Loading [MathJax]/jax/output/SVG/jax.js
  • Abstract

    Micro light-emitting diode (Micro-LED) display is considered the "next-generation" ultimate display technology due to its excellent display performance and optoelectronic properties. In order to meet the requirements of near-eye display applications, further miniaturization and integration of Micro-LED are necessary. With the continuous innovation of micro/nanopatterning technology, the fluorescent color conversion layer method has significant advantages such as low manufacturing cost. Compared to the three-color chip method, it is more suitable for virtual/augmented reality display applications that demand higher color gamut and resolution. Perovskite quantum dots (PQDs) are the most promising fluorescent color conversion materials. However, the inherent lattice instability of PQDs and degradation caused by external environmental factors pose significant challenges. Furthermore, it is crucial to develop micro-scale fluorescent array patterns that match the Micro-LED chip array. Therefore, this paper first discusses the factors that affect the structural instability of perovskite quantum dots. Then, it summarizes the applications of strategies such as ligand exchange, ion doping, surface coating, and chemical cross-linking in enhancing the stability of perovskite quantum dots. Finally, the latest research progress for fabricating high-resolution perovskite quantum dot fluorescent arrays using photolithography and inkjet printing techniques is summarized.

    Keywords

  • 显示技术作为信息传递的关键媒介,经历了数次变革,深刻地影响着人们的日常生活。阴极射线管电视自问世以来,由于其优异的视觉景深和高响应率等特点,占据了20世纪中后期全球显示市场的主要份额。自2000年起,以液晶显示器 (liquid crystal display,LCD)和有机发光二极管 (organic light emitting diode,OLED)显示器为代表的新式显示技术迅速发展,成为当今世界的两种主流显示技术。近些年来,“元宇宙”概念风靡全球,显示套件作为虚拟/增强/混合现实 (virtual/augmented/mixed reality,VR/AR/XR)的重要组成部分,除了满足体积小和质量轻等基本要求外,还应具备超高像素密度、超高对比度、超广视角和超快响应速度等优点[-]。这要求显示发光子单元的尺寸不断地微缩,并高度集成在驱动基板上。德克萨斯理工大学江红星教授在2000年的开创性工作,开启发光二极管 (light emitting diode,LED)光源的微型显示时代[]

    荧光色转换层 (Fluorescent color conversion layer,FCCL)法是利用短波长的蓝/紫Micro-LED阵列激发荧光材料以实现全彩Micro-LEDs。该方案可以有效规避巨量转移所带来的技术难点,降低制备工艺难度,被认为是实现全彩Micro-LEDs经济、高效的解决方案[]。近年来,钙钛矿量子点 (perovskite quantum dot,PQD)凭借高光致发光量子产率 (photoluminescent quantum yield,PLQY)、高色纯度和短荧光寿命等优点,广受科研人员的关注[]。不同于传统的Ⅱ-Ⅵ族量子点 (quantum dot,QD),PQD可以通过改变卤族元素的配比以实现全光谱调节,且色纯度远高于传统QD以及纳米级的颗粒尺寸非常适合于高分辨全彩Micro-LEDs的制备。然而,尽管PQD具有优异的光电特性,但由于其离子性质和低晶格能使其对外界环境极其敏感,在外界环境因素的影响下,会发生结构降解和团聚,从而造成严重的荧光猝灭[]。另外,在Micro-LED器件工作过程中,会产生大量的热量以及在短波长激发光的刺激下,外界的水分和氧气对PQD的侵蚀速度加快,这会严重制约基于PQD的Micro-LEDs的可靠性和使用寿命[-]。为了提高PQD的稳定性,配体交换、离子掺杂、表面包覆和化学交联等方案被提出,如图1所示[-]。这些方案在促进PQD稳定性方面展现出良好的应用前景,并且可以与图案化技术相结合,制备出性能优异、稳定的全彩FCCL Micro-LEDs。对于FCCL法来说,制备与Micro-LED芯片阵列相匹配的微米级荧光阵列图案是至关重要的。近些年,研究人员开发了多种图案化技术,包括光刻技术、喷墨打印技术、纳米压印技术、激光加工工艺、微流控技术和电泳沉积技术[-]。其中,大部分企业采用光刻技术和喷墨打印技术制备微米级PQD FCCL且有相关全彩Micro-LEDs产品向大众展示,而其他几项技术仍在实验室研发当中。为此,本文首先分析了影响PQD结构不稳定性的原因;其次,总结了配体交换、离子掺杂、表面包覆和化学交联四种稳定性方案在提高PQD性能的研究进展;最后,总结了光刻技术和喷墨打印技术在制备高分辨PQD荧光阵列以实现全彩Micro-LEDs的最新研究进展。

    红绿蓝 (RGB)三色芯片法是实现全彩Micro-LEDs的其中一种方案。该方案需要借助巨量转移技术将数百万颗Micro-LED芯片集成在同一块驱动基板上。然而,转移的效率、精度和良率是制约该方案最大的难点。据统计,为了实现4 K的超高分辨率全彩显示,需要高效转移Micro-LED芯片数量高达近2500万颗,转移精度为±1 µm,良率需高达99.9999%;此外,转移效率需要达到200万片/小时以上才能实现量产[-]。随着Micro-LED芯片尺寸的缩小,转移芯片的难度急剧增加,制造成本高昂始终是亟待解决的问题。Micro-LED芯片材料的选择是另一大问题。在同一种衬底上生长RGB三种颜色的Micro-LED是极其困难的。一般来说,Ⅲ-Ⅴ族化合物半导体是制备蓝绿光Micro-LED芯片的主要材料,而制备红光Micro-LED芯片的材料主要选择AlGaInP[]。然而,AlGaInP具有很高的表面复合速率,使得制备的红光Micro-LED器件光电性能远不及蓝绿光Micro-LED器件[],而在绿光Micro-LED中,“绿隙”的存在给寻找合适的绿光材料带来了巨大挑战[]。这无疑增加了制备工艺的难度。在器件制备工艺过程中引入的侧壁损伤对Micro-LED性能的影响不可忽视,它们作为非辐射复合位点和漏电流通道使得小尺寸Micro-LED器件的光电性能急剧恶化[-]。对于InGaN蓝光Micro-LED器件来说,芯片尺寸从100 µm× 100 µm缩小到5 µm× 5 µm时,其峰值外量子效率 (external quantum efficiency,EQE)从38.9%下降到16.6%[],而AlGaInP红光Micro-LED器件受“尺寸效应”的影响更大[]。为了使Micro-LEDs能够完美匹配AR/VR/XR等产品,其尺寸需要小于10 µm,以满足高达2000像素/英寸 (pixels per inch,PPI,1 inch=2.54 cm)的分辨率需求[]。这对于RGB三色芯片法来说,技术难度非常大。

    微型发光二极管 (Micro light-emitting diode,Micro-LED)显示是一种利用微尺寸Ⅲ-Ⅴ族LED芯片 (一般小于100 µm× 100 µm)作为发光子像素的新型主动发光矩阵式显示。相较于传统的显示技术,Micro-LEDs具有前者无法媲美的显示效果和光电性质,是世界公认的次世代新型显示技术[-],并被广泛应用于可穿戴设备、微型投影仪、车载显示、医疗设备和VR/AR/XR等领域[]。近些年,Sony、Google、Apple和Samsung等科技公司在Micro-LEDs领域投入大量资金,开发出“The Wall”、“Vision Pro”、“Watch Ultra”等性能优异的显示产品。根据市场调查公司Research and Markets于2024年2月份发布的一份报告显示:2022年全球Micro-LEDs市场规模为5.743亿美元,预计到2030年将达到586亿美元,2022–2030年的复合年增长率为78.3%[]。在未来,将会有更多的Micro-LEDs产品不断涌现,其优异的显示性能不断刷新人们的认知。然而,许多关键性技术障碍仍制约着Micro-LEDs市场规模化的发展,其中全彩化便是其中一大瓶颈。

    Figure 1. PQD-based Micro-LEDs full-color technology and stability solution[23]. (a) Ligand exchange[24]; (b) Ion doping[25]; (c) Surface coating[26]; (d) Chemical cross-linking[27]
    Full-Size Img PowerPoint

    PQD-based Micro-LEDs full-color technology and stability solution[]. (a) Ligand exchange[]; (b) Ion doping[]; (c) Surface coating[]; (d) Chemical cross-linking[]

    典型的卤化物钙钛矿晶体结构如图2(a)所示,其化学通式为ABX3,其中A是一价阳离子或有机基团离子,B是二价阳离子,X是卤族离子,且B位离子和X位离子在晶体结构内形成[BX6]4−的八面体形状[]。然而,在Jahn-Teller效应、偏心效应和外界环境等的影响下,[BX6]4−八面体会发生倾斜,使PQD晶格结构发生扭曲[]。轻微的晶格扭曲并不会对PQD的电子性质产生较大的影响,而在[BX6]4−八面体发生严重畸变后,PQD的物理性质会发生巨大变化。对有机–无机杂化型PQD来说,A位阳离子是CH3NH3+ (MA+)或HC (NH2)2+ (FA+),这种有机基团离子具有挥发性,从而导致杂化型PQD存在低热力学稳定性的问题。特别是MAPbI3,即使是没有环境因素的影响,它也会分解为PbI和MAI[]。而全无机PQD普遍具有较高的结合能,其稳定性远高于相应的杂化型PQD,且优异的光电性能使其被广泛应用于光电领域[]。为了实现全彩Micro-LEDs,红色量子点是必不可少的,然而CsPbI3是全无机PQD中最不稳定的一类红光PQD。除了外部因素引起的降解外,CsPbI3还会发生本征相变。αβγδ相是目前已知的CsPbI3晶相[]。其中,前三种被称为“黑相”,它们都是具有荧光特性的钙钛矿型晶相,而δ相被称为“黄相”,是一类非钙钛矿型晶相。黑相CsPbI3无法长时间稳定存在,在潮湿环境下或者周围温度发生改变时,便会自发转变为无荧光特性的δ-CsPbI3[]图2(b)总结了CsPbI3相变的可能路径[]。在一个标准大气压下,α-CsPbI3稳定存在的温度为300 ℃以上[]。为了得到稳定的黑相型CsPbI3,氧化物封装、应力约束和减少晶粒尺寸是常用的保护措施[,-]。短波长激发光的刺激是荧光材料光致发光的条件之一。然而,在光照条件下,空气中的氧气 (O2)非常容易与钙钛矿纳米晶 (perovskite nanocrystals,PNCs)表面的不饱和位点、原子空位或易氧化的卤族原子相结合,生成超氧化物 (O2·−),从而导致PNCs发生光氧化降解,如图2(c)所示[]。O2·−一旦形成,在光照条件下,它可以与PNCs表面的水 (H2O)反应生成额外的活性氧 (reactive oxygen species,ROS),例如过羟基 (HO2)、氢氧化物 (OH)和过氧化氢 (H2O2)[]。这些ROS通过一系列自繁殖式反应,会造成PNCs表面配体大量脱落、碘单质和碳酸盐形成,使得CsPbI3 NCs失去光活性。另外,PQD表面配体脱落后,会形成大量悬空键,这些悬空键充当非辐射复合中心,造成强烈的荧光猝灭。失去配体的PQD更容易发生团聚而生成沉淀,造成光谱峰位的红移与性能猝灭,如图2(e)所示[]。由于PQD的离子特性,使其几乎无法存活在任何极性溶剂中[]。水对钙钛矿的作用具有双面性。在微量水环境下,H2O可以钝化钙钛矿表面的缺陷;而在大量水环境下,H2O会扩散到PQD晶格深处,导致PQD晶格扭曲[]。另外,H2O会和[BX6]4−发生反应,导致阳离子与无机框架单元断裂,使得晶格结构坍塌,发生剧烈的荧光猝灭现象,如图2(d)所示[-]

    对于FCCL Micro-LEDs来说,它们需要长时间暴露在自然空气、强激发光和高热环境中。由于PQD自身结构的不稳定性以及在外界环境因素的刺激下,PQD会发生晶相转变、水合反应、离子扩散、结构分解和氧化反应等[]

    Figure 2. (a) Schematic of a typical ABX3 crystal structure of halide perovskite[33] ; (b) Possible pathways for phase transitions of CsPbI3[39] ; (c) Photo-oxidation mechanism of CsPbI3[43]; (d) Schematic of the interaction between water and PNCs[47]; (e) Schematic of photo-induced agglomeration of CsPbBr3[45]
    Full-Size Img PowerPoint

    (a) Schematic of a typical ABX3 crystal structure of halide perovskite[] ; (b) Possible pathways for phase transitions of CsPbI3[] ; (c) Photo-oxidation mechanism of CsPbI3[]; (d) Schematic of the interaction between water and PNCs[]; (e) Schematic of photo-induced agglomeration of CsPbBr3[]

    PQD结构的降解是自身晶格固有的不稳定性和外界环境因素刺激共同导致的。对于FCCL Micro-LEDs来说,提高PQD的稳定性有利于增强Micro-LED器件的可靠性。同时,大部分的PQD稳定性提升方案,在提升晶格结构稳定性的同时,也会有效钝化PQD表面缺陷,填充晶格空位,有效增强PQD的辐射复合效率。这对增加全彩Micro-LEDs的性能是一举两得的工程。

    Figure 3. (a) Structure of CsPbI3-DDAB and CsPbI3-OA/OLA[52]; (b) PLQY stability of CsPbI3-DDAB and CsPbI3-OA/OLA[52]; (c) TEM image of CsPbI3-DDAB after 60 days of storage in a dark environment[52]; (d) Strategy of HI-induced in situ exchange strategy of 5AVA ligand with OA/OLA ligand[54]; (e) Schematic of the passivation of amphipathic ionic ligands (sulfobetaine, phosphocholine and γ-aminoacids)[58]; (f) DDAB and DLPS dual ligand passivation strategies[59]; (g) PL stability of three QDs in natural environments[59]
    Full-Size Img PowerPoint

    (a) Structure of CsPbI3-DDAB and CsPbI3-OA/OLA[]; (b) PLQY stability of CsPbI3-DDAB and CsPbI3-OA/OLA[]; (c) TEM image of CsPbI3-DDAB after 60 days of storage in a dark environment[]; (d) Strategy of HI-induced in situ exchange strategy of 5AVA ligand with OA/OLA ligand[]; (e) Schematic of the passivation of amphipathic ionic ligands (sulfobetaine, phosphocholine and γ-aminoacids)[]; (f) DDAB and DLPS dual ligand passivation strategies[]; (g) PL stability of three QDs in natural environments[]

    与传统的羧酸盐类和胺类配体相比,同时含有正负官能团的两性离子配体 (例如磺基甜菜碱、磷胆碱和γ-氨基酸)无法通过布氏酸碱平衡相互中和,且与PQD表面因螯合效应相结合,这有利于增强配体与PQD表面的附着力,如图3(e)所示[]。Zeng等人采用短链配体DDAB和两性离子配体3-(癸基二甲基胺)丙磺酸盐 (3-(decyldimethylammonio)propanesulfonate,DLPS)进行多步配体钝化策略,完全置换CsPbBr3表面的原生配体OA和OLA,获得了PLQY高达98%、高胶体稳定性的PQD,如图3(f)所示[]。DDAB以电离形式 (DDA+)存在,通过静电吸附在量子点表面,同时释放Br,形成富溴环境来钝化PQD表面缺陷。然而,DDAB无法完全置换OA和OLA配体,且静电吸附能力有限,在PQD纯化和存储过程中,DDAB会不断脱落。而两性离子配体DLPS具有双官能团N (CH3)3+和S=O,可以进一步置换残余的OA和OLA配体,同时钝化因DDAB脱落而产生的缺陷。该策略可以有效减少非辐射复合中心,改善量子点中的载流子动力学。同时,双钝化后的CsPbBr3量子点在自然环境中可以稳定存储10天以上,其光致发光 (photoluminescence,PL)强度仍保持在初始水平的80%,稳定性优于仅DDAB钝化和OA/OLA钝化的CsPbBr3 PQD,如图3(g)所示。即便在环境中存放45天后,它们仍能保持原有的胶体溶液,而无沉淀生成。

    双十二烷基二甲基溴化铵 (didodecyldimethylammonium bromide,DDAB)是一种短链阳离子表面活性剂,它以电离形式 (DDA+)存在,可以与PQD表面的金属离子 (Pb2+或Cs+)和卤族离子或吸附的卤族离子表现出更强的亲和力,有效置换PQD表面的OA和OLA配体,同时释放Br,形成富溴环境来钝化缺陷[]。另外,DDA+的支链结构具有较大的空间位阻,使得吸附在PQD表面的DDA+离子可能较少,从而使富含Br的PQD表面产生更强的负极化,进而提高了PQD-DDAB溶液的稳定性。借助DDAB配体交换策略,Huang等人制备了OA/OLA/DDAB (摩尔比为1:0.97:0.06)混合配体包覆的高环境稳定性CsPbI3-DDAB,如图3(a)所示[]。与CsPbI3-OA/OLA相比,CsPbI3-DDAB具有较低的表面缺陷密度,表现出更窄的发射线宽 (95 meV)、更高的PLQY (95%)和更长的辐射复合寿命。如图3(b)所示,将两种不同配体修饰的CsPbI3存放于黑暗环境中,CsPbI3-DDAB的光学特性基本保持稳定,存放60天后,其PLQY仍大于80%;相反,CsPbI3-OA/OLA表现出严重的荧光退化,在存放10天后,其PLQY便降至20%以下,同时光谱蓝移展宽。光学特性的变化也伴随着纳米粒子形态的变化。在存放期间,CsPbI3-DDAB的晶格形貌和尺寸没有明显变化仍保持稳定的立方相,如图3(c)所示,而CsPbI3-OA/OLA发生粒子团聚形成长度约为1 µm的大纳米棒。另外,在水、160 ℃高温和紫外光照射等降解实验中,CsPbI3-DDAB都表现出明显的稳定优异性,这得益于DDAB提供的具有空间位阻的支链结构以及DDA+与PQD表面的强离子结合使得形成低卤素空位密度的富碘CsPbI3 PQD。传统的原位配体交换无法严格控制新配体与旧配体的置换过程,且往往需要使用极性溶剂来去除PQD表面的原生长链配体[]。Li等人提出了一种质子诱发的配体交换策略,通过使用短链配体5-氨基戊酸 (5-aminopentanoic acid,5AVA)原位置换长链OA和OLA配体,成功获得了稳定的小尺寸CsPbI3 PQD[]。如图3(d)所示,CsPbI3 PQD经过氢碘酸 (hydroiodic acid,HI)和5AVA配体的混合前驱体溶液5-碘化戊酸铵 (5-ammonium valeric acid iodide,5AVAI)处理。HI可以有效溶解5AVA,并提供配体置换的诱发质子,诱导长链OA和OLA配体从CsPbI3表面脱落,同时丰富的I提高了CsPbI3晶格稳定性并保持晶粒大小。此外,5AVA配体的胺官能团被质子化,促进了配体与PQD表面的结合,增加了CsPbI3的稳定性。CsPbI3-5AVAI可以稳定保存在自然环境中长达20天,制备的红光PQD发光二极管的最大EQE达24.45%,工作半衰期为10.79小时,远远优于未处理的红光PQD发光二极管。虽然有机配体可以有效增加α-CsPbI3薄膜的稳定性,但是器件工作时产生的热量不易扩散导致α-CsPbI3器件的工作稳定性仍然较差,这主要归因于高热阻引起的焦耳加热[]。Wang等人利用KI无机配体交换增加了CsPbI3的导热性,并钝化PQD的表面缺陷,使得CsPbI3膜的稳定性较钝化前增加了7倍,PLQY超过90%[]。这主要得益于无机KI为钝化Pb2+陷阱提供了丰富的I条件,而较小半径的K+促进了机械耦合。利用无机配体钝化的CsPbI3红光发光二极管的工作半衰期为10小时,这比有机配体钝化的器件高了6倍,比混合卤素 (Br/I)钙钛矿器件高了100倍[]

    表面配体以化学吸附、物理吸附和游离态等形式存在于PQD表面或之间,在PQD的制备过程、调控光电性质和维持稳定性等方面发挥着重要作用[-]。以油酸 (oleic acid,OA)和油胺 (oleylamine,OLA)为代表的长碳链配体是较早用来钝化PQD表面缺陷和调控晶粒尺寸的一类有机配体。然而,由于存在复杂的解吸过程,使得OA和OLA无法稳固地吸附在PQD表面。在制备过程中PQD经历剧烈搅拌和纯化等过程以及在长期存储中,OA和OLA会不断地从PQD表面脱落,使得大量表面缺陷形成和PQD团聚成大颗粒而生成沉淀物,造成PQD强烈的荧光猝灭现象。为了提高PQD的稳定性和增加辐射复合效率,与PQD表面以强相互作用连接的新式配体取代以弱相互作用连接的原生配体被认为是PQD表面修饰和性能调控的重要手段。这些配体分子通过与钙钛矿晶格表面或内部的离子相互作用,形成稳定的化学键,减少动态解离现象,限制晶格变形和离子迁移,缓解钙钛矿材料软晶格特性带来的不稳定。例如,含氨基的配体 (如甲胺或乙胺)可以与钙钛矿晶格中的Pb2+或I-形成稳定的配位键或氢键,减少离子迁移引起的晶格变形和降解。此外,表面缺陷密度的降低可以提高电子与空穴的复合效率,增加热应力后的可逆性。目前,人们对配体交换的内在物理/化学机理的认识还不充分,并且配体交换反应会受到QD结构、表面态和反应条件等多重因素的共同影响,使得精确、可控地实现新配体取代旧配体的方案变得复杂[]。近些年来,短链配体、无机配体和共轭配体被广泛用来取代OA和OLA,有效提高PQD的光电性能,增强PQD基器件的可靠性。

    其中:rArBrX对应于晶格结构A,B,X位的离子半径。通常,当t∈[0.9, 1]时,PQD能够保持稳定的立方体结构[],而当μ的值满足[0.4, 0.9]时,有利于形成稳定的[BX6]4−八面体[]。因此,通过掺杂引起的外来离子与主体之间的部分取代,可以有效地调整tμ的值并导致晶格结构的变化,影响PQD晶格结构的稳定性[]。对于A位的离子掺杂,通常选择一价阳离子,如Rb+、Na+和K+等。与PQD晶格中原始的A位离子相比,这些掺杂离子的半径较小。因此,通过式 (1)可知,将它们掺杂到PQD晶格中可能会降低容差因子并引起结构畸变,不利于结构的稳定性[]。有研究人员对CsPbBr3量子点进行了Rb+的A位掺杂,并进行了光学性能分析。结果表明,这种A位掺杂能够改变CsPbX3的光学性能,通过引起带隙的变化使发光峰向蓝色方向移动[]。然而,由于较小的Rb+无法维持原始[BX6]4−的八面体结构,导致八面体发生倾斜,平面内的B–X–B键角发生变化,难以长期保持稳定[]。因此,尽管A位掺杂可以改变光学性能,但较小离子的掺入可能会引起结构畸变和降低稳定性等问题。相比于A位离子掺杂,由于B位离子位于[BX6]4−八面体的核心位置,因此B位离子掺杂对晶格结构的影响更为显著[]。许多二价或杂价离子都可以被用于B位的掺杂,其中包括Mn2+、Ni2+、Cu2+、Ce3+、Sn4+[]。根据式 (1)可知,通过使用半径较小的离子进行B位掺杂,可以增加容差因子,提高晶格结构的稳定性。当容差因子接近1时,PQD晶格结构将更加稳定,并且材料将展现出优异的光电性能。此外,使用较小的外来离子进行掺杂也会引起晶格收缩现象,从而形成较短的B–X键,改善了短程有序性,并减少了PQD中的卤素缺陷[]。有研究表明,通过将Cd2+离子取代CsPbCl3量子点中的Pb2+,Cs+进入了相对较小的空隙空间,导致八面体倾斜减少,容差因子趋近于1。通过这种结构优化,CsPbCl3钙钛矿材料中的卤素缺陷得以减少,从而展现出卓越的光致发光性能,其PLQY高达96%[]

    由于PQD的成核和生长过程较快,因此通过离子掺杂形成稳定的PQD仍然具有困难。从理论上讲,外来离子可以通过原位合成或后掺杂法以实现PQD的A位或B位离子的部分取代。目前,热注入法和后掺杂法是合成离子掺杂型PQD最常用的两种方法[]。在通过热注入法制备离子掺杂的PQD时,需要将外部的离子源混合到BX2前驱体溶液中,形成离子卤化物前驱体溶液;随后,在高温条件下,将预先制备的A位离子前驱体快速注入到上述溶液中,并迅速冷却,以完成外源离子掺杂。这种方法提供了高温和惰性反应环境,有利于实现金属掺杂并形成均匀晶体[,]。大多数离子,如Mn2+、Mg2+、Zn2+和Rb+等,都可以通过这种方法被有效地掺杂到原晶格中,进行A位或B位掺杂[]。CsPbI3 PQD在室温下容易发生八面体倾斜[],通过B位掺杂Ni2+可以有效抑制CsPbI3钙钛矿量子点中的结构缺陷,提高晶格的稳定性。然而,传统的热注入法通常使用碘化盐作为掺杂剂,碘化盐在有机溶剂中的溶解度较低,使得CsPbI3 PQD中掺杂Ni2+的难度加大[]。为了解决这个问题,福建师范大学的陈大钦教授团队通过改进的热注入法来合成Ni2+掺杂的CsPbI3 PQD[]。过程如图4(a)所示,使用金属醋酸盐 (CsAc,Pb (Ac)2和Ni (Ac)2)和三甲基硅基碘作为阳离子和卤素前体,与传统合成中采用的难溶性碘化盐相比,金属醋酸盐前体在高沸点有机溶剂中具有高溶解度,提高Ni2+取代Pb2+的效率。通过这种方法,该团队成功制备了高稳定性的Ni2+掺杂CsPbI3 PQD,如图4(b)所示,与未掺杂Ni2+的CsPbI3 PQD相比,Ni2+掺杂的CsPbI3 PQD在自然环境储存100天后仍保持高达85%的PLQY。铅基卤化物PQD具有高PLQY (90%)和窄半高宽 (full width at half maximum,FWHM)等优点[],然而,铅的毒性和铅基卤化物PQD的晶体不稳定性阻碍了其实际应用。为了解决这个问题,天津大学的王世荣教授团队采用热注入法合成了Zn2+掺杂无铅CsMnCl3 PQD[]。如图4(c)所示,Zn2+取代CsMnCl3中的部分Mn2+,由于Zn2+的离子半径较小,晶面间距减小,导致晶格收缩,晶格结构的稳定性增强。同时,Zn2+部分取代Mn2+可以阻碍Mn2+之间的能量转移,激子更有利地限制在[MnCl6]4−八面体中,从而有助于提高PLQY。通过这种方法,该团队合成了具有高稳定性的Zn2+掺杂无铅CsMnCl3 PQD。如图4(d)所示,当Zn与Mn的质量比为6时,Zn2+ 掺杂的CsMnCl3 PQD具有最佳荧光特性,PLQY高达77.1%。尽管热注入法是一种制备离子掺杂PQD材料的常用方法,但其制备过程需要精细的温度控制和精准的注入时机,这限制了其进一步发展。为了克服这些限制,后掺杂法被用于实现PQD的离子掺杂[]。这种方法需要预先合成PQD,然后将其置于特定的离子溶液中进行离子交换,通过改变PQD的组成,引入所需的离子。日本山形大学的Kido教授团队采用后掺杂法成功地将Nd3+和Cl同时掺杂到CsPbBr3 PQD中,掺杂过程如图4(e)所示[]。将NdCl3·6H2O溶解于甲苯中,随后将预先合成的CsPbBr3 PQD溶液加入NdCl3·6H2O/甲苯溶液中,并在室温下搅拌,形成同时掺杂了Nd3+和Cl的CsPbBr3 PQD。Nd3+可以取代部分Pb2+,形成B位掺杂,并钝化PQD表面的缺陷,从而提高PQD晶格的稳定性;Cl可以取代部分Br,导致晶格收缩。同时,与未进行离子掺杂的CsPbBr3 PQD相比,掺入的Nd3+和Cl离子有效地抑制了非辐射复合的发生,提高了PLQY。如图4(f)所示,与掺杂An–Cl的CsPbBr3 PQD相比,同时掺杂了Nd3+和Cl的CsPbBr3 PQD在空气中的储存稳定性更佳。

    t=rA+rX2(rB+rX),μ=rBrX,

    离子掺杂是一种将外来离子引入PQD原始晶格的方法。这些外来离子会取代原始晶格中的部分离子,并与主体晶格形成合金。这种方法会引起晶格结构的调整,包括晶格膨胀和晶格收缩等现象[]。研究表明,在钙钛矿晶格中引入大尺寸阳离子,会使晶格发生膨胀并形成更强的氢键,从而增加了缺陷形成能和迁移势垒,有效抑制缺陷的形成和扩散;通过掺杂半径较小的金属阳离子可以诱导晶格收缩并消除卤族空位缺陷,从而改善晶格的完整性和短程有序性[]。PQD的晶格稳定性很难通过纯粹的计算法则进行准确的预测。容差因子t[]和八面体因子μ[]是评估PQD的晶格稳定性的经验法则,其相关表达式为

    Figure 4. (a) Schematic diagram of in-situ synthesized Ni2+ doped CsPbI3 PQD[75]; (b) Variation of PLQY with storage time for undoped and Ni-doped CsPbI3 PQD[75]; (c) Stabilization mechanism of Zn2+ doped CsMnCl3 PQD[77]; (d) PLQY at different Zn/Mn mass ratios[77]; (e) Process flowchart for the preparation of CsPbBr3 PQDs doped with NdCl3[79]; (f) PLQY stability of CsPbBr3 PQDs with different dopants in a natural environment[79]
    Full-Size Img PowerPoint

    (a) Schematic diagram of in-situ synthesized Ni2+ doped CsPbI3 PQD[]; (b) Variation of PLQY with storage time for undoped and Ni-doped CsPbI3 PQD[]; (c) Stabilization mechanism of Zn2+ doped CsMnCl3 PQD[]; (d) PLQY at different Zn/Mn mass ratios[]; (e) Process flowchart for the preparation of CsPbBr3 PQDs doped with NdCl3[]; (f) PLQY stability of CsPbBr3 PQDs with different dopants in a natural environment[]

    Figure 5. (a) Schematic structure of CsPbBr3/LLPDE[83]; (b) Degradation of CsPbBr3 and CsPbBr3/LLPDE in natural environment[83]; (c) Degradation of CsPbBr3 and CsPbBr3/LLPDE under 365 nm light irradiation[83]; (d) Flowchart for preparation of polymerisable CsPbX3 PQD ink[87]; (e) Ligand exchange and ALD-Al2O3 encapsulation flowchart[97]; (f) CsPbBr3/CdS and CsPbBr3/Cs4PbBr6 encapsulation methods and energy maps[103]; (g) Degradation of various QD materials in aqueous environment (left) and 365 nm light environment (right)[103]
    Full-Size Img PowerPoint

    (a) Schematic structure of CsPbBr3/LLPDE[]; (b) Degradation of CsPbBr3 and CsPbBr3/LLPDE in natural environment[]; (c) Degradation of CsPbBr3 and CsPbBr3/LLPDE under 365 nm light irradiation[]; (d) Flowchart for preparation of polymerisable CsPbX3 PQD ink[]; (e) Ligand exchange and ALD-Al2O3 encapsulation flowchart[]; (f) CsPbBr3/CdS and CsPbBr3/Cs4PbBr6 encapsulation methods and energy maps[]; (g) Degradation of various QD materials in aqueous environment (left) and 365 nm light environment (right)[]

    表面包覆是利用惰性的有机或无机材料在PQD表面形成致密保护层,防止外界水/氧等因素对PQD的侵蚀。同时,外层惰性壳和内层PQD核在接触界面形成强化学网络交联,在包覆层的压力效应下,有效抑制了钙钛矿的相变和分解,并通过空间位阻效应有效钝化了表面陷阱,增加了辐射复合效率和晶格稳定性。此外,表面包覆增加了PQD之间的接触距离,防止团聚和离子交换,避免荧光猝灭等情况的发生。

    聚甲基丙烯酸酯 (Polymethyl methacrylate,PMMA)、聚苯乙烯 (polystyrene,PS)、聚偏氟乙烯 (polyvinylidene difluoride,PVDF)等有机聚合物材料具有优异的柔韧性、可加工性和防水性等优点,已被广泛应用于PQD的表面封装[-]。另外,PQD/聚合物材料具有高度的灵活性和机械强度,为可穿戴式柔性显示提供无限可能。Dong等人借助压力效益和位阻效应的协同作用,提出了一种原位热注入法合成线性低密度聚乙烯 (linear low-density polyethylene,LLDPE)包覆的核/壳PQD策略,如图5(a)所示[]。相较于PMMA、PS和PVDF包覆的CsPbBr3,CsPbBr3/LLDPE表现出接近100%的PLQY。这种光学性能的极大改善主要归功于LLDPE与CsPbBr3表面的封端配体形成交联网络,且在LLDPE的压力效应下,钙钛矿的相变和分解被有效抑制,并通过空间位阻效应有效钝化了表面陷阱,增加了辐射复合效率和晶格稳定性[]。CsPbBr3/LLDPE不仅具有优异的光学特性,还表现出较高的环境稳定性。CsPbBr3/LLPDE在自然环境中存放166天后,其PLQY仍能保持在90%以上,如图5(b)所示。即便在365 nm的UV光下持续照射600分钟后,CsPbBr3/LLPDE仍能保持89.54%的PLQY,如图5(c)所示。另外,该原位热注入法具有较大的普适性,所合成蓝色CsPbBr1.5Cl1.5/LLPDE、红色CsPbBr1.2I1.8/LLPDE和红色InP/ZnSeS/ZnS/LLPDE同样表现出优异的光学特性和稳定性。然而,有机聚合物是一类高热阻材料,这会导致内部热量聚集而无法有效传导,严重影响PQD/聚合物复合材料的热稳定性。高氧扩散系数是有机聚合物的另一大缺点。氧气会透过有机聚合物层而使PQD发生光氧化反应。在高热的环境下,氧气的透过率会持续增加,对PQD造成无法挽回的荧光猝灭。此外,在PQD/聚合物复合材料合成过程中,PQD可能会暴露在不利的极性溶剂中,从而破坏其晶格结构[],而且聚合物配体的动态解离仍然是抑制其稳定性的一大难题[]。金属氧化物 (SiO2、Al2O3、TiO2等)是一类坚硬、透明、致密的无机材料,对化学和环境因素具有优异的稳定性。Yang等人通过硅–氧–烷共价化学反应与光响应性聚合物有效对接,成功制备了高度稳定且可进行光聚合的CsPbX3 (X = Cl、Br、I) PQD墨水用于图案化设计[]。如图5(d)所示,CsPbX3@SiO2复合材料是通过硅酸甲酯 (tetramethyl orthosilicate, TMOS)的水解反应在CsPbX3表面形成–Si–O–Si–网络交联形成的。一方面,SiO2是一种坚固、透明的无机金属氧化物材料,具有较低的离子扩散率,被用作钝化层保护PQD免受相变、氧化和腐蚀,从而提高其环境稳定性[-]。另一方面,SiO2涂层作为后续表面介导反应的多功能层,有利于有机聚合物3-(甲基丙烯酰氧)丙基三甲氧基硅烷 (3-(trimethoxysilyl) propyl methacrylate, TMSPMA)以共价键连接形式锚定在CsPbX3@SiO2表面。与传统的聚合物包覆法不同,该方案是将TMSPMA利用硅烷化封装到SiO2层,而不是CsPbX3表面,避免聚合物配体的动态解离和PQD的严重降解,形成的有机/无机包覆的CsPbX3表现出优异的热稳定、光稳定和水稳定。He等人开发了K2CO3辅助选择性烧结策略,将CsPbBr3封装在介孔SiO2纳米颗粒中,形成直径在200 nm以下的CsPbBr3–SiO2微球[]。通过该方法制备的核壳CsPbBr3复合材料表现出优异的稳定性,在水或乙醇溶液浸泡150天后几乎不产生沉淀。原子层沉积 (atomic layer deposition,ALD)是一种自限制表面薄膜气相沉积技术,所获得的超薄、致密、均匀薄膜可作为理想的水气阻挡层,沉积的高介电性薄膜除了覆盖在PQD表面同时也会渗透进PQD与封端配体以及PQD之间,形成的化学网络交联,可以有效消除PQD表面/晶格缺陷,例如悬空键的选择性固化和缺陷位点的氧化[-]。然而,ALD成膜环境对PQD的不利影响,以及高能态金属气体分子对PQD的侵蚀,造成PQD表面配体解吸、颗粒团聚和晶格重组[-]。Wang等人[]在进行ALD-Al2O3薄膜封装前,预先对CsPbBr3进行OA处理和DDAB短链配体交换,降低CsPbBr3表面长链配体的动态解离,减少在ALD过程中因真空高热环境、前驱体分子侵蚀等原因造成的非辐射重组和PL淬灭现象。随后,在50 ℃环境下,利用三甲基铝 (trimethylaluminum,TMA)和H2O前驱体作为铝源和氧源,封装CsPbBr3得到CsPbBr3/DDAB@Al2O3。由于在CsPbBr3–Al2O3界面上形成了Pb–O–Al键,产生了具有较大激子结合能和较高局部电子态密度的PQD表面态,这可能是导致辐射重组的巨大增强的原因之一[]。随着ALD沉积次数的增加,ALD生长过程经历PQD表面钝化、PQD薄膜间隙填充和PQD薄膜表面封装三个过程,不仅增强了Pb–Br键的结合能、固化悬空键和钝化缺陷位点以增强PQD激子辐射复合效率,同时致密、无针孔的薄膜封装与化学网络交联的形成,抑制离子迁移,提高了PQD光、热、水和氧的稳定性。除了有机聚合物、无机金属氧化物外,金属硫化物 (ZnS、CdS、CdSe等)[]和钙钛矿 (CsPbX3、Cs4PbX6、CsPb2Br5等)[]也是常用于PQD表面包覆的材料之一。表面包覆旨在通过抑制表面空位态与封装为内部低稳定性材料提供钝化作用和保护。然而,外壳材料的生长面临着晶格失配所产生的应力问题,是核/壳结构策略的主要挑战之一[-]。Shi等人通过外延生长法和热注入法制备了CdS (2.62 eV)和Cs4PbBr6 (4.0 eV)包覆的CsPbBr3 (2.4 eV)复合材料,如图5(f)所示[]图5(g)是各种QD材料在水环境和365 nm光环境下的降解实验,可以表明CsPbBr3@CdS相较于CsPbBr3、CsPbBr3@Cs4PbBr6具有优异的稳定性。除了稳定性的提升,经过核/壳结构处理后,PQD的光学性能得到了一定程度的提升,其中CsPbBr3、CsPbBr3@Cs4PbBr6和CsPbBr3@CdS的PLQY分别为81%、89%和86%。CsPbBr3@Cs4PbBr6性能的提升主要得益于覆盖的Cs4PbBr6壳层与CsPbBr3核层之间形成类似于I型异质结,减少了CsPbBr3的表面缺陷[],而CsPbBr3@CdS PLQY的改善可以归因于CdS壳层有效削弱了CsPbBr3表面介导弛豫的作用[]

    Figure 6. (a) Schematic diagram of the preparation of CsPbBr3 perovskite PQD in LHD nanosheets[107]; (b) PL stability of CsPbBr3 and LDH-CP-CsPbBr3 at high temperatures[107]; (c) Schematic diagram of in-situ growth of CsPbBr3 QDs on hydrophobic silica aerogel[108]; (d) PL stability of PQDs after heating at high temperatures for 1 hour[108]; (e) Design schematic of CsPbBr3 PQD composite materials[109]; (f) Fluorescence characteristics of CsPbBr3 PQD composite materials during heating-cooling cycles[109]; (g) PL stability of PQDs with the addition of ethyl cellulose in a natural environment[110]
    Full-Size Img PowerPoint

    (a) Schematic diagram of the preparation of CsPbBr3 perovskite PQD in LHD nanosheets[]; (b) PL stability of CsPbBr3 and LDH-CP-CsPbBr3 at high temperatures[]; (c) Schematic diagram of in-situ growth of CsPbBr3 QDs on hydrophobic silica aerogel[]; (d) PL stability of PQDs after heating at high temperatures for 1 hour[]; (e) Design schematic of CsPbBr3 PQD composite materials[]; (f) Fluorescence characteristics of CsPbBr3 PQD composite materials during heating-cooling cycles[]; (g) PL stability of PQDs with the addition of ethyl cellulose in a natural environment[]

    除了在原位生成PQD的过程中添加交联材料以提高PQD的稳定性,还可以直接将交联材料添加到原始PQD中[]。台湾科技大学的Liang Yih Chen教授团队通过硫醇–烯交联反应制备了高稳定性、弹性和自修复性的CsPbBr3 PQD复合材料,如图6(e)所示[]。使用自由基聚合法合成了聚丙烯酸酯共聚物,并通过硫醇–烯交联反应使CsPbBr3 PQD的表面配体 (OA/OLA)与聚丙烯酸酯共聚物发生交联,形成了CsPbBr3 PQD复合材料。由于共聚物与CsPbBr3 PQD之间形成了强化学键,且共聚物基体与CsPbBr3 PQD表现出良好的相容性,在连续拉伸过程中,共聚物基体能够保持CsPbBr3 PQD在空间中的均匀分布。此外,CsPbBr3 PQD复合材料在室温下无需任何修复或刺激,能够实现90%的自修复效率。如图6(f)所示,CsPbBr3 PQD复合材料的荧光强度随着温度升高而趋于降低,当温度下降时,其荧光特性可以逐渐恢复到初始值;在多次加热–冷却循环测试后,CsPbBr3 PQD复合材料的荧光特性没有发生明显变化。这为该复合材料在高温环境下的应用提供了重要的优势。另外,吉林大学的白雪教授团队通过使用生物质材料乙基纤维素进行化学交联,增强了CsPbI3 PQD的稳定性[]。将乙基纤维素添加到CsPbI3 PQD中,乙基纤维素作为相邻钙钛矿卤化物八面体之间的交联剂。乙基纤维素中的羟基与CsPbI3 PQD中的I形成氢键,并通过Pb–O的配位作用修复了由Pb2+引起的结构缺陷,从而将CsPbI3 PQD的PLQY从63%提高到87%。同时,乙基纤维素的疏水醚基团显著提高了CsPbI3 PQD的环境稳定性。如图6(g)所示,交联后的CsPbI3 PQD在空气中的PL相对稳定,连续11天未发生明显变化。此外,乙基纤维素具有良好的柔性,与CsPbI3 PQD之间的交联增强了钙钛矿层的抗变形性,使其在反复弯曲后仍具有稳定的光致发光性能,并且几乎没有出现裂纹。这些方法的应用使得PQD材料在稳定性和性能方面得到了显著的改善,并且为其在光电领域的广泛应用提供了更多的可能性。

    除了上述方法,采用化学交联策略也可以提高PQD的稳定性。化学交联是基于热、光或引发剂等刺激下的自由基或离子反应,借助具有高活性的可交联基团 (例如乙烯基、丙烯酸酯、氧杂环丁烷和叠氮基团等)的材料在PNCs之间和表面形成交联网络薄膜[]。这种网络结构能够增强钙钛矿晶体结构中离子的结合力,减少晶格畸变,有效钝化未配位离子缺陷,从而增强钙钛矿材料的机械强度和环境稳定性。此外,化学交联还能降低扩散系数和增强耐溶剂性。

    为了实现化学交联策略,可以通过在原位生成PQD的过程中添加交联材料来提高PQD的稳定性[]。东北师范大学的吕长利教授团队通过交联材料改性的层状双金属氢氧化物 (layered bimetallic hydroxide,LDH)纳米片,成功制备了稳定的CsPbBr3 PQD[]。制备过程如图6(a)所示,使用可逆加成-断裂链转移聚合法,在LDH纳米片表面接枝疏水聚合物链,并通过季铵化反应形成交联网络,从而制备了交联功能化的LDH。随后,通过配体辅助共沉淀技术,在交联功能化LDH的表面原位生成PQD。合成得到的CsPbBr3 PQD具有明亮的绿色发光 (PLQY约为51.9%)和较窄的半高宽 (FWHM约为25 nm)。LDH纳米片和疏水聚合物的交联网络为CsPbBr3 PQD提供了有效的保护屏障,防止CsPbBr3 PQD与空气中的水蒸气和氧气接触。同时,这种交联结构限制了CsPbBr3 PQD在外部环境作用下的聚集,有效提高了CsPbBr3 PQD的稳定性。此外,季铵盐基团还可以作为CsPbBr3 PQD生长的表面配体,有利于钝化CsPbBr3 PQD的表面缺陷,稳定PQD并提高发光性能。如图6(b)所示,在120 ℃的热处理下,与未添加交联材料的CsPbBr3 PQD相比,添加交联材料的CsPbBr3 PQD的PL稳定性更佳。华东理工大学的沈建华教授团队通过在疏水性二氧化硅气凝胶上原位生长稳定的CsPbBr3 PQD,并利用光引发的化学交联反应形成保护性的聚合物层,如图6(c)所示[]。通过配体辅助室温沉淀法,在疏水性二氧化硅气凝胶上生长了以共轭亚油酸 (conjugated linoleic acid, CLA)和OLA作为表面配体的CsPbBr3 PQD。在光照作用下,CLA发生共轭双键的交联反应,形成疏水聚合物壳层,从而防止溶剂渗入孔隙并破坏PQD结构。如图6(d)所示,在高温下经过1小时加热后,受保护的PQD仍然保持较高的PL强度。

    通过光刻技术制备PQD荧光阵列图案时,常常需要有选择性地去除部分PQD,以形成所需的图案。然而,这些被去除的PQD通常会溶解在溶剂中,难以被有效地收集和重复利用。在大规模生产和加工过程中,这可能导致PQD的利用率较低,造成一定的资源浪费。北京理工大学钟海政教授团队提出了一种微孔填充法来制备PQD荧光阵列,如图8(c)所示[]。通过标准光刻工艺在玻璃基板上制备微孔模具,将预制的PQD/PMMA凝胶滴到SU8微孔模具上,并使用刮刀将PQD凝胶充分填充进微孔中并移除表面多余的PQD,随后将载有PQD凝胶的模具置于70 ℃环境下结晶成膜,最后通过抛光工艺去除残留在模具表面的PQD。采用这种微孔填充方法,该团队制备出像素尺寸为2 µm的高分辨率PQD荧光阵列,如图8(d)所示,并进一步制造了高分辨率双色PQD图案,如图8(e)所示。相较于其他的光刻工艺,该方法可以收集多余的PQD并重复利用,无需繁琐的步骤与接触任何化学试剂,具有生产成本低和加工速度快等潜在优势。

    光刻剥离法与光刻掩膜法有所不同。它是先形成抗蚀剂图案,然后将目标材料完全沉积在抗蚀剂图案上,在去除抗蚀剂图案时,由抗蚀剂支撑的目标材料也会去除掉,从而保留了直接沉积到衬底上的目标图案[]。与传统的光刻掩膜法相比,光刻剥离法不需要蚀刻QD材料以形成图案,这样可以避免在蚀刻过程中对QD造成损伤,提高了图案化的质量和精确度。因此,光刻剥离法为量子点图案化提供了一种更加优化的途径。韩国高丽大学的Oh教授团队将表面改性的PQD与光刻剥离法相结合,制备出高分辨率的钙钛矿薄膜图案,过程如图7(c)所示[]。使用GXR-601作为光致抗蚀剂旋涂在基板上,通过光刻工艺形成图案后,将二氧化硅涂覆的钙钛矿沉积到图案化基底上,并使用乙酸甲酯对光致抗蚀剂进行剥离。二氧化硅的包覆可以保护钙钛矿薄膜在光刻工艺中免受损伤,提高钙钛矿薄膜的稳定性;同时,乙酸甲酯的剥离工艺不影响钙钛矿薄膜的PL。通过这种方法,该团队成功制备出最小半径尺寸为5 µm的高分辨率钙钛矿点阵,如图7(d)所示[]

    Figure 7. (a) Schematic diagram of PQD thin film preparation using photolithographic masking method[113]; (b) PQD array with feature sizes as small as 3 µm[113]; (c) Schematic diagram of PQD thin film preparation using photolithographic peeling method[114]; (d) PQD dot array with a radius size of 5 µm[114]; (e) Schematic diagram of in-situ fabrication of PQD patterns using lead bromide complex[115]; (f) PQD fluorescence array with a resolution of up to 2450 PPI [115]; (g) Photopatterning mechanism of PZ ligands[116]; (h) High-resolution PQD pattern with a line spacing of 4 µm[116]
    Full-Size Img PowerPoint

    (a) Schematic diagram of PQD thin film preparation using photolithographic masking method[]; (b) PQD array with feature sizes as small as 3 µm[]; (c) Schematic diagram of PQD thin film preparation using photolithographic peeling method[]; (d) PQD dot array with a radius size of 5 µm[]; (e) Schematic diagram of in-situ fabrication of PQD patterns using lead bromide complex[]; (f) PQD fluorescence array with a resolution of up to 2450 PPI []; (g) Photopatterning mechanism of PZ ligands[]; (h) High-resolution PQD pattern with a line spacing of 4 µm[]

    光刻技术是一种利用光/化学反应原理将掩模版上的图案转移至基材的工艺技术。它一般包括光刻胶涂覆、曝光、显影、刻蚀和剥离等关键步骤[]。在半导体领域,光刻技术具有可重复性高、制备效率高等优点,可以高产量制造出均匀、高分辨率的电路图案。随着技术革新,光刻技术制备的图案尺寸限度缩小了2至3个数量级,到达了深亚微米级[]。此外,光刻技术在QD图案化制备上也展现出巨大的商业应用前景。它可以实现高通量、大面积、高效率地制备荧光阵列图案,所制备的荧光子像素可达到5 µm以下,能够与蓝光或者紫外光Micro-LED阵列匹配,进而实现全彩Micro-LEDs。然而,在光刻过程中QD会与光刻胶接触,并经历高温烘烤、紫外光照射和显影液洗涤等过程,这会导致QD结构分解和性能恶化[]。对外界因素更加敏感的PQD来说,这无疑是限制光刻工艺制备PQD FCCL的一大难点。因此,需要对PQD进行修饰,使其与光刻工艺兼容,从而实现PQD的无损光刻图案化。目前,光刻掩膜法、光刻剥离法和直接光刻法是三种实现量子点图案化的光刻工艺[]

    不同于前面两种光刻技术,直接光刻法是将光致抗蚀剂与QD进行混合,形成一种具有光敏性能的QD复合材料,随后通过紫外光的照射使其发生化学反应,最后通过刻蚀技术实现高精度的QD薄膜的图案化[]。由于直接光刻不需要额外的模具层和光致抗蚀剂,该工艺从根本上解决了传统光刻对QD的负面影响,直接光刻法被认为是制备微米级QD图案化最有前途的方法之一。然而,该制备工艺在很大程度上依赖于QD复合材料固有的感光特性,因此对光敏材料的开发有很高的要求[]。北京理工大学的钟海政教授团队利用溴化铅配合物催化的光聚合实现原位PQD图案化制备,如图7(e)所示[]。将钙钛矿前驱体与聚合物混合形成光敏复合材料,在紫外光的照射下,溴化铅配合物催化钙钛矿前驱体中硫醇–烯自由基的光聚合,产生高分辨率钙钛矿前驱体图案,通过对图案进行退火以蒸发残留溶液,当浓度达到原位成核的临界值时,形成PQD图案。其次,通过使用硅烷偶联剂对玻璃基板进行功能化处理,为复合材料薄膜创建强共价键位,提高直接光刻的成功率。使用这种直接原位光刻技术,该团队成功制备了分辨率高达2450 PPI、荧光均匀性高且稳定性良好的PQD荧光阵列,如图7(f)所示。由于PQD是在光刻后原位制造形成的,避免了光刻过程中溶剂和高能紫外光对PQD的破坏,实现无损PQD图案的制备。但是,原位制造PQD的成功率很大程度上依赖于退火,需通过退火精准控制钙钛矿的成核与生长,同时聚合物为PQD提供的附加功能也相对有限。韩国汉阳大学的Jang教授团队合成了一种用于直接光图案化PQD的可光交联两性离子 (photocrosslinkable zwitterionic,PZ)配体[]。PZ配体与溶液中预先合成的PQD发生配体交换,取代原来的封端配体 (OA),并有效钝化了PQD的表面缺陷,从而提高PLQY和PL稳定性,制造出高致密性、光学性能良好的PQD薄膜。由于PZ配体末端的甲基丙烯酸酯基团有光交联性,在紫外线照射下发生交联,通过配体交联可直接对PQD光图案化,光图案化机制如图7(g)所示。如图7(h)所示,该团队利用该方案制备了最小线距为4 µm的高分辨率PQD图案,并可保持2周以上的光学稳定性。与直接原位光刻相比,利用光敏配体制备PQD图案可以有效钝化PQD表面缺陷,但配体交换这种相对精细的结合方式对操作工艺提出了更大的要求,降低合成难度与提高合成成功率是该方法发展的关键。利用光敏交联剂制备PQD荧光阵列也是一种解决方案,这种方法不仅可以有效减小复杂光敏材料对PQD光学性能的影响,还消除了复杂的配体合成与交换过程。韩国科学技术研究院的Cho教授团队提出了一种通过季戊四醇四 (3-巯基丙酸酯) (pentaerythritol tetrakis (3-mercaptopropionate),PTMP)实现PQD图案化的方法[],将混合PQD与PTMP溶液暴露于紫外线下时,PTMP的硫醇基团在光催化下与PQD表面配体的烯烃基团发生硫醇–烯反应,反应机制如图8(a)所示,这种反应实现PQD之间的交联,降低了PQD在非极性溶剂中的溶解度,从而实现PQD图案化。此外,PTMP的硫醇基团也可作为PQD的硫醇配体,增强表面钝化,提高PLQY及PL稳定性。PTMP既作为配体交联剂,又可以钝化表面缺陷,通过PTMP该团队成功制备了分辨率达12700 PPI的PQD荧光阵列,如图8(b)所示。通过光敏交联剂可以在一定程度上提高直接光刻的图形精度,然而,如果没有额外的聚合物层对配体交联进行保护,PQD也难以有较高的稳定性。

    Figure 8. (a) Reaction mechanism between PTMP and PQD (top) and schematic diagram of direct photolithographic fabrication of PQD patterns (bottom)[119]; (b) PQD fluorescence array with a resolution of 12700 PPI[119]; (c) Schematic diagram of PQD fluorescence array prepared by microsphere filling method[120]; (d) High-resolution PQD fluorescence array with pixel size of 2 µm[120]; (e) High-resolution dual-color PQD pattern[120].
    Full-Size Img PowerPoint

    (a) Reaction mechanism between PTMP and PQD (top) and schematic diagram of direct photolithographic fabrication of PQD patterns (bottom)[]; (b) PQD fluorescence array with a resolution of 12700 PPI[]; (c) Schematic diagram of PQD fluorescence array prepared by microsphere filling method[]; (d) High-resolution PQD fluorescence array with pixel size of 2 µm[]; (e) High-resolution dual-color PQD pattern[].

    光刻掩膜法是一种传统的光刻技术,将光致抗蚀剂旋涂到要图案化的材料上,对抗蚀剂进行预烘烤和紫外光固化,随后将样品放入显影液中以去除不需要的抗蚀剂,最后通过蚀刻完成图案的转移;然而,光刻掩模法对QD的稳定性提出了更高的要求[]。圣安德鲁斯大学的Samuel教授团队提出了一种通过光刻掩模法对钙钛矿薄膜进行图案化的方法,如图7(a)所示[]。将PMMA作为间隔层沉积在钙钛矿薄膜上,再将SU8作为光致抗蚀剂旋涂到基材上,通过光刻工艺形成图案后,使用氧等离子体将图案蚀刻到PMMA中,并使用氩气来蚀刻钙钛矿。使用PMMA充当间隔层,可以保护钙钛矿薄膜免受SU8溶剂的影响;同时,PMMA间隔物通过氯仿或甲苯清洗易于去除。通过这种方法,该团队成功制备出特征尺寸小至3 µm的钙钛矿阵列,如图7(b)所示[]

    Figure 9. (a) Schematic diagram of PQD color conversion layer prepared by aerosol inkjet printing technique[125]; (b) PQD pattern with a line width of 13 µm [125]; (c) Schematic diagram of EHD inkjet printing[126]; (d) PQD pattern with a resolution of 10 µm [126]; (e) Red PQD fluorescence array with a resolution of 2540 DPI [127]; (f) Full-color PQD color conversion layer with subpixel diameter of 10 µm [127]; (g) Schematic diagram of red PQD fluorescence array prepared by ligand exchange and EHD inkjet printing process[127]
    Full-Size Img PowerPoint

    (a) Schematic diagram of PQD color conversion layer prepared by aerosol inkjet printing technique[]; (b) PQD pattern with a line width of 13 µm []; (c) Schematic diagram of EHD inkjet printing[]; (d) PQD pattern with a resolution of 10 µm []; (e) Red PQD fluorescence array with a resolution of 2540 DPI []; (f) Full-color PQD color conversion layer with subpixel diameter of 10 µm []; (g) Schematic diagram of red PQD fluorescence array prepared by ligand exchange and EHD inkjet printing process[]

    为了追求更高的分辨率,喷嘴直径需要进一步减小。当EHD喷墨打印喷嘴直径小于20 µm时,也称为超级喷墨 (super inkjet,SIJ)打印[]。SIJ打印与传统的EHD喷墨打印设备在组成上相似,但其液滴生成原理有所不同。传统的EHD喷墨打印是通过电场作用下的泰勒效应产生稳定的锥形射流,而其对喷嘴直径有一定的限制。当喷嘴直径足够小时,无法产生稳定的射流[]。然而,SIJ打印可以克服这一限制。当喷嘴直径较小时,在足够大的电场作用下,SIJ打印可以通过静电吸力将液滴射出。当SIJ打印使用大尺寸喷嘴时,仍可以采用泰勒喷射模式。在SIJ打印的静电吸力模式下,喷嘴尺寸可以小至0.3 µm []。在SIJ打印中,溶剂参数的不匹配可能导致表面形貌不均匀和印刷不稳定的问题。厦门大学陈忠教授团队提出了一种基于稳定PQD墨水的SIJ喷墨打印高分辨率阵列的方法,如图10(a)所示[]。在PQD溶液中添加DDAB和PbBr2,实现了PQD的稳定钝化。这种钝化方法利用DDAB与PbBr2提供的长链铵配体与Br之间的配体交换作用,修复了PQD表面的缺陷。此外,DDAB中带正电荷的季铵离子与Br之间也存在强烈的静电相互作用,比PQD表面的初始OA和OLA更具稳定性。为了制备墨水,该团队将钝化后的PQD分散在由不同体积比的1,3,5-三乙基苯 (1,3,5-triethylbenzene, TLB)和正十四烷 (tetradecane, TET)组成的非极性二元溶剂体系中。TLB溶剂的π电子结构与DDA+之间的相互作用增加了PQD在溶剂中的溶解度和稳定性。当TLB与TET的溶剂比为5:5时,所制备的墨水具有良好的印刷性能、稳定性和出色的光学性能。通过SIJ打印技术,实现了分辨率高达22718 DPI的点阵图案制备,如图10(b)所示。台湾交通大学郭浩中教授团队利用SIJ打印技术,如图10(c)所示,将红色QD喷涂在蓝色纳米环Micro-LED上,制备了混合QD纳米环Micro-LED[],成功实现了线宽小于2 µm的全彩高品质Micro-LED显示。此外,该课题组通过SIJ打印制备了线宽为1.65 µm的QD图案,展示了其高分辨率的能力,如图10(d)所示。华中科技大学黄永安教授团队引入离子液体醋酸甲铵作为溶剂与SIJ打印技术相结合制备钙钛矿薄膜图案[]。通过在离子液体醋酸甲铵中添加甲基卤化铵和卤化铅来制备油墨,醋酸甲铵可以提高油墨在空气中喷墨打印的稳定性,而无需使用抗溶剂。同时,由于醋酸甲铵具有极低的蒸气压,便于形成均匀且高覆盖率的薄膜,大大延缓了钙钛矿晶体的生长速率,有利于PQD均匀的成核和晶体生长,从而提高薄膜质量。如图10(e)所示,通过优化打印工艺和结晶条件,该团队成功制备出最小直径为1 µm的钙钛矿点阵图案。这些研究都表明SIJ打印技术在全彩和高分辨率微显示器中的应用具有巨大的前景和竞争力。

    喷墨打印是一种高效的图案化技术,它能够直接将功能性墨水沉积到目标基板上,无需使用图案化掩模。与其他图案化技术相比,喷墨打印具有工艺简单、成本低、自动化程度高等优势,非常适合大规模商业生产。由于这些优点,研究人员已经开始将喷墨打印技术应用于QD图案化制备。根据墨水驱动力的不同,喷墨打印可以分为压电式喷墨打印 (piezoelectric inkjet printing,IJP)、气溶胶式喷墨打印 (aerosol inkjet printing,AJP)和电驱动式 (electrohydrodynamic,EHD)喷墨打印等几种类型[]。喷射墨滴的体积取决于驱动力的大小以及喷嘴的孔径大小[]

    Figure 10. (a) Schematic diagram of ink preparation and printing[129]; (b) PQD fluorescence array with a resolution of up to 22718 DPI[129]; (c) Fabrication process of mixed QD nanoring Micro-LED with line width less than 2 µm[130]; (d) QD pattern with a line width of 1.65 µm[130]; (e) Patterns of perovskite dot arrays with diameters of 1 µm, 2 µm, and 3 µm[131]
    Full-Size Img PowerPoint

    (a) Schematic diagram of ink preparation and printing[]; (b) PQD fluorescence array with a resolution of up to 22718 DPI[]; (c) Fabrication process of mixed QD nanoring Micro-LED with line width less than 2 µm[]; (d) QD pattern with a line width of 1.65 µm[]; (e) Patterns of perovskite dot arrays with diameters of 1 µm, 2 µm, and 3 µm[]

    IJP是一种基于压电陶瓷的图案化技术,其基本原理是通过控制电压变化来控制压电陶瓷的形变量,从而产生足够大的机械压力,将墨水喷出。通常情况下,通过压电喷墨打印得到的墨滴尺寸在25~125 µm之间[]。然而,由于墨滴尺寸的限制,通过IJP难以制备高分辨率的QD荧光阵列。此外,IJP所需的墨水粘度一般需要小于20 cp[],这限制了墨水选择的范围。相比之下,AJP采用墨水通过超声波雾化或气动雾化产生气溶胶[],通过惰性气流将气溶胶传输至喷嘴处,并精确沉积到基板上[]。与IJP相比,AJP支持的墨水粘度范围更广 (0.5~1000 cp)[],且喷射的墨水由直径为0.4~7 µm的液滴组成,因此可以制备出更高分辨率的图案,更适用于高精度QD图案化的需求[]。Kim等人利用AJP技术成功制备了高效率的PQD颜色转换层,如图9(a)所示[]。该复合材料由PQD和金属氧化物 (Al2O3、SiO2)组成。当金属氧化物颗粒嵌入PQD基质中时,金属氧化物能够在薄膜内部产生散射效应,从而有效防止蓝光泄漏并增强PQD颜色转换层的发光强度。与没有金属氧化物颗粒作为散射剂的PQD颜色转换层相比,使用SiO2颗粒的发光强度分别增加了42.4% (绿色)和37.4% (红色)。同时,实验证明用于散射效应的嵌入金属氧化物不会影响PQD颜色转换层的稳定性。通过超声波辅助的AJP技术,该团队成功制备了线宽为13 µm的高发光强度、高稳定性的PQD图案,如图9(b)所示。

    为了将墨水从喷嘴喷射到基板上,不同喷墨打印技术采用不同的机制。IJP需要压电陶瓷的形变来克服毛细管力,AJP需要环形鞘气来携带雾化气溶胶,而EHD喷墨打印需要喷嘴尖端和基板之间有足够的电场[]。在EHD喷墨打印中,墨水分子受到喷嘴和基板之间的电场极化作用,高静电应力克服了毛细管力,将墨水中的离子从喷嘴中拉出[]。EHD喷墨打印的喷嘴内径可以小至100 nm。此外,电场线的分布使得墨滴的横向直径最小化,可以产生比喷嘴直径小2至5个数量级的液滴[]。因此,EHD喷墨打印可以通过打印0.001~10 pl范围的液滴实现超高分辨率 (100 nm),应用于更宽的墨水粘度范围 (0.5~10000 cp),通过EHD喷墨打印制备高分辨率PQD阵列在微显示领域有巨大的应用前景,图9(c)展示了EHD喷墨打印示意图。EHD喷墨打印需要在极性体系中进行打印,由于PQD是一种通过离子相互作用结合的化合物,当暴露于潮湿或极性溶剂时,其优异的光电特性会快速退化并电离。韩国成均馆大学的Byun教授团队将钙钛矿的前体溶液与聚丙烯腈聚合物混合来合成印刷油墨,通过EHD喷墨打印实现高分辨率、稳定的PQD图案[]。将钙钛矿的前体溶液与聚丙烯腈聚合物混合,使PNCs体封装在聚丙烯腈聚合物保护壳中,聚丙烯腈可以有效地提高钙钛矿的耐水性和耐溶剂性。此外,限制在聚丙烯腈基体中的钙钛矿具有高度结晶性。如图9(d)所示,所制备的PQD图案尺寸约10 µm,并且在水下可保持20天以上的高稳定性。通过优化EHD喷墨打印的各项参数,该课题组成功制备纳米级尺寸绿色PQD图案,使其成为构建FCCL Micro-LEDs中最有前途的方法之一。除了绿色PQD FCCL外,红色PQD FCCL对于全彩Micro-LEDs也是不可或缺的。混合卤族红色PQD具有高纯度的红光发射特性。然而,由于混合卤族红色PQD固有的低相稳定性,它对环境因素的变化非常敏感。同时,在EHD喷墨打印过程中,卤素离子在高电场作用下容易发生迁移,导致发射峰位置发生变化。厦门大学陈忠教授团队设计了一种双配体稳定的混合卤族红色PQD墨水,用于EHD喷墨打印构建高分辨率红色PQD FCCL[]。将卵磷酯与十二烷硫醇添加到PQD溶液中,通过配体交换替代部分原始OA和OLA配体,卵磷酯作为主要配体可以减少电场对红色PQD的不利影响,而十二烷硫醇作为辅助配体可以钝化PQD表面的卤素空位,如图9(g)所示。双配体稳定的PQD在高电场下保持PL性能,并在不同环境和紫外线照射下表现出高稳定性。利用双配体稳定的混合卤族红色PQD墨水,该团队打印出空间分辨率高达2540每英寸点数 (dots per inch,DPI)的荧光阵列,相应的颜色坐标接近于纯红色的颜色坐标,如图9(e)所示;同时,结合蓝色与绿色PQD墨水,该团队还制备了色彩纯度高、亮度均匀的全彩PQD颜色转换层,用于子像素直径为10 µm的全彩Micro-LED显示器,如图9(f)所示。

    尺寸微缩化与高度集成化使得Micro-LEDs具有LCD和OLED显示技术无法媲美的显示性能。目前,实现全彩化Micro-LEDs的主要方案是红绿蓝三色芯片法和荧光色转换层法。然而,巨量转移技术是制约三色芯片法最大的技术障碍之一,这涉及到其转移芯片的效率、精度和良率等问题。为了满足超高像素密度的显示需求,Micro-LED芯片需要不断缩小,转移芯片的难度急剧增加,制造成本高昂始终是亟待解决的问题。此外,在器件制备工艺过程中引入的侧壁损伤对小尺寸Micro-LED性能的影响不容忽视。近些年来,利用图案化技术制备PQD荧光色转换层以实现Micro-LED全彩化显示得到了广泛关注。然而,PQD自身固有的离子性质和低表面能使得其对外界水、氧、热和光极其敏感。长链表面封端配体的高度解离,导致PQD表面缺陷增加以及颗粒团聚而沉淀,严重影响PQD基Micro-LEDs的显示性能。配体交换、离子掺杂、表面包覆和化学交联等方案被提出,以钝化PQD表面缺陷,增加晶格稳定性,不仅抑制了非辐射复合路径,通过强结合封端配体、晶格调整、有机/无机壳层封装和共价交联,抑制PQD的离子扩散,提高环境稳定性。这四种稳定性方案可以与光刻技术和喷墨打印技术相结合,利用原位或非原位方式,制备高分辨率、高稳定性、高荧光性色转换层,以实现优异的全彩化Micro-LEDs。

    尽管近些年来PQD色转换Micro-LEDs取得了巨大的进展,但仍然存在许多挑战和机遇:1)制备高稳定性、高PLQY的PQD。PQD的稳定性及PLQY对于Micro-LEDs的显示性能至关重要。目前,在保证稳定性的同时通常难以兼顾PQD的PLQY性能。未来的研究需要继续优化PQD的材料性能,探索出更优的解决策略,在保持高PLQY的同时,综合提高PQD的稳定性。2)开发高效、低成本的图案化技术。对于PQD色转换Micro-LEDs而言,高效、低成本的色转换层图案化技术是其商业化应用的关键。传统的图案化技术依旧无法实现PQD色转换层的大规模、低成本制造。未来研究将致力于开发更高效的图案化技术,结合不同图案化技术的优点,实现PQD色转换层的大规模生产。3) 提升Micro-LED器件性能。PQD色转换Micro-LEDs是通过Micro-LED器件激发荧光材料实现全彩显示,Micro-LED器件性能对于实现全彩显示至关重要。由于Micro-LED器件的尺寸效应,制备出高性能的小尺寸Micro-LED器件依旧是一个挑战。未来将不断提升Micro-LED器件的性能,优化其发光效率、热管理和可靠性等。

    感谢厦门大学张荣院士对本文工作提出的建设性意见。

    所有作者声明无利益冲突

  • References

    [1]

    Xiong J H, Hsiang E L, He Z Q, et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives[J]. Light Sci Appl, 2021, 10(1): 216.

    DOI: 10.1038/s41377-021-00658-8

    CrossRef Google Scholar

    [2]

    Yin K, Hsiang E L, Zou J Y, et al. Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications[J]. Light Sci Appl, 2022, 11(1): 161.

    DOI: 10.1038/s41377-022-00851-3

    CrossRef Google Scholar

    [3]

    Jin S X, Li J, Li J Z, et al. Gan microdisk light emitting diodes[J]. Appl Phys Lett, 2000, 76(5): 631−633.

    DOI: 10.1063/1.125841

    CrossRef Google Scholar

    [4]

    Wu T Z, Sher C W, Lin Y, et al. Mini-LED and micro-LED: promising candidates for the next generation display technology[J]. Appl Sci, 2018, 8(9): 1557.

    DOI: 10.3390/app8091557

    CrossRef Google Scholar

    [5]

    Lu T W, Lin Y, Zhang T Q, et al. Self-polarized RGB device realized by semipolar micro-LEDs and perovskite-in-polymer films for backlight applications[J]. Opto-Electron Adv, 2024, 7(3): 230210.

    DOI: 10.29026/oea.2024.230210

    CrossRef Google Scholar

    [6]

    Miao W C, Hsiao F H, Sheng Y J, et al. Microdisplays: mini-LED, micro-OLED, and micro-LED[J]. Adv Opt Mater, 2024, 12(7): 2300112.

    DOI: 10.1002/adom.202300112

    CrossRef Google Scholar

    View full references list
  • Author Information

    • Yan Zijun, yanzijun@stu.xmu.edu.cn On this SiteOn Google Scholar
      • School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian 361000, China
    • Liu Zhong, liuzhong@stu.xmu.edu.cn On this SiteOn Google Scholar
      • School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian 361000, China
    • Yang Xiao On this SiteOn Google Scholar
      • School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian 361000, China
    • Lai Shouqiang On this SiteOn Google Scholar
      • School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian 361000, China
    • Yan Fengyu On this SiteOn Google Scholar
      • Fujian HeYi IOT Technology Co., Zhangzhou, Fujian 363000, China
    • Lin Zongmin On this SiteOn Google Scholar
      • School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian 361000, China
      • Quanzhou Sanan Semiconductor Technology Co., Quanzhou, Fujian 362000, China
    • Lin Yue On this SiteOn Google Scholar
      • School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian 361000, China
      • Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, Fujian 361000, China
    • Lv Yijun On this SiteOn Google Scholar
      • School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian 361000, China
      • Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, Fujian 361000, China
    • Kuo Haochung On this SiteOn Google Scholar
      • Department of Photonics and Graduate Institute of Electro-Optical Engineering, Yang Ming Chiao Tung University, Hsinchu, Taiwan 30010, China
    • Chen Zhong On this SiteOn Google Scholar
      • School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian 361000, China
      • Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, Fujian 361000, China
    • Corresponding author: Wu Tingzhu, wutingzhu@xmu.edu.cn On this SiteOn Google Scholar
      • School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian 361000, China
      • Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, Fujian 361000, China
  • Copyright

    The copyright belongs to the Institute of Optics and Electronics, Chinese Academy of Sciences, but the article content can be freely downloaded from this website and used for free in academic and research work.
  • About this Article

    DOI: 10.12086/oee.2024.240088
    Cite this Article
    Yan Zijun, Liu Zhong, Yang Xiao, Lai Shouqiang, Yan Fengyu, Lin Zongmin, Lin Yue, Lv Yijun, Kuo Haochung, Chen Zhong, Wu Tingzhu. Perovskite quantum dot color conversion Micro-LEDs: progress in stability and patterning. Opto-Electronic Engineering 51, 240088 (2024). DOI: 10.12086/oee.2024.240088
    Download Citation
    Article History
    • Received Date April 11, 2024
    • Revised Date July 04, 2024
    • Accepted Date July 07, 2024
    • Published Date August 19, 2024
    Article Metrics
    Article Views(4048) PDF Downloads(451)
    Share:
  • Related Articles

[1]

Xiong J H, Hsiang E L, He Z Q, et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives[J]. Light Sci Appl, 2021, 10(1): 216.

DOI: 10.1038/s41377-021-00658-8

CrossRef Google Scholar

[2]

Yin K, Hsiang E L, Zou J Y, et al. Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications[J]. Light Sci Appl, 2022, 11(1): 161.

DOI: 10.1038/s41377-022-00851-3

CrossRef Google Scholar

[3]

Jin S X, Li J, Li J Z, et al. Gan microdisk light emitting diodes[J]. Appl Phys Lett, 2000, 76(5): 631−633.

DOI: 10.1063/1.125841

CrossRef Google Scholar

[4]

Wu T Z, Sher C W, Lin Y, et al. Mini-LED and micro-LED: promising candidates for the next generation display technology[J]. Appl Sci, 2018, 8(9): 1557.

DOI: 10.3390/app8091557

CrossRef Google Scholar

[5]

Lu T W, Lin Y, Zhang T Q, et al. Self-polarized RGB device realized by semipolar micro-LEDs and perovskite-in-polymer films for backlight applications[J]. Opto-Electron Adv, 2024, 7(3): 230210.

DOI: 10.29026/oea.2024.230210

CrossRef Google Scholar

[6]

Miao W C, Hsiao F H, Sheng Y J, et al. Microdisplays: mini-LED, micro-OLED, and micro-LED[J]. Adv Opt Mater, 2024, 12(7): 2300112.

DOI: 10.1002/adom.202300112

CrossRef Google Scholar

[7]
[8]

Huang Y G, Tan G J, Gou F W, et al. Prospects and challenges of mini-LED and micro-LED displays[J]. J Soc Inf Disp, 2019, 27(7): 387−401.

DOI: 10.1002/jsid.760

CrossRef Google Scholar

[9]

Lai S Q, Liu S B, Li Z L, et al. Applications of lasers: a promising route toward low-cost fabrication of high-efficiency full-color micro-LED displays[J]. Opto-Electron Sci, 2023, 2(10): 230028.

DOI: 10.29026/oes.2023.230028

CrossRef Google Scholar

[10]

Yang F, Xu Y, Li L, et al. Optical and microstructural characterization of micro-LED with sidewall treatment[J]. J Phys D Appl Phys, 2022, 55(43): 435103.

DOI: 10.1088/1361-6463/ac8bdf

CrossRef Google Scholar

[11]

Park J, Baek W, Geum D M, et al. Understanding the sidewall passivation effects in AlGaInP/GaInP micro-LED[J]. Nanoscale Res Lett, 2022, 17(1): 29.

DOI: 10.1186/s11671-022-03669-5

CrossRef Google Scholar

[12]

Karpov S Y. Carrier localization in InGaN by composition fluctuations: implication to the "green gap"[J]. Photonics Res, 2017, 5(2): A7−A12.

DOI: 10.1364/PRJ.5.0000A7

CrossRef Photonics Res, 2017, 5(2): A7−A12.

" target="_blank">Google Scholar

[13]

Yan Z J, Liu S Y, Sun Y, et al. Atomic layer deposition technology for the development of high-quality, full-colour micro-LED displays[J]. Next Nanotechnol, 2024, 5: 100051.

DOI: 10.1016/j.nxnano.2024.100051

CrossRef Google Scholar

[14]

Lu T W, Lin X S, Guo W A, et al. High-speed visible light communication based on micro-LED: a technology with wide applications in next generation communication[J]. Opto-Electron Sci, 2022, 1(12): 220020.

DOI: 10.29026/oes.2022.220020

CrossRef Google Scholar

[15]

Lee T Y, Huang Y M, Chiang H, et al. Increase in the efficiency of III-nitride micro LEDs by atomic layer deposition[J]. Opt Express, 2022, 30(11): 18552−18561.

DOI: 10.1364/OE.455726

CrossRef Google Scholar

[16]

Wong M S, Kearns J A, Lee C, et al. Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments[J]. Opt Express, 2020, 28(4): 5787−5793.

DOI: 10.1364/OE.384127

CrossRef Google Scholar

[17]

Zhao Y Z, Liang J Q, Zeng Q H, et al. 2000 ppi silicon-based AlGaInP red micro-LED arrays fabricated via wafer bonding and epilayer lift-off[J]. Opt Express, 2021, 29(13): 20217−20228.

DOI: 10.1364/OE.428482

CrossRef Google Scholar

[18]

Yang X, Lin Y, Wu T Z, et al. An overview on the principle of inkjet printing technique and its application in micro-display for augmented/virtual realities[J]. Opto-Electron Adv, 2022, 5(6): 210123.

DOI: 10.29026/oea.2022.210123

CrossRef Google Scholar

[19]

Chaudhary B, Kshetri Y K, Kim H S, et al. Current status on synthesis, properties and applications of CsPbX3 (X = Cl, Br, I) perovskite quantum dots/nanocrystals[J]. Nanotechnology, 2021, 32(50): 502007.

DOI: 10.1088/1361-6528/ac2537

CrossRef Google Scholar

[20]

Wu Y, Li X M, Zeng H B. Highly luminescent and stable halide perovskite nanocrystals[J]. ACS Energy Lett, 2019, 4(3): 673−681.

DOI: 10.1021/acsenergylett.8b02100

CrossRef Google Scholar

[21]

Yan Z J, Ye F S, Xu L Y, et al. Optimum temperature of atomic layer deposition of alumina on CsPbBr3 quantum-dot for optical performance and environmental stability[J]. J Lumin, 2023, 261: 119905.

DOI: 10.1016/j.jlumin.2023.119905

CrossRef Google Scholar

[22]

Shen J H, Wang Y, Zhu Y H, et al. A polymer-coated template-confinement CsPbBr3 perovskite quantum dot composite[J]. Nanoscale, 2021, 13(13): 6586−6591.

DOI: 10.1039/D1NR00201E

CrossRef Google Scholar

[23]

Ho S J, Hsu H C, Yeh C W, et al. Inkjet-printed salt-encapsulated quantum dot film for UV-based RGB color-converted micro-light emitting diode displays[J]. ACS Appl Mater Interfaces, 2020, 12(29): 33346−33351.

DOI: 10.1021/acsami.0c05646

CrossRef Google Scholar

[24]

Bi C H, Kershaw S V, Rogach A L, et al. Improved stability and photodetector performance of CsPbI3 perovskite quantum dots by ligand exchange with aminoethanethiol[J]. Adv Funct Mater, 2019, 29(29): 1902446.

DOI: 10.1002/adfm.201902446

CrossRef Google Scholar

[25]

Bai D L, Zhang J R, Jin Z W, et al. Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2Br solar cells[J]. ACS Energy Lett, 2018, 3(4): 970−978.

DOI: 10.1021/acsenergylett.8b00270

CrossRef Google Scholar

[26]

Hou S C, Guo Y Z, Tang Y G, et al. Synthesis and stabilization of colloidal perovskite nanocrystals by multidentate polymer micelles[J]. ACS Appl Mater Interfaces, 2017, 9(22): 18417−18422.

DOI: 10.1021/acsami.7b03445

CrossRef Google Scholar

[27]

Yang N, Zhu C, Chen Y H, et al. An in situ cross-linked 1D/3D perovskite heterostructure improves the stability of hybrid perovskite solar cells for over 3000 h operation[J]. Energy Environ Sci, 2020, 13(11): 4344−4352.

DOI: 10.1039/D0EE01736A

CrossRef Google Scholar

[28]

Ma T, Chen J, Chen Z Y, et al. Progress in color conversion technology for micro-LED[J]. Adv Mater Technol, 2023, 8(1): 2200632.

DOI: 10.1002/admt.202200632

CrossRef Google Scholar

[29]

Liang S Y, Liu Y F, Ji Z K, et al. High-resolution patterning of perovskite quantum dots via femtosecond laser-induced forward transfer[J]. Nano Lett, 2023, 23(9): 3769−3774.

DOI: 10.1021/acs.nanolett.3c00006

CrossRef Google Scholar

[30]

Zhu L C, Tao J, Li P Y, et al. Microfluidic static droplet generated quantum dot arrays as color conversion layers for full-color micro-LED displays[J]. Nanoscale Adv, 2023, 5(10): 2743−2747.

DOI: 10.1039/D2NA00765G

CrossRef Google Scholar

[31]

Zhao J Y, Chen L X, Li D Z, et al. Large-area patterning of full-color quantum dot arrays beyond 1000 pixels per inch by selective electrophoretic deposition[J]. Nat Commun, 2021, 12(1): 4603.

DOI: 10.1038/s41467-021-24931-x

CrossRef Google Scholar

[32]

Ju M G, Chen M, Zhou Y Y, et al. Toward eco-friendly and stable perovskite materials for photovoltaics[J]. Joule, 2018, 2(7): 1231−1241.

DOI: 10.1016/j.joule.2018.04.026

CrossRef Google Scholar

[33]

Zhou Y Y, Zhao Y X. Chemical stability and instability of inorganic halide perovskites[J]. Energy Environ Sci, 2019, 12(5): 1495−1511.

DOI: 10.1039/C8EE03559H

CrossRef Google Scholar

[34]

Wei Y, Cheng Z Y, Lin J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs[J]. Chem Soc Rev, 2019, 48(1): 310−350.

DOI: 10.1039/C8CS00740C

CrossRef Google Scholar

[35]

Nagabhushana G P, Shivaramaiah R, Navrotsky A. Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites[J]. Proc Natl Acad Sci USA, 2016, 113(28): 7717−7721.

DOI: 10.1073/pnas.1607850113

CrossRef Google Scholar

[36]

Wu C, Zou Y T, Wu T, et al. Improved performance and stability of all-inorganic perovskite light-emitting diodes by antisolvent vapor treatment[J]. Adv Funct Mater, 2017, 27(28): 1700338.

DOI: 10.1002/adfm.201700338

CrossRef Google Scholar

[37]

Guo J, Lu M, Zhang X Y, et al. Highly stable and efficient light-emitting diodes based on orthorhombic γ-CsPbI3 nanocrystals[J]. ACS Nano, 2023, 17(10): 9290−9301.

DOI: 10.1021/acsnano.3c00789

CrossRef Google Scholar

[38]

Sutton R J, Filip M R, Haghighirad A A, et al. Cubic or orthorhombic? Revealing the crystal structure of metastable black-phase CsPbI3 by theory and experiment[J]. ACS Energy Lett, 2018, 3(8): 1787−1794.

DOI: 10.1021/acsenergylett.8b00672

CrossRef Google Scholar

[39]

Lin Y, Fan X T, Yang X, et al. Remarkable black-phase robustness of CsPbI3 nanocrystals sealed in solid SiO2/AlOx sub-micron particles[J]. Small, 2021, 17(50): 2103510.

DOI: 10.1002/smll.202103510

CrossRef Google Scholar

[40]

Ke F, Wang C X, Jia C J, et al. Preserving a robust CsPbI3 perovskite phase via pressure-directed octahedral tilt[J]. Nat Commun, 2021, 12(1): 461.

DOI: 10.1038/s41467-020-20745-5

CrossRef Google Scholar

[41]

Ma S, Kim S H, Jeong B, et al. Strain-mediated phase stabilization: a new strategy for ultrastable α-CsPbI3 perovskite by nanoconfined growth[J]. Small, 2019, 15(21): 1900219.

DOI: 10.1002/smll.201900219

CrossRef Google Scholar

[42]

Steele J A, Jin H D, Dovgaliuk I, et al. Thermal unequilibrium of strained black CsPbI3 thin films[J]. Science, 2019, 365(6454): 679−684.

DOI: 10.1126/science.aax3878

CrossRef Google Scholar

[43]

Moot T, Dikova D R, Hazarika A, et al. Beyond strain: controlling the surface chemistry of CsPbI3 nanocrystal films for improved stability against ambient reactive oxygen species[J]. Chem Mater, 2020, 32(18): 7850−7860.

DOI: 10.1021/acs.chemmater.0c02543

CrossRef Google Scholar

[44]

Hayyan M, Hashim M A, AlNashef I M. Superoxide ion: generation and chemical implications[J]. Chem Rev, 2016, 116(5): 3029−3085.

DOI: 10.1021/acs.chemrev.5b00407

CrossRef Google Scholar

[45]

Chen J S, Liu D Z, Al-Marri M J, et al. Photo-stability of CsPbBr3 perovskite quantum dots for optoelectronic application[J]. Sci China-Mater, 2016, 59(9): 719−727.

DOI: 10.1007/s40843-016-5123-1

CrossRef Google Scholar

[46]

Shwetharani R, Nayak V, Jyothi M S, et al. Review on recent advances of core-shell structured lead halide perovskites quantum dots[J]. J Alloys Compd, 2020, 834, 155246.

DOI: 10.1016/j.jallcom.2020.155246

CrossRef Google Scholar

[47]

Gao Y J, Lin D X, Liu P Y, et al. Interaction mechanism between water molecules and perovskites[J]. Mater Chem Front, 2024, 8(3): 785−799.

DOI: 10.1039/D3QM00969F

CrossRef Google Scholar

[48]

Calvin J J, Brewer A S, Alivisatos A P. The role of organic ligand shell structures in colloidal nanocrystal synthesis[J]. Nat Synth, 2022, 1(2): 127−137.

DOI: 10.1038/s44160-022-00025-4

CrossRef Google Scholar

[49]

He X H, Yin Y L, Tang G, et al. Role of trioctylphosphine in the synthesis of quantum dots: a modulator of nucleation, growth, and solubility[J]. J Phys Chem C, 2023, 127(10): 5021−5028.

DOI: 10.1021/acs.jpcc.2c08346

CrossRef Google Scholar

[50]

Liu M, Tang G, Liu Y, et al. Ligand exchange of quantum dots: a thermodynamic perspective[J]. J Phys Chem Lett, 2024, 15(7): 1975−1984.

DOI: 10.1021/acs.jpclett.3c03413

CrossRef Google Scholar

[51]

Pan J, Quan L N, Zhao Y B, et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering[J]. Adv Mater, 2016, 28(39): 8718−8725.

DOI: 10.1002/adma.201600784

CrossRef Google Scholar

[52]

Huang Y H, Luan W L, Liu M K, et al. DDAB-assisted synthesis of iodine-rich CsPbI3 perovskite nanocrystals with improved stability in multiple environments[J]. J Mater Chem C, 2020, 8(7): 2381−2387.

DOI: 10.1039/C9TC06566K

CrossRef Google Scholar

[53]

Cho S, Kim J, Jeong S M, et al. High-voltage and green-emitting perovskite quantum dot solar cells via solvent miscibility-induced solid-state ligand exchange[J]. Chem Mater, 2020, 32(20): 8808−8818.

DOI: 10.1021/acs.chemmater.0c02102

CrossRef Google Scholar

[54]

Li Y M, Deng M, Zhang X Y, et al. Proton-prompted ligand exchange to achieve high-efficiency CsPbI3 quantum dot light-emitting diodes[J]. Nano-Micro Lett, 2024, 16(1): 105.

DOI: 10.1007/s40820-024-01321-8

CrossRef Google Scholar

[55]

Tyagi P, Srivastava R, Giri L I, et al. Degradation of organic light emitting diode: heat related issues and solutions[J]. Synth Met, 2016, 216: 40−50.

DOI: 10.1016/j.synthmet.2015.10.016

CrossRef Google Scholar

[56]

Wang Y K, Yuan F L, Dong Y T, et al. All-inorganic quantum-dot LEDs based on a phase-stabilized α-CsPbI3 perovskite[J]. Angew Chem Int Ed, 2021, 60(29): 16164−16170.

DOI: 10.1002/anie.202104812

CrossRef Google Scholar

[57]

Chiba T, Hayashi Y, Ebe H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices[J]. Nat Photonics, 2018, 12(11): 681−687.

DOI: 10.1038/s41566-018-0260-y

CrossRef Google Scholar

[58]

Krieg F, Ochsenbein S T, Yakunin S, et al. Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: zwitterionic capping ligands for improved durability and stability[J]. ACS Energy Lett, 2018, 3(3): 641−646.

DOI: 10.1021/acsenergylett.8b00035

CrossRef Google Scholar

[59]

Zeng Z W, Meng Y H, Yang Z X, et al. Efficient CsPbBr3 perovskite light-emitting diodes via novel multi-step ligand exchange strategy based on zwitterionic molecules[J]. ACS Appl Mater Interfaces, 2024, 16(8): 10389−10397.

DOI: 10.1021/acsami.3c17324

CrossRef Google Scholar

[60]

Ding N, Xu W, Zhou D L, et al. Extremely efficient quantum-cutting Cr3+, Ce3+, Yb3+ tridoped perovskite quantum dots for highly enhancing the ultraviolet response of silicon photodetectors with external quantum efficiency exceeding 70%[J]. Nano Energy, 2020, 78: 105278.

DOI: 10.1016/j.nanoen.2020.105278

CrossRef Google Scholar

[61]

Gao Y, Yan C, Peng X D, et al. The metal doping strategy in all inorganic lead halide perovskites: synthesis, physicochemical properties, and optoelectronic applications[J]. Nanoscale, 2021, 13(43): 18010−18031.

DOI: 10.1039/D1NR04706J

CrossRef Google Scholar

[62]

Goldschmidt V M. Die gesetze der krystallochemie[J]. Naturwissenschaften, 1926, 14(21): 477−485.

DOI: 10.1007/BF01507527

CrossRef Google Scholar

[63]

Dunlap-Shohl W A, Zhou Y Y, Padture N P, et al. Synthetic approaches for halide perovskite thin films[J]. Chem Rev, 2019, 119(5): 3193−3295.

DOI: 10.1021/acs.chemrev.8b00318

CrossRef Google Scholar

[64]

Ju M G, Dai J, Ma L, et al. Lead-free mixed tin and germanium perovskites for photovoltaic application[J]. J Am Chem Soc, 2017, 139(23): 8038−8043.

DOI: 10.1021/jacs.7b04219

CrossRef Google Scholar

[65]

Travis W, Glover E N K, Bronstein H, et al. On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system[J]. Chem Sci, 2016, 7(7): 4548−4556.

DOI: 10.1039/C5SC04845A

CrossRef Google Scholar

[66]

Yao Z, Zhao W G, Chen S J, et al. Mn doping of CsPbI3 film towards high-efficiency solar cell[J]. ACS Appl Energy Mater, 2020, 3(6): 5190−5197.

DOI: 10.1021/acsaem.9b02468

CrossRef Google Scholar

[67]

Linaburg M R, McClure E T, Majher J D, et al. Cs1– xRb xPbCl3 and Cs1– xRb xPbBr3 solid solutions: understanding octahedral tilting in lead halide perovskites[J]. Chem Mater, 2017, 29(8): 3507−3514.

DOI: 10.1021/acs.chemmater.6b05372

CrossRef Google Scholar

[68]

Wu H, Yang Y, Zhou D C, et al. Rb+ cations enable the change of luminescence properties in perovskite (Rb xCs1− xPbBr3) quantum dots[J]. Nanoscale, 2018, 10(7): 3429−3437.

DOI: 10.1039/C7NR07776A

CrossRef Google Scholar

[69]

Bi C H, Wang S X, Li Q, et al. Thermally stable copper(Ⅱ)-doped cesium lead halide perovskite quantum dots with strong blue emission[J]. J Phys Chem Lett, 2019, 10(5): 943−952.

DOI: 10.1021/acs.jpclett.9b00290

CrossRef Google Scholar

[70]

Mondal N, De A, Samanta A. Achieving near-unity photoluminescence efficiency for blue-violet-emitting perovskite nanocrystals[J]. ACS Energy Lett, 2019, 4(1): 32−39.

DOI: 10.1021/acsenergylett.8b01909

CrossRef Google Scholar

[71]

Zhang Y Q, Tu D T, Wang L P, et al. Transition metal ion-doped cesium lead halide perovskite nanocrystals: doping strategies and luminescence design[J]. Mater Chem Front, 2024, 8(1): 192−209.

DOI: 10.1039/D3QM00691C

CrossRef Google Scholar

[72]

Litvin A P, Margaryan I V, Yin W X, et al. B-site doping of metal halide perovskite nanoplatelets influences their optical properties[J]. Adv Opt Mater, 2024, 12(8): 2301001.

DOI: 10.1002/adom.202301001

CrossRef Google Scholar

[73]

Dutta A, Pradhan N. Phase-stable red-emitting CsPbI3 nanocrystals: successes and challenges[J]. ACS Energy Lett, 2019, 4(3): 709−719.

DOI: 10.1021/acsenergylett.9b00138

CrossRef Google Scholar

[74]

Behera R K, Dutta A, Ghosh D, et al. Doping the smallest shannon radii transition metal ion Ni(Ⅱ) for stabilizing α-CsPbI3 perovskite nanocrystals[J]. J Phys Chem Lett, 2019, 10(24): 7916−7921.

DOI: 10.1021/acs.jpclett.9b03306

CrossRef Google Scholar

[75]

Liu M L, Jiang N Z, Huang H, et al. Ni2+-doped CsPbI3 perovskite nanocrystals with near-unity photoluminescence quantum yield and superior structure stability for red light-emitting devices[J]. Chem Eng J, 2021, 413: 127547.

DOI: 10.1016/j.cej.2020.127547

CrossRef Google Scholar

[76]

Yang J N, Song Y, Yao J S, et al. Potassium bromide surface passivation on CsPbI3-xBr x nanocrystals for efficient and stable pure red perovskite light-emitting diodes[J]. J Am Chem Soc, 2020, 142(6): 2956−2967.

DOI: 10.1021/jacs.9b11719

CrossRef Google Scholar

[77]

Hao X R, Liu H L, Ding W G, et al. Zn2+-doped lead-free CsMnCl3 nanocrystals enable efficient red emission with a high photoluminescence quantum yield[J]. J Phys Chem Lett, 2022, 13(21): 4688−4694.

DOI: 10.1021/acs.jpclett.2c01199

CrossRef Google Scholar

[78]

Van Der Stam W, Geuchies J J, Altantzis T, et al. Highly emissive divalent-ion-doped colloidal CsPb1– xM xBr3 perovskite nanocrystals through cation exchange[J]. J Am Chem Soc, 2017, 139(11): 4087−4097.

DOI: 10.1021/jacs.6b13079

CrossRef Google Scholar

[79]

Chiba T, Sato J, Ishikawa S, et al. Neodymium chloride-doped perovskite nanocrystals for efficient blue light-emitting devices[J]. ACS Appl Mater Interfaces, 2020, 12(48): 53891−53898.

DOI: 10.1021/acsami.0c11736

CrossRef Google Scholar

[80]

Zhang H H, Wang X, Liao Q, et al. Embedding perovskite nanocrystals into a polymer matrix for tunable luminescence probes in cell imaging[J]. Adv Funct Mater, 2017, 27(7): 1604382.

DOI: 10.1002/adfm.201604382

CrossRef Google Scholar

[81]

Liang P T, Zhang P, Pan A Z, et al. Unusual stability and temperature-dependent properties of highly emissive CsPbBr3 perovskite nanocrystals obtained from in situ crystallization in poly(vinylidene difluoride)[J]. ACS Appl Mater Interfaces, 2019, 11(25): 22786−22793.

DOI: 10.1021/acsami.9b06811

CrossRef Google Scholar

[82]

Yang L, Fu B W, Li X, et al. Poly(vinylidene fluoride)-passivated CsPbBr3 perovskite quantum dots with near-unity photoluminescence quantum yield and superior stability[J]. J Mater Chem C, 2021, 9(6): 1983−1991.

DOI: 10.1039/D0TC05103A

CrossRef Google Scholar

[83]

Dong H R, Zhao H Y, Xuan T T, et al. Constructing perovskite/polymer core/shell nanocrystals with simultaneous high efficiency and stability for mini-LED backlights[J]. ACS Appl Mater Interfaces, 2023, 15(24): 29297−29307.

DOI: 10.1021/acsami.3c04337

CrossRef Google Scholar

[84]

Xiao G J, Wang Y N, Han D, et al. Pressure-induced large emission enhancements of cadmium selenide nanocrystals[J]. J Am Chem Soc, 2018, 140(42): 13970−13975.

DOI: 10.1021/jacs.8b09416

CrossRef Google Scholar

[85]

Zhou Q C, Bai Z L, Lu W G, et al. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights[J]. Adv Mater, 2016, 28(41): 9163−9168.

DOI: 10.1002/adma.201602651

CrossRef Google Scholar

[86]

Wang Y N, He J, Chen H, et al. Ultrastable, highly luminescent organic–inorganic perovskite–polymer composite films[J]. Adv Mater, 2016, 28(48): 10710−10717.

DOI: 10.1002/adma.201603964

CrossRef Google Scholar

[87]

Yang X, Valenzuela C, Zhang X, et al. Robust integration of polymerizable perovskite quantum dots with responsive polymers enables 4D-printed self-deployable information display[J]. Matter, 2023, 6(4): 1278−1294.

DOI: 10.1016/j.matt.2023.02.003

CrossRef Google Scholar

[88]

Trinh C K, Ahmad Z. SiO2-coated lead halide perovskites core-shell and their applications: a mini-review[J]. R Soc Open Sci, 2024, 11(1): 230892.

DOI: 10.1098/rsos.230892

CrossRef Google Scholar

[89]

Yang Y F, Zhang Y J, Li R, et al. Low-temperature atomic layer deposition of double-layer water vapor barrier for high humidity stable perovskite solar cells[J]. Adv Opt Mater, 2023, 11(14): 2300148.

DOI: 10.1002/adom.202300148

CrossRef Google Scholar

[90]

He M D, Zhang Q G, Carulli F, et al. Ultra-stable, solution-processable CsPbBr3-SiO2 nanospheres for highly efficient color conversion in micro light-emitting diodes[J]. ACS Energy Lett, 2023, 8(1): 151−158.

DOI: 10.1021/acsenergylett.2c02062

CrossRef Google Scholar

[91]

Zhou B Z, Liu M J, Wen Y W, et al. Atomic layer deposition for quantum dots based devices[J]. Opto-Electron Adv, 2020, 3(9): 190043.

DOI: 10.29026/oea.2020.190043

CrossRef Google Scholar

[92]

Jing Y, Cao K, Zhou B Z, et al. Two-step hybrid passivation strategy for ultrastable photoluminescence perovskite nanocrystals[J]. Chem Mater, 2020, 32(24): 10653−10662.

DOI: 10.1021/acs.chemmater.0c03831

CrossRef Google Scholar

[93]

Fang F, Liu M J, Chen W, et al. Atomic layer deposition assisted encapsulation of quantum dot luminescent microspheres toward display applications[J]. Adv Opt Mater, 2020, 8(12): 1902118.

DOI: 10.1002/adom.201902118

CrossRef Google Scholar

[94]

Valdesueiro D, Prabhu M K, Guerra-Nunez C, et al. Deposition mechanism of aluminum oxide on quantum dot films at atmospheric pressure and room temperature[J]. J Phys Chem C, 2016, 120(8): 4266−4275.

DOI: 10.1021/acs.jpcc.5b11653

CrossRef Google Scholar

[95]

Xiang Q Y, Zhou B Z, Cao K, et al. Bottom up stabilization of CsPbBr3 quantum dots-silica sphere with selective surface passivation via atomic layer deposition[J]. Chem Mater, 2018, 30(23): 8486−8494.

DOI: 10.1021/acs.chemmater.8b03096

CrossRef Google Scholar

[96]

Bose R, Zheng Y Z, Guo T L, et al. Interface matters: enhanced photoluminescence and long-term stability of zero-dimensional cesium lead bromide nanocrystals via gas-phase aluminum oxide encapsulation[J]. ACS Appl Mater Interfaces, 2020, 12(31): 35598−35605.

DOI: 10.1021/acsami.0c07694

CrossRef Google Scholar

[97]

Wang M, Lei Z Y, Du C, et al. Stabilization of CsPbBr3 nanocrystals via defect passivation and alumina encapsulation for high-power light-emitting diodes[J]. ACS Appl Nano Mater, 2023, 6(8): 6480−6487.

DOI: 10.1021/acsanm.2c04974

CrossRef Google Scholar

[98]

Dong H Y, Zhang C H, Nie W J, et al. Interfacial chemistry triggers ultrafast radiative recombination in metal halide perovskites[J]. Angew Chem Int Ed, 2022, 61(13): e202115875.

DOI: 10.1002/anie.202115875

CrossRef Google Scholar

[99]

Ravi V K, Saikia S, Yadav S, et al. CsPbBr3/ZnS core/shell type nanocrystals for enhancing luminescence lifetime and water stability[J]. ACS Energy Lett, 2020, 5(6): 1794−1796.

DOI: 10.1021/acsenergylett.0c00858

CrossRef Google Scholar

[100]

Chen X M, Zhang F, Ge Y, et al. Centimeter-sized Cs4PbBr6 crystals with embedded CsPbBr3 nanocrystals showing superior photoluminescence: nonstoichiometry induced transformation and light-emitting applications[J]. Adv Funct Mater, 2018, 28(16): 1706567.

DOI: 10.1002/adfm.201706567

CrossRef Google Scholar

[101]

Dutta S K, Bera S, Pradhan N. Why is making epitaxially grown all inorganic perovskite–chalcogenide nanocrystal heterostructures challenging? Some facts and some strategies[J]. Chem Mater, 2021, 33(11): 3868−3877.

DOI: 10.1021/acs.chemmater.1c01000

CrossRef Google Scholar

[102]

Bera S, Pradhan N. Perovskite nanocrystal heterostructures: synthesis, optical properties, and applications[J]. ACS Energy Lett, 2020, 5(9): 2858−2872.

DOI: 10.1021/acsenergylett.0c01449

CrossRef Google Scholar

[103]

Shi J D, Ge W Y, Zhu J F, et al. Core–shell CsPbBr3@CdS quantum dots with enhanced stability and photoluminescence quantum yields for optoelectronic devices[J]. ACS Appl Nano Mater, 2020, 3(8): 7563−7571.

DOI: 10.1021/acsanm.0c01204

CrossRef Google Scholar

[104]

Wu L Z, Hu H C, Xu Y, et al. From nonluminescent Cs4PbX6 (X = Cl, Br, I) nanocrystals to highly luminescent CsPbX3 nanocrystals: water-triggered transformation through a CsX-stripping mechanism[J]. Nano Lett, 2017, 17(9): 5799−5804.

DOI: 10.1021/acs.nanolett.7b02896

CrossRef Google Scholar

[105]

Wang X R, Ding Z W, Huang X Z, et al. Cross-linking strategies for efficient and highly stable perovskite solar cells[J]. J Mater Chem C, 2024, 12(2): 351−387.

DOI: 10.1039/D3TC03183G

CrossRef Google Scholar

[106]

Yin X, Wang Z Y, Zhao Y J, et al. Cross-linking polymerization boosts the performance of perovskite solar cells: from material design to performance regulation[J]. Energy Environ Sci, 2023, 16(10): 4251−4279.

DOI: 10.1039/D3EE01546G

CrossRef Google Scholar

[107]

Liu Y, Sun W S, Xiao J, et al. Cross-linked polymer modified layered double hydroxide nanosheet stabilized CsPbBr3 perovskite quantum dots for white light-emitting diode[J]. Appl Clay Sci, 2022, 229: 106662.

DOI: 10.1016/j.clay.2022.106662

CrossRef Google Scholar

[108]

Xiong P, Gong Y Q, Yang X L, et al. Effect of hydrophobic silica aerogels in-situ on encapsulation the stability of CsPbBr3 quantum dots for white light-emitting diodes[J]. J Alloys Compd, 2023, 938: 168541.

DOI: 10.1016/j.jallcom.2022.168541

CrossRef Google Scholar

[109]

Hsu Y C, You Y H, Au-Duong A N, et al. Fabrication of intrinsic, elastic, self-healing, and luminescent CsPbBr3 quantum dot-polymer composites via thiol–ene cross-linking[J]. ACS Appl Polym Mater, 2022, 4(12): 8987−8995.

DOI: 10.1021/acsapm.2c01352

CrossRef Google Scholar

[110]

Sun S Q, Jia P, Lu M, et al. Enhanced flexibility and stability of emissive layer enable high-performance flexible light-emitting diodes by cross-linking of biomass material[J]. Adv Funct Mater, 2022, 32(33): 2204286.

DOI: 10.1002/adfm.202204286

CrossRef Google Scholar

[111]

Park S Y, Lee S, Yang J, et al. Patterning quantum dots via photolithography: a review[J]. Adv Mater, 2023, 35(41): 2300546.

DOI: 10.1002/adma.202300546

CrossRef Google Scholar

[112]

Lee J, Jo H, Choi M, et al. Recent progress on quantum dot patterning technologies for commercialization of QD-LEDs: current status, future prospects, and exploratory approaches[J]. Small Methods, 2024, 8, 2301224.

DOI: 10.1002/smtd.202301224

CrossRef Google Scholar

[113]

Harwell J, Burch J, Fikouras A, et al. Patterning multicolor hybrid perovskite films via top-down lithography[J]. ACS Nano, 2019, 13(4): 3823−3829.

DOI: 10.1021/acsnano.8b09592

CrossRef Google Scholar

[114]

Jeon S, Lee S Y, Kim S K, et al. All-solution processed multicolor patterning technique of perovskite nanocrystal for color pixel array and flexible optoelectronic devices[J]. Adv Opt Mater, 2020, 8(17): 2000501.

DOI: 10.1002/adom.202000501

CrossRef Google Scholar

[115]

Zhang P P, Yang G L, Li F, et al. Direct in situ photolithography of perovskite quantum dots based on photocatalysis of lead bromide complexes[J]. Nat Commun, 2022, 13(1): 6713.

DOI: 10.1038/s41467-022-34453-9

CrossRef Google Scholar

[116]

Noh S H, Jeong W, Lee K H, et al. Photocrosslinkable zwitterionic ligands for perovskite nanocrystals: self-assembly and high-resolution direct patterning[J]. Adv Funct Mater, 2023, 33(41): 2304004.

DOI: 10.1002/adfm.202304004

CrossRef Google Scholar

[117]

Lin C H, Zeng Q J, Lafalce E, et al. Large-area lasing and multicolor perovskite quantum dot patterns[J]. Adv Opt Mater, 2018, 6(16): 1800474.

DOI: 10.1002/adom.201800474

CrossRef Google Scholar

[118]

Guo W S, Chen J, Ma T, et al. Direct photolithography patterning of quantum dot-polymer[J]. Adv Funct Mater, 2024, 34(10): 2310338.

DOI: 10.1002/adfm.202310338

CrossRef Google Scholar

[119]

Maeng S, Park S J, Lee J, et al. Direct photocatalytic patterning of colloidal emissive nanomaterials[J]. Sci Adv, 2023, 9(33): eadi6950.

DOI: 10.1126/sciadv.adi6950

CrossRef Google Scholar

[120]

Sun W C, Li F, Tao J, et al. Micropore filling fabrication of high resolution patterned PQDs with a pixel size less than 5 μm[J]. Nanoscale, 2022, 14(16): 5994−5998.

DOI: 10.1039/D2NR01115H

CrossRef Google Scholar

[121]

Xuan T T, Shi S C, Wang L, et al. Inkjet-printed quantum dot color conversion films for high-resolution and full-color micro light-emitting diode displays[J]. J Phys Chem Lett, 2020, 11(13): 5184−5191.

DOI: 10.1021/acs.jpclett.0c01451

CrossRef Google Scholar

[122]

Wilkinson N J, Smith M A A, Kay R W, et al. A review of aerosol jet printing–a non-traditional hybrid process for micro-manufacturing[J]. Int J Adv Manuf Technol, 2019, 105(11): 4599−4619.

DOI: 10.1007/s00170-019-03438-2

CrossRef Google Scholar

[123]

Oakley C, Chahal P. Aerosol jet printed quasi-optical terahertz components[J]. IEEE Trans Terahertz Sci Technol, 2018, 8(6): 765−772.

DOI: 10.1109/TTHZ.2018.2873915

CrossRef Google Scholar

[124]

Chen G, Gu Y, Tsang H, et al. The effect of droplet sizes on overspray in aerosol-jet printing[J]. Adv Eng Mater, 2018, 20(8): 1701084.

DOI: 10.1002/adem.201701084

CrossRef Google Scholar

[125]

Kim S, Kang S, Baek S, et al. Highly thin film with aerosol-deposited perovskite quantum dot/metal oxide composite for perfect color conversion and luminance enhancement[J]. Chem Eng J, 2022, 441: 135991.

DOI: 10.1016/j.cej.2022.135991

CrossRef Google Scholar

[126]

Kang G, Lee H, Moon J, et al. Electrohydrodynamic jet-printed MAPbBr3 perovskite/polyacrylonitrile nanostructures for water-stable, flexible, and transparent displays[J]. ACS Appl Nano Mater, 2022, 5(5): 6726−6735.

DOI: 10.1021/acsanm.2c00753

CrossRef Google Scholar

[127]

Yang X, Wang S L, Hou Y Q, et al. Dual-ligand red perovskite ink for electrohydrodynamic printing color conversion arrays over 2540 dpi in near-eye micro-LED display[J]. Nano Lett, 2024, 24(12): 3661−3669.

DOI: 10.1021/acs.nanolett.3c04927

CrossRef Google Scholar

[128]

Laurila M M. Super inkjet printed redistribution layer for a mems device[D]. Tampere: Tampere University of Technology, 2015: 73.

Google Scholar

[129]

Yang X, Yan Z J, Zhong C M, et al. Electrohydrodynamically printed high-resolution arrays based on stabilized CsPbBr3 quantum dot inks[J]. Adv Opt Mater, 2023, 11(9): 2202673.

DOI: 10.1002/adom.202202673

CrossRef Google Scholar

[130]

Chen S W H, Shen C C, Wu T Z, et al. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer[J]. Photonics Res, 2019, 7(4): 416−422.

DOI: 10.1364/PRJ.7.000416

CrossRef Google Scholar

[131]

Wang Q L, Zhang G N, Zhang H Y, et al. High-resolution, flexible, and full-color perovskite image photodetector via electrohydrodynamic printing of ionic-liquid-based ink[J]. Adv Funct Mater, 2021, 31(28): 2100857.

DOI: 10.1002/adfm.202100857

CrossRef Google Scholar

Related Articles
Show full outline

Catalog

    Corresponding author: Wu Tingzhu, wutingzhu@xmu.edu.cn

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Perovskite quantum dot color conversion Micro-LEDs: progress in stability and patterning
    • Figure  1

      PQD-based Micro-LEDs full-color technology and stability solution[23]. (a) Ligand exchange[24]; (b) Ion doping[25]; (c) Surface coating[26]; (d) Chemical cross-linking[27]

    • Figure  2

      (a) Schematic of a typical ABX3 crystal structure of halide perovskite[33] ; (b) Possible pathways for phase transitions of CsPbI3[39] ; (c) Photo-oxidation mechanism of CsPbI3[43]; (d) Schematic of the interaction between water and PNCs[47]; (e) Schematic of photo-induced agglomeration of CsPbBr3[45]

    • Figure  3

      (a) Structure of CsPbI3-DDAB and CsPbI3-OA/OLA[52]; (b) PLQY stability of CsPbI3-DDAB and CsPbI3-OA/OLA[52]; (c) TEM image of CsPbI3-DDAB after 60 days of storage in a dark environment[52]; (d) Strategy of HI-induced in situ exchange strategy of 5AVA ligand with OA/OLA ligand[54]; (e) Schematic of the passivation of amphipathic ionic ligands (sulfobetaine, phosphocholine and γ-aminoacids)[58]; (f) DDAB and DLPS dual ligand passivation strategies[59]; (g) PL stability of three QDs in natural environments[59]

    • Figure  4

      (a) Schematic diagram of in-situ synthesized Ni2+ doped CsPbI3 PQD[75]; (b) Variation of PLQY with storage time for undoped and Ni-doped CsPbI3 PQD[75]; (c) Stabilization mechanism of Zn2+ doped CsMnCl3 PQD[77]; (d) PLQY at different Zn/Mn mass ratios[77]; (e) Process flowchart for the preparation of CsPbBr3 PQDs doped with NdCl3[79]; (f) PLQY stability of CsPbBr3 PQDs with different dopants in a natural environment[79]

    • Figure  5

      (a) Schematic structure of CsPbBr3/LLPDE[83]; (b) Degradation of CsPbBr3 and CsPbBr3/LLPDE in natural environment[83]; (c) Degradation of CsPbBr3 and CsPbBr3/LLPDE under 365 nm light irradiation[83]; (d) Flowchart for preparation of polymerisable CsPbX3 PQD ink[87]; (e) Ligand exchange and ALD-Al2O3 encapsulation flowchart[97]; (f) CsPbBr3/CdS and CsPbBr3/Cs4PbBr6 encapsulation methods and energy maps[103]; (g) Degradation of various QD materials in aqueous environment (left) and 365 nm light environment (right)[103]

    • Figure  6

      (a) Schematic diagram of the preparation of CsPbBr3 perovskite PQD in LHD nanosheets[107]; (b) PL stability of CsPbBr3 and LDH-CP-CsPbBr3 at high temperatures[107]; (c) Schematic diagram of in-situ growth of CsPbBr3 QDs on hydrophobic silica aerogel[108]; (d) PL stability of PQDs after heating at high temperatures for 1 hour[108]; (e) Design schematic of CsPbBr3 PQD composite materials[109]; (f) Fluorescence characteristics of CsPbBr3 PQD composite materials during heating-cooling cycles[109]; (g) PL stability of PQDs with the addition of ethyl cellulose in a natural environment[110]

    • Figure  7

      (a) Schematic diagram of PQD thin film preparation using photolithographic masking method[113]; (b) PQD array with feature sizes as small as 3 µm[113]; (c) Schematic diagram of PQD thin film preparation using photolithographic peeling method[114]; (d) PQD dot array with a radius size of 5 µm[114]; (e) Schematic diagram of in-situ fabrication of PQD patterns using lead bromide complex[115]; (f) PQD fluorescence array with a resolution of up to 2450 PPI [115]; (g) Photopatterning mechanism of PZ ligands[116]; (h) High-resolution PQD pattern with a line spacing of 4 µm[116]

    • Figure  8

      (a) Reaction mechanism between PTMP and PQD (top) and schematic diagram of direct photolithographic fabrication of PQD patterns (bottom)[119]; (b) PQD fluorescence array with a resolution of 12700 PPI[119]; (c) Schematic diagram of PQD fluorescence array prepared by microsphere filling method[120]; (d) High-resolution PQD fluorescence array with pixel size of 2 µm[120]; (e) High-resolution dual-color PQD pattern[120].

    • Figure  9

      (a) Schematic diagram of PQD color conversion layer prepared by aerosol inkjet printing technique[125]; (b) PQD pattern with a line width of 13 µm [125]; (c) Schematic diagram of EHD inkjet printing[126]; (d) PQD pattern with a resolution of 10 µm [126]; (e) Red PQD fluorescence array with a resolution of 2540 DPI [127]; (f) Full-color PQD color conversion layer with subpixel diameter of 10 µm [127]; (g) Schematic diagram of red PQD fluorescence array prepared by ligand exchange and EHD inkjet printing process[127]

    • Figure  10

      (a) Schematic diagram of ink preparation and printing[129]; (b) PQD fluorescence array with a resolution of up to 22718 DPI[129]; (c) Fabrication process of mixed QD nanoring Micro-LED with line width less than 2 µm[130]; (d) QD pattern with a line width of 1.65 µm[130]; (e) Patterns of perovskite dot arrays with diameters of 1 µm, 2 µm, and 3 µm[131]

    • Figure  1
    • Figure  2
    • Figure  3
    • Figure  4
    • Figure  5
    • Figure  6
    • Figure  7
    • Figure  8
    • Figure  9
    • Figure  10