Zhang L Q, Zeng Y, Wu X H, et al. Progress in the research of testing and evaluation techniques for spaceborne gravitational wave telescopes[J]. Opto-Electron Eng, 2024, 51(2): 240027. doi: 10.12086/oee.2024.240027
Citation: Zhang L Q, Zeng Y, Wu X H, et al. Progress in the research of testing and evaluation techniques for spaceborne gravitational wave telescopes[J]. Opto-Electron Eng, 2024, 51(2): 240027. doi: 10.12086/oee.2024.240027

Progress in the research of testing and evaluation techniques for spaceborne gravitational wave telescopes

    Fund Project: This work was supported by National Key R&D Program of China (2021YFC2202200, 2021YFC2202201)
More Information
  • Spaceborne telescopes for gravitational wave detection crucially collimate bidirectional beams in ultra-long interferometric optical paths. The faint optical path changes due to gravitational waves demand pm-level optical path length stability and below 10−10 level backscattered light in the telescopes. The ultra-high-level specifications requirements are out of state-of-the-art testing techniques. The development of testing and evaluation techniques for spaceborne telescopes is a crucial prerequisite for the success of the space gravitational wave detection program. This paper overviews the development of spaceborne gravitational wave detection telescopes, focusing on the optical path length stability and backscattered light testing status, results, and further plans, providing reference in the testing and evaluation of Chinese spaceborne gravitational wave detection telescopes.
  • 加载中
  • [1] The eLISA Consortium. The gravitational universe[Z]. arXiv: 1305.5720, 2013. https://doi.org/10.48550/arXiv.1305.5720.

    Google Scholar

    [2] Hogan C J. Gravitational wave sources from new physics[J]. AIP Conf Proc, 2006, 873(1): 30−40. doi: 10.1063/1.2405019

    CrossRef Google Scholar

    [3] Amaro-Seoane P, Gair J R, Freitag M, et al. Intermediate and extreme mass-ratio inspirals—astrophysics, science applications and detection using LISA[J]. Class Quantum Grav, 2007, 24(17): R113−R169. doi: 10.1088/0264-9381/24/17/R01

    CrossRef Google Scholar

    [4] 程景全, 杨德华. 引力波和引力波望远镜的发展[J]. 天文学进展, 2005, 23(3): 195−204.

    Google Scholar

    Cheng J Q, Yang D H. Progress in gravitational wave detection[J]. Progr Astron, 2005, 23(3): 195−204.

    Google Scholar

    [5] Abramovici A, Althouse W E, Drever R W P, et al. LIGO: The laser interferometer gravitational-wave observatory[J]. Science, 1992, 256(5055): 325−333. doi: 10.1126/science.256.5055.325

    CrossRef Google Scholar

    [6] The LIGO Scientific Collaboration, Aasi J, Abbott B P, et al. Advanced LIGO[J]. Class Quantum Grav, 2015, 32(7): 074001. doi: 10.1088/0264-9381/32/7/074001

    CrossRef Google Scholar

    [7] Acernese F, Agathos M, Agatsuma K, et al. Advanced Virgo: a second-generation interferometric gravitational wave detector[J]. Class Quantum Grav, 2014, 32(2): 024001. doi: 10.1088/0264-9381/32/2/024001

    CrossRef Google Scholar

    [8] Wanner G. Complex optical systems in space: numerical modelling of the heterodyne interferometry of LISA Pathfinder and LISA[D]. Hannover: Gottfried Wilhelm Leibniz Universität, 2010: 1–106. https://doi.org/10.15488/7550.

    Google Scholar

    [9] Jennrich O. LISA technology and instrumentation[J]. Class Quantum Grav, 2009, 26(15): 153001. doi: 10.1088/0264-9381/26/15/153001

    CrossRef Google Scholar

    [10] Bayle J B, Bonga B, Caprini C, et al. Overview and progress on the Laser Interferometer Space Antenna mission[J]. Nat Astron, 2022, 6(12): 1334−1338. doi: 10.1038/s41550-022-01847-0

    CrossRef Google Scholar

    [11] Kawamura S, Ando M, Seto N, et al. Current status of space gravitational wave antenna DECIGO and B-DECIGO[J]. Progr Theoret Exp Phys, 2021, 2021(5): 05A105. doi: 10.1093/ptep/ptab019

    CrossRef Google Scholar

    [12] Luo J, Chen L S, Duan H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Class Quantum Grav, 2016, 33(3): 035010. doi: 10.1088/0264-9381/33/3/035010

    CrossRef Google Scholar

    [13] Luo Z R, Guo Z K, Jin G, et al. A brief analysis to Taiji: Science and technology[J]. Results Phys, 2020, 16: 102918. doi: 10.1016/j.rinp.2019.102918

    CrossRef Google Scholar

    [14] Sanz I E, Heske A, Livas J C. A telescope for LISA–the laser interferometer space antenna[J]. Adv Opt Technol, 2018, 7(6): 395−400. doi: 10.1515/aot-2018-0044

    CrossRef Google Scholar

    [15] Fan Z C, Zhao L J, Cao S Y, et al. High performance telescope system design for the TianQin project[J]. Class Quantum Grav, 2022, 39(19): 195017. doi: 10.1088/1361-6382/ac8b57

    CrossRef Google Scholar

    [16] 王智, 沙巍, 陈哲, 等. 空间引力波探测望远镜初步设计与分析[J]. 中国光学, 2018, 11(1): 132−151. doi: 10.3788/CO.20181101.0131

    CrossRef Google Scholar

    Wang Z, Sha W, Chen Z, et al. Preliminary design and analysis of telescope for space gravitational wave detection[J]. Chin Opt, 2018, 11(1): 132−151. doi: 10.3788/CO.20181101.0131

    CrossRef Google Scholar

    [17] Livas J, Sankar S. Optical telescope design study results[J]. J Phys Conf Ser, 2015, 610(1): 012029. doi: 10.1088/1742-6596/610/1/012029

    CrossRef Google Scholar

    [18] Zhao Y, Shen J, Fang C, et al. Far-field optical path noise coupled with the pointing jitter in the space measurement of gravitational waves[J]. Appl Opt, 2021, 60(2): 438−444. doi: 10.1364/AO.405467

    CrossRef Google Scholar

    [19] Xiao Q, Duan H Z, Ming M, et al. The analysis of the far-field phase and the tilt-to-length error contribution in space-based laser interferometry[J]. Class Quantum Grav, 2023, 40(6): 065009. doi: 10.1088/1361-6382/acbadc

    CrossRef Google Scholar

    [20] Yan H Y, Chen Q F, Wang H, et al. Scattering model for stray light calculations in laser interferometry application to TianQin science interferometer[J]. J Phys Conf Ser, 2023, 2464(1): 012008. doi: 10.1088/1742-6596/2464/1/012008

    CrossRef Google Scholar

    [21] Livas J, Arsenovic P, Catellucci K, et al. Preliminary LISA telescope spacer design[C]//38th COSPAR Scientific Assembly, 2010.

    Google Scholar

    [22] Sanjuán J, Preston A, Korytov D, et al. Carbon fiber reinforced polymer dimensional stability investigations for use on the laser interferometer space antenna mission telescope[J]. Rev Sci Instrum, 2011, 82(12): 124501. doi: 10.1063/1.3662470

    CrossRef Google Scholar

    [23] Sanjuán J, Korytov D, Mueller G, et al. Note: Silicon carbide telescope dimensional stability for space-based gravitational wave detectors[J]. Rev Sci Instrum, 2012, 83(11): 116107. doi: 10.1063/1.4767247

    CrossRef Google Scholar

    [24] Sankar S R, Livas J C. Optical telescope design for a space-based gravitational-wave mission[J]. Proc SPIE, 2014, 9143: 914314. doi: 10.1117/12.2056824

    CrossRef Google Scholar

    [25] Livas J C, Sankar S R. Optical telescope system-level design considerations for a space-based gravitational wave mission[J]. Proc SPIE, 2016, 9904: 99041K. doi: 10.1117/12.2233249

    CrossRef Google Scholar

    [26] Sankar S, Livas J. Testing and characterization of a prototype telescope for the evolved Laser Interferometer Space Antenna (eLISA)[J]. Proc SPIE, 2016, 9904: 99045A. doi: 10.1117/12.2233075

    CrossRef Google Scholar

    [27] Sankar S R, Livas J. Optical alignment and wavefront error demonstration of a prototype LISA telescope[J]. Class Quantum Grav, 2020, 37(6): 065005. doi: 10.1088/1361-6382/ab6adf

    CrossRef Google Scholar

    [28] Verlaan A L, Hogenhuis H, Pijnenburg J, et al. LISA telescope assembly optical stability characterization for ESA[J]. Proc SPIE, 2017, 10564: 105640K.

    Google Scholar

    [29] Kulkarni S, Umińska A A, Sanjuán J, et al. Characterization of dimensional stability for materials used in ultra-stable structures[J]. Proc SPIE, 2021, 11820: 1182008. doi: 10.1117/12.2594661

    CrossRef Google Scholar

    [30] Kulkarni S, Umińska A, Gleason J, et al. Ultrastable optical components using adjustable commercial mirror mounts anchored in a ULE spacer[J]. Appl Opt, 2020, 59(23): 6999−7003. doi: 10.1364/AO.395831

    CrossRef Google Scholar

    [31] Kulkarni S. Technology development for ground verification of dimensional stability of the LISA telescope[D]. Florida: University of Florida, 2022.

    Google Scholar

    [32] Umińska A A, Kulkarni S, Sanjuan J, et al. Ground testing of the LISA telescope[J]. Proc SPIE, 2021, 11820: 118200I. doi: 10.1117/12.2594605

    CrossRef Google Scholar

    [33] Sang B L, Deng X Q, Peng B, et al. Dimensional stability ground test and in-orbit prediction of SiC telescope frame for space gravitational wave detection[J]. IEEE Access, 2022, 10: 21041−21047. doi: 10.1109/ACCESS.2022.3152490

    CrossRef Google Scholar

    [34] Shen J, Zhao Y, Liu H S, et al. Multi-channel thermal deformation interference measurement of the telescope supporting frame in spaceborne gravitational wave detection[J]. Microgr Sci Technol, 2022, 34(4): 59. doi: 10.1007/s12217-022-09980-1

    CrossRef Google Scholar

    [35] Uminska A A, Kulkarni S, Gleason J, et al. Telescope testing for the LISA mission[C]//American Physical Society April Meeting, 2020, 65: 2.

    Google Scholar

    [36] Sang B L, Deng X Q, Tao W, et al. Stray light analysis and suppression of Taiji telescope for space gravitational wave detection based on phase noise requirement[J]. Appl Sci, 2023, 13(5): 2923. doi: 10.3390/app13052923

    CrossRef Google Scholar

    [37] Livas J, LISA Telescope Team. LISA telescope technology development program[C]//American Astronomical Society Meeting Abstracts, 2021: 151.

    Google Scholar

    [38] 王小勇,白绍竣,张倩,等. 空间引力波探测望远镜研究进展[J]. 光电工程, 2023, 50(11): 230219. doi: 10.12086/oee.2023.230219

    CrossRef Google Scholar

    Wang X Y, Bai S J, Zhang Q, et al. Research progress of telescopes for space-based gravitational wave missions[J]. Opto-Electron Eng, 2023, 50(11): 230219. doi: 10.12086/oee.2023.230219

    CrossRef Google Scholar

    [39] 范纹彤, 赵宏超, 范磊, 等. 空间引力波探测望远镜系统技术初步分析[J]. 中山大学学报(自然科学版), 2021, 60(1-2): 178−185. doi: 10.13471/j.cnki.acta.snus.2020.11.02.2020B111

    CrossRef Google Scholar

    Fan W T, Zhao H C, Fan L, et al. Preliminary analysis of space gravitational wave detection telescope system technology[J]. Acta Sci Nat Univ Sunyat, 2021, 60(1-2): 178−185. doi: 10.13471/j.cnki.acta.snus.2020.11.02.2020B111

    CrossRef Google Scholar

    [40] 李博宏, 罗健, 丘敏艳, 等. 引力波探测望远镜超低热变形桁架支撑结构设计技术[J]. 光电工程, 2023, 50(11): 230155. doi: 10.12086/oee.2023.230155

    CrossRef Google Scholar

    Li B H, Luo J, Qiu M Y, et al. Design technology of the truss support structure of the ultra-low thermal deformation gravitational wave detection telescope[J]. Opto-Electron Eng, 2023, 50(11): 230155. doi: 10.12086/oee.2023.230155

    CrossRef Google Scholar

    [41] 范子超,谈昊,莫言,等. 基于离轴四反的空间引力波探测激光发射望远镜设计[J]. 光电工程, 2023, 50(11): 230194. doi: 10.12086/oee.2023.230194

    CrossRef Google Scholar

    Fan Z C, Tan H, Mo Y, et al. Design theory and method of off-axis four-mirror telescope for space-based gravitational-wave mission[J]. Opto-Electron Eng, 2023, 50(11): 230194. doi: 10.12086/oee.2023.230194

    CrossRef Google Scholar

    [42] Sasso C P, Mana G, Mottini S. Coupling of wavefront errors and jitter in the LISA interferometer: far-field propagation[J]. Class Quantum Grav, 2018, 35(18): 185013. doi: 10.1088/1361-6382/aad7f5

    CrossRef Google Scholar

    [43] Vinet J Y, Christensen N, Dinu-Jaeger N, et al. LISA telescope: phase noise due to pointing jitter[J]. Class Quantum Grav, 2019, 36(20): 205003. doi: 10.1088/1361-6382/ab3a16

    CrossRef Google Scholar

    [44] Chen Z W, Leng R K, Yan C X, et al. Analysis of telescope wavefront aberration and optical path stability in space gravitational wave detection[J]. Appl Sci, 2022, 12(24): 12697. doi: 10.3390/app122412697

    CrossRef Google Scholar

    [45] Zhao Y, Shen J, Fang C, et al. Tilt-to-length noise coupled by wavefront errors in the interfering beams for the space measurement of gravitational waves[J]. Opt Express, 2020, 28(17): 25545−25561. doi: 10.1364/OE.397097

    CrossRef Google Scholar

    [46] Sasso C P, Mana G, Mottini S. The LISA interferometer: impact of stray light on the phase of the heterodyne signal[J]. Class Quantum Grav, 2019, 36(7): 075015. doi: 10.1088/1361-6382/ab0a15

    CrossRef Google Scholar

    [47] Verlaan A L, Lucarelli S. Lisa telescope assembly optical stability characterization for ESA[J]. Proc SPIE, 2017, 10563: 105634C. doi: 10.1117/12.2304092

    CrossRef Google Scholar

    [48] Weise D, Marenaci P, Weimer P, et al. Opto-mechanical architecture of the LISA instrument[J]. Proc SPIE, 2017, 10566: 1056611. doi: 10.1117/12.2308192

    CrossRef Google Scholar

    [49] Jersey K, Zhang Y Q, Harley-Trochimczyk I, et al. Design, fabrication, and testing of an optical truss interferometer for the LISA telescope[J]. Proc SPIE, 2021, 11820: 118200L. doi: 10.1117/12.2594738

    CrossRef Google Scholar

    [50] 赵凯, 范纹彤, 海宏文, 等. 望远镜光程稳定性测量方案设计及噪声理论分析[J]. 光电工程, 2023, 50(11): 230158. doi: 10.12086/oee.2023.230158

    CrossRef Google Scholar

    Zhao K, Fan W T, Hai H W, et al. Design of optical path stability measurement scheme and theoretical analysis of noise in telescope[J]. Opto-Electron Eng, 2023, 50(11): 230158. doi: 10.12086/oee.2023.230158

    CrossRef Google Scholar

    [51] Spector A, Mueller G. Back-reflection from a Cassegrain telescope for space-based interferometric gravitational-wave detectors[J]. Class Quantum Grav, 2012, 29(20): 205005. doi: 10.1088/0264-9381/29/20/205005

    CrossRef Google Scholar

    [52] Sankar S R, Livas J C. Initial progress with numerical modelling of scattered light in a candidate eLISA telescope[J]. J. Phys. Conf. Ser., 2015, 610(1): 012031. doi: 10.1088/1742-6596/610/1/012031

    CrossRef Google Scholar

    [53] Bush Z R, Barke S, Hollis H, et al. Coherent detection of ultraweak electromagnetic fields[J]. Phys Rev D, 2019, 99(2): 022001. doi: 10.1103/PhysRevD.99.022001

    CrossRef Google Scholar

    [54] 张耘豪,钟哲强,张彬. 空间引力波探测系统中超光滑光学元件表面散射特性分析[J]. 光电工程, 2023, 50(11): 230222. doi: 10.12086/oee.2023.230222

    CrossRef Google Scholar

    Zhang Y H, Zhong Z Q, Zhang B. Analysis of surface scattering characteristics of ultra-smooth optical components in gravitational wave detection system[J]. Opto-Electron Eng, 2023, 50(11): 230222. doi: 10.12086/oee.2023.230222

    CrossRef Google Scholar

    [55] 徐节速, 胡中文, 徐腾, 等. 激光引力波望远镜镜面杂散光测试方法[J]. 红外与激光工程, 2019, 48(9): 913001. doi: 10.3788/IRLA201948.0913001

    CrossRef Google Scholar

    Xu J S, Hu Z W, Xu T, et al. Test method of stray light on mirror surface of laser gravitational wave telescope[J]. Infrar Laser Eng, 2019, 48(9): 913001. doi: 10.3788/IRLA201948.0913001

    CrossRef Google Scholar

    [56] 龚元, 李斌成. 连续激光光腔衰荡法精确测量高反射率[J]. 中国激光, 2006, 33(9): 1247−1250. doi: 10.3321/j.issn:0258-7025.2006.09.021

    CrossRef Google Scholar

    Gong Y, Li B C. Continuous-wave cavity ring-down technique for accurate measurement of high reflectivity[J]. Chin. J. Lasers, 2006, 33(9): 1247−1250. doi: 10.3321/j.issn:0258-7025.2006.09.021

    CrossRef Google Scholar

    [57] 李斌成, 龚元. 光腔衰荡高反射率测量技术综述[J]. 激光与光电子学进展, 2010, 47(2): 021203. doi: 10.3788/lop47.021203

    CrossRef Google Scholar

    Li B C, Gong Y. Review of cavity ring-down techniques for high reflectivity measurements[J]. Laser Optoelectron Progr, 2010, 47(2): 021203. doi: 10.3788/lop47.021203

    CrossRef Google Scholar

  • Gravitational waves are spacetime oscillations radiated outward by accelerating mass objects. Significant astronomical events in the universe, such as the merging of massive black holes, emit stronger gravitational waves. Detecting gravitational waves allows for a deeper study of the laws governing celestial bodies and the origins of the universe, making accurate detection crucial. Gravitational wave detection technology utilizes Michelson interferometers to convert the extremely faint spacetime fluctuations caused by gravitational waves into measurable changes in optical path length. Recently, ground-based large Michelson interferometers have achieved direct detection of high-frequency gravitational waves. However, the detection of low-frequency gravitational waves, which is equally important, is not feasible on the ground due to arm length and ground noise issues. This necessitates the construction of ultra-large Michelson interferometers in space for low-frequency gravitational wave detection. Spaceborne gravitational wave detection telescopes play a vital role in collimating bidirectional beams in ultra-long interferometric optical paths in space. The extremely subtle changes in optical path caused by gravitational waves impose high demands for pm-level optical path length stability and below 10−10 level backscattered light in these telescopes. The ultra-high level index requirements exceed the precision limits of current ground testing techniques for telescopes. To ensure that spaceborne telescopes maintain their ultra-high design performance in the orbital environment, developing testing and evaluation techniques for these key indicators is a crucial prerequisite for the success of the space gravitational wave detection program. This paper provides an overview of the development of spaceborne gravitational wave detection telescopes, both domestically and internationally. It focuses on the current status and some test results of optical path length stability and backscattered light testing of telescopes under development, as well as further testing plans, providing a reference for the testing and evaluation of Chinese space gravitational wave detection space-borne telescopes.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Tables(2)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint