: 10.1080/02713683.2023.2212878

    CrossRef Google Scholar

    [25] Jethi A K, Murugesan B, Ram K, et al. Dual-Encoder-Unet for fast MRI reconstruction[C]//Proceedings of 2020 IEEE 17th International Symposium on Biomedical Imaging Workshops, 2020: 1–4. https://doi.org/10.1109/ISBIWorkshops50223.2020.9153453.

    Google Scholar

    [26] Lee D, Yoo J, Tak S, et al. Deep residual learning for accelerated MRI using magnitude and phase networks[J]. IEEE Trans Biomed Eng, 2018, 65(9): 1985−1995. doi: 10.1109/TBME.2018.2821699

    CrossRef Google Scholar

    [27] 王钟贤, 王志文, 张中洲, 等. PFONet: 一种用于加速MRI的渐进式聚焦导向双域重建网络[J]. 四川大学学报(自然科学版), 2024, 61(5): 053004. doi: 10.19907/j.0490-6756.2024.053004

    CrossRef Google Scholar

    Wang Z X, Wang Z W, Zhang Z Z, et al. PFONet: a progressive focus-oriented dual-domain reconstruction network for accelerated MRI[J]. J Sichuan Univ (Nat Sci Ed), 2024, 61(5): 053004. doi: 10.19907/j.0490-6756.2024.053004

    CrossRef Google Scholar

    [28] Korkmaz Y, Yurt M, Dar S U H, et al. Deep MRI reconstruction with generative vision transformers[C]//Proceedings of the 4th International Workshop Machine Learning for Medical Image Reconstruction, 2021: 54–64. https://doi.org/10.1007/978-3-030-88552-6_6.

    Google Scholar

    [29] Aggarwal H K, Mani M P, Jacob M. MoDL: model-based deep learning architecture for inverse problems[J]. IEEE Trans Med Imaging, 2019, 38(2): 394−405. doi: 10.1109/TMI.2018.2865356

    CrossRef Google Scholar

    [30] Yang G, Zhang L, Zhou M, et al. Model-guided multi-contrast deep unfolding network for MRI super-resolution reconstruction[C]//Proceedings of the 30th ACM International Conference on Multimedia, 2022: 3974–3982.

    Google Scholar

    [31] Zhang X H, Lian Q S, Yang Y C, et al. A deep unrolling network inspired by total variation for compressed sensing MRI[J]. Digital Signal Process, 2020, 107: 102856. doi: 10.1016/j.dsp.2020.102856

    CrossRef Google Scholar

    [32] Huang Q Y, Yang D, Wu P X, et al. MRI reconstruction via cascaded channel-wise attention network[C]//Proceedings of 2019 IEEE 16th International Symposium on Biomedical Imaging, 2019: 1622–1626. https://doi.org/10.1109/ISBI.2019.8759423.

    Google Scholar

    [33] Jiang J W, Wu J, Quan Y Q, et al. Memory-augmented dual-domain unfolding network for MRI reconstruction[C]//Proceedings of the ICASSP 2024–2024 IEEE International Conference on Acoustics, Speech and Signal Processing, 2024: 1651–1655. https://doi.org/10.1109/ICASSP48485.2024.10446091.

    Google Scholar

    [34] Jiang J W, Chen J C, Xu H H, et al. GA-HQS: MRI reconstruction via a generically accelerated unfolding approach[C]//Proceedings of 2023 IEEE International Conference on Multimedia and Expo, 2023: 186–191. https://doi.org/10.1109/ICME55011.2023.00040.

    Google Scholar

    [35] Xin B Y, Phan T, Axel L, et al. Learned half-quadratic splitting network for MR image reconstruction[C]//Proceedings of the 5th International Conference on Medical Imaging with Deep Learning, 2022: 1403–1412.

    Google Scholar

    [36] Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM J Imaging Sci, 2009, 2(1): 183−202. doi: 10.1137/080716542

    CrossRef Google Scholar

    [37] Chen J C, Jiang J W, Wu F, et al. Null space matters: range-null decomposition for consistent multi-contrast MRI reconstruction[C]//Proceedings of the 38th AAAI Conference on Artificial Intelligence, 2024: 1081–1090. https://doi.org/10.1609/aaai.v38i2.27869.

    Google Scholar

    [38] Li Y, Gupta A. Beyond grids: learning graph representations for visual recognition[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018: 9245–9255.

    Google Scholar

    [39] Cheng S, Wang Y Z, Huang H B, et al. NBNet: noise basis learning for image denoising with subspace projection[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 4896–4906. https://doi.org/10.1109/CVPR46437.2021.00486.

    Google Scholar

    [40] Zbontar J, Knoll F, Sriram A, et al. fastMRI: an open dataset and benchmarks for accelerated MRI[Z]. arXiv: 1811.08839, 2018. https://doi.org/10.48550/arXiv.1811.08839.

    Google Scholar

    [41] Uecker M, Lai P, Murphy M J, et al. ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA[J]. Magn Reson Med, 2014, 71(3): 990−1001. doi: 10.1002/mrm.24751

    CrossRef Google Scholar

  • Magnetic resonance imaging (MRI) is a critical tool in biomedical research and clinical practice due to its exceptional soft tissue contrast and non-invasive, radiation-free imaging capabilities. However, its prolonged acquisition times (resulting from sequential k-space sampling) limit its efficiency in clinical workflows, patient comfort, and applicability in time-sensitive or large-scale screening scenarios. To address this challenge, undersampled k-space reconstruction techniques, particularly compressive sensing (CS), have been widely adopted. While CS leverages signal sparsity and prior knowledge to preserve image quality, aggressive undersampling often introduces aliasing artifacts, which complicates accurate reconstruction. Traditional model-driven methods, which rely on handcrafted priors (such as, sparsity, total variation, low-rank constraints), struggle to adapt to the complexity of real-world MRI data distributions. Meanwhile, deep learning approaches, despite their success in feature learning, often neglect physical degradation mechanisms. Additionally, they fail to capture semantic-level features necessary for distinguishing anatomical structures and suppressing artifacts.

    Recent efforts aim to bridge model-driven and data-driven paradigms, but existing methods remain constrained by rigid feature representations, inadequate multi-scale context integration, and insufficient semantic reasoning. For example, the prior models prioritize shallow visual features over deeper anatomical semantics, limiting their ability to generalize across diverse tissue types and reconstruct high-fidelity images under extreme undersampling. To address these limitations, this paper proposes a physics-informed hierarchical semantic network (PHSN), an innovative framework that unifies physical signal principles with semantic-aware deep learning. The architecture integrates four core modules: 1) a context extraction module to capture spatial dependencies across scales; 2) a scale-aggregation module for hierarchical feature fusion; 3) a semantic graph reasoning module to model tissue-specific relationships and enhance artifact suppression via graph-based inference; 4) a dual-scale attention module to prioritize anatomical details at both coarse (global structure) and fine (local tissue) spatial levels. The overall framework is illustrated in Fig. 7.

    By embedding physical k-space sampling constraints into hierarchical feature learning and explicitly modeling semantic relationships, PHSN achieves robust reconstruction under high acceleration factors (e.g., 8-fold) while preserving diagnostic image fidelity. Comprehensive experiments on diverse datasets (e.g., IXI) demonstrate that the proposed method outperforms state-of-the-art approaches in suppressing artifacts, maintaining anatomical accuracy, and balancing acceleration efficiency with clinical reliability. The framework’s hierarchical design enables adaptive feature optimization across scales, effectively mitigating aliasing artifacts and improving visibility of complex anatomical structures. This study advances MRI reconstruction by integrating interpretable physics-based constraints with data-driven semantic understanding, offering a pathway toward faster, higher-quality imaging for clinical and research applications.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(4)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint