Liu B, Xie X, Gan X T, et al. Applications and progress of all-metal metasurfaces in phase manipulation of electromagnetic waves[J]. Opto-Electron Eng, 2023, 50(9): 230119. doi: 10.12086/oee.2023.230119
Citation: Liu B, Xie X, Gan X T, et al. Applications and progress of all-metal metasurfaces in phase manipulation of electromagnetic waves[J]. Opto-Electron Eng, 2023, 50(9): 230119. doi: 10.12086/oee.2023.230119

Applications and progress of all-metal metasurfaces in phase manipulation of electromagnetic waves

    Fund Project: Project supported by National Natural Science Foundation of China (62105263) and Postdoctoral Innovation Talent Support Program of China (BX20220388)
More Information
  • All-metal metasurfaces are structural arrays composed of sub-wavelength metal units, which exhibit high efficiency and large bandwidth in phase manipulation of electromagnetic waves. Compared with metal-dielectric hybrid metasurfaces, all-metal metasurfaces have excellent thermal and mechanical properties, such as high-temperature resistance, high strength, and good ductility, which enable them to be applied in extremely complex environments such as high temperature and high pressure. In this paper, we briefly summarize the recent research progress based on all-metal metasurfaces. We mainly introduce their applications in the construction of highly efficient and multi-functional planar optical devices as well as multi-spectrum electromagnetic stealth, and provide an outlook of the future direction of its development.
  • 加载中
  • [1] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333−337. doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [2] Tang D L, Chen L, Liu J, et al. Achromatic metasurface doublet with a wide incident angle for light focusing[J]. Opt Express, 2020, 28(8): 12209−12218. doi: 10.1364/OE.392197

    CrossRef Google Scholar

    [3] 侯海生, 王光明, 李海鹏, 等. 超薄宽带平面聚焦超表面及其在高增益天线中的应用[J]. 物理学报, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701

    CrossRef Google Scholar

    Hou H S, Wang G M, Li H P, et al. Ultra-thin broadband flat metasurface to focus electromagnetic waves and its application in high-gain antenna[J]. Acta Phys Sin, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701

    CrossRef Google Scholar

    [4] Lei Y S, Zhang Q, Guo Y H, et al. Snapshot multi-dimensional computational imaging through a liquid crystal diffuser[J]. Photonics Res, 2023, 11(3): B111−B124. doi: 10.1364/PRJ.476317

    CrossRef Google Scholar

    [5] Luo X G, Pu M B, Li X, et al. Broadband spin hall effect of light in single nanoapertures[J]. Light Sci Appl, 2017, 6(6): e16276. doi: 10.1038/lsa.2016.276

    CrossRef Google Scholar

    [6] Burch J, Di Falco A. Surface topology specific metasurface holograms[J]. ACS Photonics, 2018, 5(5): 1762−1766. doi: 10.1021/acsphotonics.7b01449

    CrossRef Google Scholar

    [7] Zhang C M, Dong F L, Intaravanne Y, et al. Multichannel metasurfaces for anticounterfeiting[J]. Phys Rev Appl, 2019, 12(3): 034028. doi: 10.1103/PhysRevApplied.12.034028

    CrossRef Google Scholar

    [8] Zhang X H, Li X, Jin J J, et al. Polarization-independent broadband meta-holograms: via polarization-dependent nanoholes[J]. Nanoscale, 2018, 10(19): 9304−9310. doi: 10.1039/C7NR08428E

    CrossRef Google Scholar

    [9] Chen D B, Yang J B, He X, et al. Tunable polarization-preserving vortex beam generator based on diagonal cross-shaped graphene structures at terahertz frequency[J]. Adv Opt Mater, 2023, 11(14): 2300182. doi: 10.1002/adom.202300182

    CrossRef Google Scholar

    [10] Liang Y, Dong Y Y, Jin Y X, et al. Terahertz vortex beams generated by the ring-arranged multilayer transmissive metasurfaces[J]. Infrared Phys Technol, 2022, 127: 104441. doi: 10.1016/j.infrared.2022.104441

    CrossRef Google Scholar

    [11] Akram M R, Bai X D, Jin R H, et al. Photon spin hall effect-based ultra-thin transmissive metasurface for efficient generation of OAM waves[J]. IEEE Trans Antennas Propag, 2019, 67(7): 4650−4658. doi: 10.1109/TAP.2019.2905777

    CrossRef Google Scholar

    [12] Guo Y H, Huang Y J, Li X, et al. Polarization-controlled broadband accelerating beams generation by single catenary-shaped metasurface[J]. Adv Opt Mater, 2019, 7: 1900503. doi: 10.1002/adom.201900503

    CrossRef Google Scholar

    [13] Monticone F, Estakhri N M, Alù A. Full control of nanoscale optical transmission with a composite metascreen[J]. Phys Rev Lett, 2013, 110(20): 203903. doi: 10.1103/PhysRevLett.110.203903

    CrossRef Google Scholar

    [14] Qin F, Ding L, Zhang L, et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light[J]. Sci Adv, 2016, 2(1): e1501168. doi: 10.1126/sciadv.1501168

    CrossRef Google Scholar

    [15] Akram M R, Mehmood M Q, Bai X D, et al. High efficiency ultrathin transmissive metasurfaces[J]. Adv Opt Mater, 2019, 7(11): 1801628. doi: 10.1002/adom.201801628

    CrossRef Google Scholar

    [16] Jing X F, Gui X C, Zhou P W, et al. Physical explanation of Fabry–Pérot cavity for broadband bilayer metamaterials polarization converter[J]. J Light Technol, 2018, 36(12): 2322−2327. doi: 10.1109/JLT.2018.2808339

    CrossRef Google Scholar

    [17] Pfeiffer C, Grbic A. Millimeter-wave transmitarrays for wavefront and polarization control[J]. IEEE Trans Microwave Theory Tech, 2013, 61(12): 4407−4417. doi: 10.1109/TMTT.2013.2287173

    CrossRef Google Scholar

    [18] Bouchard F, De Leon I, Schulz S A, et al. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges[J]. Appl Phys Lett, 2014, 105(10): 101905. doi: 10.1063/1.4895620

    CrossRef Google Scholar

    [19] Chen M L N, Jiang L J, Sha W E I. Orbital angular momentum generation and detection by geometric-phase based metasurfaces[J]. Appl Sci, 2018, 8(3): 362. doi: 10.3390/app8030362

    CrossRef Google Scholar

    [20] Yao B S, Zang X F, Li Z, et al. Dual-layered metasurfaces for asymmetric focusing[J]. Photonics Res, 2020, 8(6): 830−843. doi: 10.1364/PRJ.387672

    CrossRef Google Scholar

    [21] Xue C H, Lou Q, Chen Z N. Broadband double-layered Huygens’ Metasurface lens antenna for 5G millimeter-wave systems[J]. IEEE Trans Antennas Propag, 2020, 68(3): 1468−1476. doi: 10.1109/TAP.2019.2943440

    CrossRef Google Scholar

    [22] Lin D M, Fan P Y, Hasman E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298−302. doi: 10.1126/science.1253213

    CrossRef Google Scholar

    [23] Fang C Z, Yang Q Y, Yuan Q C, et al. High-Q resonances governed by the quasi-bound states in the continuum in all-dielectric metasurfaces[J]. Opto-Electron Adv, 2021, 4(6): 200030. doi: 10.29026/oea.2021.200030

    CrossRef Google Scholar

    [24] Yue Z, Li J T, Li J, et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion[J]. Opto-Electron Sci, 2022, 1(3): 210014. doi: 10.29026/oes.2022.210014

    CrossRef Google Scholar

    [25] Li J T, Wang G C, Yue Z, et al. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization[J]. Opto-Electron Adv, 2022, 5(1): 210062. doi: 10.29026/oea.2022.210062

    CrossRef Google Scholar

    [26] Liu Z Q, Tan W Y, Fu G L, et al. Multipolar silicon-based resonant meta-surface for electro-optical modulation and sensing[J]. Opt Lett, 2023, 48(11): 2969−2972. doi: 10.1364/OL.489627

    CrossRef Google Scholar

    [27] Zhu L, Dong L, Guo J, et al. Polarization conversion based on Mie-type electromagnetically induced transparency (EIT) effect in all-dielectric metasurface[J]. Plasmonics, 2018, 13(6): 1971−1976. doi: 10.1007/s11468-018-0712-8

    CrossRef Google Scholar

    [28] Chen M, Cai J J, Sun W, et al. High-efficiency all-dielectric metasurfaces for broadband polarization conversion[J]. Plasmonics, 2018, 13(1): 21−29. doi: 10.1007/s11468-016-0479-8

    CrossRef Google Scholar

    [29] Chen J, Wang D P, Si G Y, et al. Planar peristrophic multiplexing metasurfaces[J]. Opto-Electron Adv, 2023, 6: 220141. doi: 10.29026/oea.2023.220141

    CrossRef Google Scholar

    [30] Zheng G X, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nat Nanotechnol, 2015, 10(4): 308−312. doi: 10.1038/nnano.2015.2

    CrossRef Google Scholar

    [31] Jiang S, Chen C, Zhang H L, et al. Achromatic electromagnetic metasurface for generating a vortex wave with orbital angular momentum (OAM)[J]. Opt Express, 2018, 26(5): 6466−6477. doi: 10.1364/OE.26.006466

    CrossRef Google Scholar

    [32] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束[J]. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055

    CrossRef Google Scholar

    Li X N, Zhou L, Zhao G Z. Terahertz vortex beam generation based on reflective metasurface[J]. Acta Phys Sin, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055

    CrossRef Google Scholar

    [33] 孙胜, 阳棂均, 沙威. 基于反射超表面的偏馈式涡旋波产生装置[J]. 物理学报, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681

    CrossRef Google Scholar

    Sun S, Yang L J, Sha W. Offset-fed vortex wave generator based on reflective metasurface[J]. Acta Phys Sin, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681

    CrossRef Google Scholar

    [34] Ye W M, Li X, Liu J, et al. Phenomenological modeling of nonlinear holograms based on metallic geometric metasurfaces[J]. Opt Express, 2016, 24(22): 25805−25815. doi: 10.1364/OE.24.025805

    CrossRef Google Scholar

    [35] Gong Z J, Wu C, Fang C Q, et al. Broadband efficient vortex beam generation with metallic helix array[J]. Appl Phys Lett, 2018, 113(7): 071104. doi: 10.1063/1.5039804

    CrossRef Google Scholar

    [36] Xie X, Li X, Pu M B, et al. Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion[J]. Adv Funct Mater, 2018, 28(14): 1706673. doi: 10.1002/adfm.201706673

    CrossRef Google Scholar

    [37] Xie X, Liu K P, Pu M B, et al. All-metallic geometric metasurfaces for broadband and high-efficiency wavefront manipulation[J]. Nanophotonics, 2020, 9(10): 3209−3215. doi: 10.1515/nanoph-2019-0415

    CrossRef Google Scholar

    [38] Liu Z Q, Liu G Q, Fu G L, et al. All-metal meta-surfaces for narrowband light absorption and high performance sensing[J]. J Phys D Appl Phys, 2016, 49(44): 445104. doi: 10.1088/0022-3727/49/44/445104

    CrossRef Google Scholar

    [39] Hulkkonen H, Sah A, Niemi T. All-metal broadband optical absorbers based on block copolymer nanolithography[J]. ACS Appl Mater Interfaces, 2018, 10(49): 42941−42947. doi: 10.1021/acsami.8b17294

    CrossRef Google Scholar

    [40] Mattiucci N, Trimm R, D'Aguanno G, et al. Tunable, narrow-band, all-metallic microwave absorber[J]. Appl Phys Lett, 2012, 101(14): 141115. doi: 10.1063/1.4757282

    CrossRef Google Scholar

    [41] Li Z Y, Butun S, Aydin K. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces[J]. ACS Nano, 2014, 8(8): 8242−8248. doi: 10.1021/nn502617t

    CrossRef Google Scholar

    [42] Liu Z Q, Liu G Q, Liu X S, et al. Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity[J]. Nanotechnology, 2015, 26(23): 235702. doi: 10.1088/0957-4484/26/23/235702

    CrossRef Google Scholar

    [43] Zhang K, Deng R X, Song L X, et al. Broadband near-infrared absorber based on all metallic metasurface[J]. Materials, 2019, 12(21): 3568. doi: 10.3390/ma12213568

    CrossRef Google Scholar

    [44] Liu Y M, Zhang X. Metasurfaces for manipulating surface plasmons[J]. Appl Phys Lett, 2013, 103(14): 141101. doi: 10.1063/1.4821444

    CrossRef Google Scholar

    [45] 刘梦蛟, 李添悦, 戈钦, 等. 多功能超构表面的相位调控机制及研究进展[J]. 光学学报, 2022, 42(21): 2126004. doi: 10.3788/AOS202242.2126004

    CrossRef Google Scholar

    Liu M J, Li T Y, Ge Q, et al. Phase modulation mechanism and research progress of multifunctional metasurfaces[J]. Acta Opt Sin, 2022, 42(21): 2126004. doi: 10.3788/AOS202242.2126004

    CrossRef Google Scholar

    [46] Xie X, Pu M B, Huang Y J, et al. Heat resisting metallic meta-skin for simultaneous microwave broadband scattering and infrared invisibility based on catenary optical field[J]. Adv Mater Technol, 2019, 4(2): 1800612. doi: 10.1002/admt.201800612

    CrossRef Google Scholar

    [47] Cai J X, Zhang F, Pu M B, et al. Broadband and high-efficiency photonic spin-Hall effect with all-metallic metasurfaces[J]. Opt Express, 2022, 30(9): 14938−14947. doi: 10.1364/OE.455381

    CrossRef Google Scholar

    [48] Xie X, Pu M B, Liu K P, et al. High-efficiency and tunable circular-polarization beam splitting with a liquid-filled all-metallic catenary meta-mirror[J]. Adv Mater Technol, 2019, 4(7): 1900334. doi: 10.1002/admt.201900334

    CrossRef Google Scholar

    [49] Chen L, Shao Z L, Liu J, et al. Reflective quasi-continuous metasurface with continuous phase control for light focusing[J]. Materials, 2021, 14(9): 2147. doi: 10.3390/ma14092147

    CrossRef Google Scholar

    [50] Cai J X, Zhang F, Pu M B, et al. All-metallic high-efficiency generalized pancharatnam–berry phase metasurface with chiral meta-atoms[J]. Nanophotonics, 2022, 11(9): 1961−1968. doi: 10.1515/nanoph-2021-0811

    CrossRef Google Scholar

    [51] Luo J, Wang Y H, Pu M B, et al. Multiple rotational doppler effect induced by a single spinning meta-atom[J]. Phys Rev Appl, 2023, 19(4): 044064. doi: 10.1103/PhysRevApplied.19.044064

    CrossRef Google Scholar

    [52] Luo X G. Catenary Optics[M]. Singapore: Springer, 2019.https://doi.org/10.1007/978-981-13-4818-1.

    Google Scholar

    [53] Pu M B, Ma X L, Guo Y H, et al. Theory of microscopic meta-surface waves based on catenary optical fields and dispersion[J]. Opt Express, 2018, 26(15): 19555−19562. doi: 10.1364/OE.26.019555

    CrossRef Google Scholar

    [54] 李雄, 马晓亮, 罗先刚. 超表面相位调控原理及应用[J]. 光电工程, 2017, 44(3): 255−275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    CrossRef Google Scholar

    Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electron Eng, 2017, 44(3): 255−275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    CrossRef Google Scholar

    [55] Xie X, Pu M B, Jin J J, et al. Generalized pancharatnam-berry phase in rotationally symmetric meta-atoms[J]. Phys Rev Lett, 2021, 126(18): 183902. doi: 10.1103/PhysRevLett.126.183902

    CrossRef Google Scholar

    [56] Guo Y H, Pu M B, Zhang F, et al. Classical and generalized geometric phase in electromagnetic metasurfaces[J]. Photonics Insights, 2022, 1(1): R03. doi: 10.3788/PI.2022.R03

    CrossRef Google Scholar

    [57] Pu M B, Li X, Ma X L, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Sci Adv, 2015, 1(9): e1500396. doi: 10.1126/sciadv.1500396

    CrossRef Google Scholar

    [58] Zhang M, Pu M B, Zhang F, et al. Plasmonic metasurfaces for switchable photonic spin– orbit interactions based on phase change materials[J]. Adv Sci, 2018, 5(10): 1800835. doi: 10.1002/advs.201800835

    CrossRef Google Scholar

    [59] Guo Y H, Ma X L, Pu M B, et al. High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens[J]. Adv Opt Mater, 2018, 6(19): 1800592. doi: 10.1002/adom.201800592

    CrossRef Google Scholar

    [60] Guo Y H, Zhang Z J, Pu M B, et al. Spoof plasmonic metasurfaces with catenary dispersion for two-dimensional wide-angle focusing and imaging[J]. iScience, 2019, 21: 145−156. doi: 10.1016/j.isci.2019.10.019

    CrossRef Google Scholar

    [61] Zhao L, Liu H, He Z H, et al. All-metal frequency-selective absorber/emitter for laser stealth and infrared stealth[J]. Appl Opt, 2018, 57(8): 1757−1764. doi: 10.1364/AO.57.001757

    CrossRef Google Scholar

    [62] Song M W, Li X, Pu M B, et al. Color display and encryption with a plasmonic polarizing metamirror[J]. Nanophotonics, 2018, 7(1): 323−331. doi: 10.1515/nanoph-2017-0062

    CrossRef Google Scholar

    [63] Zhou X T, Jin R C, Wang J, et al. All-metal metasurface polarization converter in visible region with an in-band function[J]. Appl Phys Express, 2019, 12(9): 092010. doi: 10.7567/1882-0786/ab3c0c

    CrossRef Google Scholar

    [64] Yan J C, Li Z K, Zhang Y, et al. Trapped-mode resonances in all-metallic metasurfaces comprising rectangular-hole dimers with broken symmetry[J]. J Appl Phys, 2019, 126(21): 213102. doi: 10.1063/1.5128520

    CrossRef Google Scholar

    [65] Wu P H, Wang Y Y, Yi Z, et al. A near-infrared multi-band perfect absorber based on 1D gold grating fabry-perot structure[J]. IEEE Access, 2020, 8: 72742−72748. doi: 10.1109/ACCESS.2020.2983394

    CrossRef Google Scholar

    [66] Majumder B, Sankar V S, Meena H. Design of an artificially engineered all metallic lens antenna[C]//2020 IEEE Asia-Pacific Microwave Conference (APMC), Hong Kong, China, 2020: 1072–1074. https://doi.org/10.1109/APMC47863.2020.9331698.

    Google Scholar

    [67] Li L X, Zong X Y, Liu Y F. All-metallic metasurfaces towards high-performance magneto-plasmonic sensing devices[J]. Photonics Res, 2020, 8(11): 1742−1748. doi: 10.1364/PRJ.399926

    CrossRef Google Scholar

    [68] Shi Y Y, Yang R, Dai C J, et al. Broadband diffraction-free on-chip propagation along hybrid metallic grating metasurfaces in the visible frequency[J]. J Phys D Appl Phys, 2021, 54(4): 044001. doi: 10.1088/1361-6463/abbfc6

    CrossRef Google Scholar

    [69] Xiong X, Wang X, Wang Z H, et al. Constructing an achromatic polarization-dependent bifocal metalens with height-gradient metastructures[J]. Opt Lett, 2021, 46(6): 1193−1196. doi: 10.1364/OL.414668

    CrossRef Google Scholar

    [70] Du W J, Lou Z L, Chen X S, et al. Multifunctional metasurfaces integrating near-field display and 3D holography[J]. J Phys D Appl Phys, 2022, 55(10): 105102. doi: 10.1088/1361-6463/ac3b11

    CrossRef Google Scholar

    [71] Zhang F, Pu M B, Gao P, et al. Simultaneous full-color printing and holography enabled by centimeter-scale plasmonic metasurfaces[J]. Adv Sci, 2020, 7(10): 1903156. doi: 10.1002/advs.201903156

    CrossRef Google Scholar

    [72] Cheng Y Z, Yang D R, Li X C. Broadband reflective dual-functional polarization convertor based on all-metal metasurface in visible region[J]. Phys B Condens Matter, 2022, 640: 414047. doi: 10.1016/J.PHYSB.2022.414047

    CrossRef Google Scholar

    [73] Wang M C, Cheng Y Z, Wu L. Ultra-broadband high-efficiency circular polarization conversion and terahertz wavefront manipulation based on an all-metallic reflective metasurface[J]. Appl Opt, 2022, 61(16): 4833−4842. doi: 10.1364/AO.454099

    CrossRef Google Scholar

    [74] Zhu J F, Liao S W, Xue Q. 3-D printed millimeter-wave metal-only dual-band circularly polarized reflectarray[J]. IEEE Trans Antennas Propag, 2022, 70(10): 9357−9364. doi: 10.1109/TAP.2022.3184483

    CrossRef Google Scholar

    [75] Bai G D, Ma Q, Cao W K, et al. Manipulation of electromagnetic and acoustic wave behaviors via shared digital coding metallic metasurfaces[J]. Adv Intell Syst, 2019, 1(5): 1900038. doi: 10.1002/aisy.201900038

    CrossRef Google Scholar

    [76] 褚宏晨, 赖耘. 基于超表面的超薄隐身器件[J]. 红外与激光工程, 2020, 49(9): 20201038. doi: 10.3788/IRLA20201038

    CrossRef Google Scholar

    Chu H C, Lai Y. Ultrathin invisibility cloaks based on metasurfaces[J]. Infrared Laser Eng, 2020, 49(9): 20201038. doi: 10.3788/IRLA20201038

    CrossRef Google Scholar

    [77] Ji C, Peng J Q, Yuan L M, et al. All-ceramic coding metastructure for high-temperature RCS reduction[J]. Adv Eng Mater, 2022, 24(8): 2101503. doi: 10.1002/adem.202101503

    CrossRef Google Scholar

    [78] Li Z G, Wang W, Rosenmann D, et al. All-metal structural color printing based on aluminum plasmonic metasurfaces[J]. Opt Express, 2016, 24(18): 20472−20480. doi: 10.1364/OE.24.020472

    CrossRef Google Scholar

    [79] 徐翠莲, 孟跃宇, 王甲富, 等. 光学透明红外与雷达兼容隐身复合超表面[J]. 光子学报, 2021, 50(4): 0416001. doi: 10.3788/gzxb20215004.0416001

    CrossRef Google Scholar

    Xu C L, Meng Y Y, Wang J F, et al. Optically transparent hybrid metasurfaces for low infrared emission and wideband microwave absorption[J]. Acta Photonica Sin, 2021, 50(4): 0416001. doi: 10.3788/gzxb20215004.0416001

    CrossRef Google Scholar

    [80] Yang K, Shi S Q, Li C X, et al. Broadband stealth devices based on encoded metamaterials[J]. Appl Opt, 2022, 61(34): 10171−10177. doi: 10.1364/AO.471262

    CrossRef Google Scholar

    [81] Huang S N, Fan Q, Xu C L, et al. A visible-light-transparent camouflage-compatible flexible metasurface for infrared-radar stealth applications[J]. J Phys D Appl Phys, 2021, 54(1): 015001. doi: 10.1088/1361-6463/abb728

    CrossRef Google Scholar

    [82] Buhara E, Ghobadi A, Ozbay E. Adaptive visible and short-wave infrared camouflage using a dynamically tunable metasurface[J]. Opt Lett, 2021, 46(19): 4777−4780. doi: 10.1364/OL.439435

    CrossRef Google Scholar

    [83] Feng X D, Xie X, Pu M B, et al. Hierarchical metamaterials for laser-infrared-microwave compatible camouflage[J]. Opt Express, 2020, 28(7): 9445−9453. doi: 10.1364/OE.388335

    CrossRef Google Scholar

    [84] Feng X D, Pu M B, Zhang F, et al. Large-area low-cost multiscale-hierarchical metasurfaces for multispectral compatible camouflage of dual-band lasers, infrared and microwave[J]. Adv Funct Mater, 2022, 32(36): 2205547. doi: 10.1002/adfm.202205547

    CrossRef Google Scholar

    [85] Huang J K, Wang Y T, Yuan L M, et al. Large-area and flexible plasmonic metasurface for laser–infrared compatible camouflage[J]. Laser Photonics Rev, 2023, 17(3): 2200616. doi: 10.1002/LPOR.202200616

    CrossRef Google Scholar

  • Classical optical devices use changes in the refractive index of material or surface shape to accumulate the optical path difference like lenses and prisms, thus converging, diverging, and deflecting the light beam. To overcome these limitations of the large size and heavy weight of classical optical devices, researchers have proposed a new structure known as metasurfaces, an array of artificial designs at subwavelength scales. Metasurfaces can change the amplitude and phase of electromagnetic waves at interfaces, which provides a means to realize novel optical phenomena and the planarization and lightweight of optical devices. As a result, a series of metasurface-based flat devices have been demonstrated in the past few decades, including beam deflectors, holographic displays, vortex beam generators, etc. However, the efficiency of the initially designed functional devices based on metasurfaces is too low and is greatly limited in practical applications. To improve efficiency, low-loss dielectric materials with high refractive indexes are used to design metasurfaces, and the working efficiency is significantly improved. Additionally, metal–insulator–metal hybrid reflective metasurfaces can remarkably enhance efficiency. A new reflective metasurface composed of all-metal structures has been proposed recently. All-metal metasurfaces exhibit higher energy efficiency and larger operating bandwidth in phase modulation than metal-insulator-metal structures. Besides, since metallic materials generally have excellent thermal and mechanical properties, such as high-temperature resistance, high strength, and good flexibility, all-metal metasurfaces have the potential for applications in highly complex environments such as high temperatures and high pressures. All-metal metasurfaces have been applied in various fields of holographic display, beam deflection, electromagnetic invisibility, etc. In this paper, we focus on the applications of all-metal metasurfaces in planar optical devices and electromagnetic stealth and provide an outlook on its future development direction.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint