Li Y Y, Fan J Y, Jiang T L, et al. Review of the development of optical coherence tomography imaging navigation technology in ophthalmic surgery[J]. Opto-Electron Eng, 2023, 50(1): 220027. doi: 10.12086/oee.2023.220027
Citation: Li Y Y, Fan J Y, Jiang T L, et al. Review of the development of optical coherence tomography imaging navigation technology in ophthalmic surgery[J]. Opto-Electron Eng, 2023, 50(1): 220027. doi: 10.12086/oee.2023.220027

Review of the development of optical coherence tomography imaging navigation technology in ophthalmic surgery

    Fund Project: National Key R&D Program of China Fund (2022YFC2400771), and Jiangsu Science and Technology Plan Program Fund (BK20220263)
More Information
  • During ophthalmic microsurgery, the visualization of internal structures is limited by traditional intraoperative imaging methods due to their lack of depth information. Optical coherence tomography (OCT) is a non-contact tomographic imaging technique that is widely used for intraoperative navigation in ophthalmic surgery because of its ability to provide depth information, non-invasiveness, fast imaging, and high resolution. Typical OCT devices can be divided into handheld OCT and microscope-integrated OCT. This article briefly introduces the mechanism and development of time domain OCT and fourier domain OCT, reviews the development of OCT ophthalmic surgical navigation devices, introduces representative OCT systems in each category, describes and compares their imaging principles, performance, advantages, and disadvantages, and finally concludes with a summary and outlook on the applications of this technology in ophthalmic surgery.
  • 加载中
  • [1] Scott A W, Farsiu S, Enyedi L B, et al. Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device[J]. Am J Ophthalmol, 2009, 147(2): 364−373.e2. doi: 10.1016/j.ajo.2008.08.010

    CrossRef Google Scholar

    [2] Carrasco-Zevallos O M, Viehland C, Keller B, et al. Review of intraoperative optical coherence tomography: technology and applications[J]. Biomed Opt Express, 2017, 8(3): 1607−1637. doi: 10.1364/BOE.8.001607

    CrossRef Google Scholar

    [3] Muijzer M B, Schellekens P A W J, Beckers H J M, et al. Clinical applications for intraoperative optical coherence tomography: a systematic review[J]. Eye, 2022, 36(2): 379−391. doi: 10.1038/s41433-021-01686-9

    CrossRef Google Scholar

    [4] Zhang S L, Liu L W, Ren S, et al. Recent advances in nonlinear optics for bio-imaging applications[J]. Opto-Electron Adv, 2020, 3(10): 200003. doi: 10.29026/oea.2020.200003

    CrossRef Google Scholar

    [5] Fercher A F, Drexler W, Hitzenberger C K, et al. Optical coherence tomography-principles and applications[J]. Rep Prog Phys, 2003, 66(2): 239−303. doi: 10.1088/0034-4885/66/2/204

    CrossRef Google Scholar

    [6] Choma M A, Sarunic M V, Yang C, et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography[J]. Opt Express, 2003, 11(18): 2183−2189. doi: 10.1364/OE.11.002183

    CrossRef Google Scholar

    [7] Leitgeb R, Hitzenberger C K, Fercher A F. Performance of Fourier domain vs. time domain optical coherence tomography[J]. Opt Express, 2003, 11(8): 889−894. doi: 10.1364/OE.11.000889

    CrossRef Google Scholar

    [8] Drexler W, Fujimoto J G. State-of-the-art retinal optical coherence tomography[J]. Prog Retin Eye Res, 2008, 27(1): 45−88. doi: 10.1016/j.preteyeres.2007.07.005

    CrossRef Google Scholar

    [9] Suter M J, Tearney G J, Oh W Y, et al. Progress in intracoronary optical coherence tomography[J]. IEEE J Sel Top Quantum Electron, 2010, 16(4): 706−714. doi: 10.1109/JSTQE.2009.2035333

    CrossRef Google Scholar

    [10] Yoo H, Kim J W, Shishkov M, et al. Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo[J]. Nat Med, 2011, 17(12): 1680−1684. doi: 10.1038/nm.2555

    CrossRef Google Scholar

    [11] Gora M J, Sauk J S, Carruth R W, et al. Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure[J]. Nat Med, 2013, 19(2): 238−240. doi: 10.1038/nm.3052

    CrossRef Google Scholar

    [12] Boppart S A, Luo W, Marks D L, et al. Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer[J]. Breast Cancer Res Treat, 2004, 84(2): 85−97. doi: 10.1023/B:BREA.0000018401.13609.54

    CrossRef Google Scholar

    [13] Kang J Q, Zhu R, Sun Y X, et al. Pencil-beam scanning catheter for intracoronary optical coherence tomography[J]. Opto-Electron Adv, 2022, 5(3): 200050. doi: 10.29026/oea.2022.200050

    CrossRef Google Scholar

    [14] 刘敬璇, 樊金宇, 汪权, 等. SS-OCTA对黑色素瘤皮肤结构和血管的成像实验[J]. 光电工程, 2020, 47(2): 190239. doi: 10.12086/oee.2020.190239

    CrossRef Google Scholar

    Liu J X, Fan J Y, Wang Q, et al. Imaging of skin structure and vessels in melanoma by swept source optical coherence tomography angiography[J]. Opto-Electron Eng, 2020, 47(2): 190239. doi: 10.12086/oee.2020.190239

    CrossRef Google Scholar

    [15] Wilkins J R, Puliafito C A, Hee M R, et al. Characterization of epiretinal membranes using optical coherence tomography[J]. Ophthalmology, 1996, 103(12): 2142−2151. doi: 10.1016/S0161-6420(96)30377-1

    CrossRef Google Scholar

    [16] Massin P, Allouch C, Haouchine B, et al. Optical coherence tomography of idiopathic macular epiretinal membranes before and after surgery[J]. Am J Ophthalmol, 2000, 130(6): 732−739. doi: 10.1016/S0002-9394(00)00574-2

    CrossRef Google Scholar

    [17] Kasuga Y, Arai J, Akimoto M, et al. Optical coherence tomograghy to confirm early closure of macular holes[J]. Am J Ophthalmol, 2000, 130(5): 675−676. doi: 10.1016/S0002-9394(00)00587-0

    CrossRef Google Scholar

    [18] Behrens A, Stark W J, Pratzer K A, et al. Dynamics of small-incision clear cornea wounds after phacoemulsification surgery using optical coherence tomography in the early postoperative period[J]. J Refract Surg, 2008, 24(1): 46−49. doi: 10.3928/1081597X-20080101-07

    CrossRef Google Scholar

    [19] Wei J, Hellmuth T. Optical coherence tomography assisted ophthalmologic surgical microscope: 5493109[P]. 1996-02-20.

    Google Scholar

    [20] Boppart S A, Bouma B E, Pitris C, et al. Intraoperative assessment of microsurgery with three-dimensional optical coherence tomography[J]. Radiology, 1998, 208(1): 81−86. doi: 10.1148/radiology.208.1.9646796

    CrossRef Google Scholar

    [21] Tao Y K, Ehlers J P, Toth C A, et al. Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery[J]. Opt Lett, 2010, 35(20): 3315−3317. doi: 10.1364/OL.35.003315

    CrossRef Google Scholar

    [22] Fujimoto J, Swanson E. The development, commercialization, and impact of optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): OCT1−OCT13. doi: 10.1167/iovs.16-19963

    CrossRef Google Scholar

    [23] Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178−1181. doi: 10.1126/science.1957169

    CrossRef Google Scholar

    [24] Danielson B L, Boisrobert C Y. Absolute optical ranging using low coherence interferometry[J]. Appl Opt, 1991, 30(21): 2975−2979. doi: 10.1364/AO.30.002975

    CrossRef Google Scholar

    [25] 陆冬筱, 房文汇, 李玉瑶, 等. 光学相干层析成像技术原理及研究进展[J]. 中国光学, 2020, 13(5): 919−935. doi: 10.37188/CO.2020-0037

    CrossRef Google Scholar

    Lu D X, Fang W H, Li Y Y, et al. Optical coherence tomography: principles and recent developments[J]. Chin Opt, 2020, 13(5): 919−935. doi: 10.37188/CO.2020-0037

    CrossRef Google Scholar

    [26] Qin J, An L. Optical coherence tomography for ophthalmology imaging[M]//Wei X B, Gu B B. Optical Imaging in Human Disease and Biological Research. Singapore: Springer, 2021: 197–216. doi: 10.1007/978-981-15-7627-0_10.

    Google Scholar

    [27] Szydlo J, Delachenal N, Gianotti R, et al. Air-turbine driven optical low-coherence reflectometry at 28. 6-kHz scan repetition rate[J]. Opt Commun, 1998, 154(1–3): 1−4. doi: 10.1016/S0030-4018(98)00303-4

    CrossRef Google Scholar

    [28] Alexopoulos P, Madu C, Wollstein G, et al. The development and clinical application of innovative optical ophthalmic imaging techniques[J]. Front Med, 2022, 9: 891369. doi: 10.3389/FMED.2022.891369

    CrossRef Google Scholar

    [29] Rollins A M, Kulkarni M D, Yazdanfar S, et al. In vivo video rate optical coherence tomography[J]. Opt Express, 1998, 3(6): 219−229. doi: 10.1364/OE.3.000219

    CrossRef Google Scholar

    [30] 姜盼秋, 汪平河. 谱域光学相干层析系统的色散补偿技术研究[J]. 光电工程, 2021, 48(10): 210184. doi: 10.12086/oee.2021.210184

    CrossRef Google Scholar

    Jiang P Q, Wang P H. Research on dispersion compensation technology for SD-OCT system[J]. Opto-Electron Eng, 2021, 48(10): 210184. doi: 10.12086/oee.2021.210184

    CrossRef Google Scholar

    [31] Tearney G J, Bouma B E, Fujimoto J G. High-speed phase-and group-delay scanning with a grating-based phase control delay line[J]. Opt Lett, 1997, 22(23): 1811−1813. doi: 10.1364/OL.22.001811

    CrossRef Google Scholar

    [32] Potsaid B, Baumann B, Huang D, et al. Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100, 000 to 400, 000 axial scans per second[J]. Opt Express, 2010, 18(19): 20029−20048. doi: 10.1364/OE.18.020029

    CrossRef Google Scholar

    [33] Cense B, Nassif N A, Chen T C, et al. Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography[J]. Opt Express, 2004, 12(11): 2435−2447. doi: 10.1364/OPEX.12.002435

    CrossRef Google Scholar

    [34] An L, Li P, Shen T T, et al. High speed spectral domain optical coherence tomography for retinal imaging at 500, 000 A-lines per second[J]. Biomed Opt Express, 2011, 2(10): 2770−2783. doi: 10.1364/BOE.2.002770

    CrossRef Google Scholar

    [35] Gora M, Karnowski K, Szkulmowski M, et al. Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range[J]. Opt Express, 2009, 17(17): 14880−14894. doi: 10.1364/OE.17.014880

    CrossRef Google Scholar

    [36] Chinn S R, Swanson E A, Fujimoto J G. Optical coherence tomography using a frequency-tunable optical source[J]. Opt Lett, 1997, 22(5): 340−342. doi: 10.1364/OL.22.000340

    CrossRef Google Scholar

    [37] Monroy G L, Won J, Spillman Jr D R, et al. Clinical translation of handheld optical coherence tomography: practical considerations and recent advancements[J]. J Biomed Opt, 2017, 22(12): 121715. doi: 10.1117/1.JBO.22.12.121715

    CrossRef Google Scholar

    [38] Chen X, Tai V, McGeehan B, et al. Repeatability and reproducibility of axial and lateral measurements on handheld optical coherence tomography systems compared with tabletop system[J]. Transl Vis Sci Technol, 2020, 9(11): 25. doi: 10.1167/tvst.9.11.25

    CrossRef Google Scholar

    [39] Boppart S A, Bouma B E, Pitris C, et al. Forward-imaging instruments for optical coherence tomography[J]. Opt Lett, 1997, 22(21): 1618−1620. doi: 10.1364/OL.22.001618

    CrossRef Google Scholar

    [40] Swanson E A, Izatt J A, Hee M R, et al. In vivo retinal imaging by optical coherence tomography[J]. Opt Lett, 1993, 18(21): 1864−1866. doi: 10.1364/OL.18.001864

    CrossRef Google Scholar

    [41] Radhakrishnan S, Rollins A M, Roth J E, et al. Real-time optical coherence tomography of the anterior segment at 1310 nm[J]. Arch Ophthalmol, 2001, 119(8): 1179−1185. doi: 10.1001/archopht.119.8.1179

    CrossRef Google Scholar

    [42] Lu C D, Kraus M F, Potsaid B, et al. Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror[J]. Biomed Opt Express, 2014, 5(1): 293−311. doi: 10.1364/BOE.5.000293

    CrossRef Google Scholar

    [43] Brown W J, Buckland E L, Izatt J A. Portable optical coherence tomography (OCT) devices and related systems: 8064989[P]. 2011-11-22.

    Google Scholar

    [44] Maldonado R S, Izatt J A, Sarin N, et al. Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children[J]. Invest Ophthalmol Vis Sci, 2010, 51(5): 2678−2685. doi: 10.1167/iovs.09-4403

    CrossRef Google Scholar

    [45] Dayani P N, Maldonado R, Farsiu S, et al. Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery[J]. Retina, 2009, 29(10): 1457−1468. doi: 10.1097/IAE.0b013e3181b266bc

    CrossRef Google Scholar

    [46] Jung W, Kim J, Jeon M, et al. Handheld optical coherence tomography scanner for primary care diagnostics[J]. IEEE Trans Biomed Eng, 2011, 58(3): 741−744. doi: 10.1109/TBME.2010.2096816

    CrossRef Google Scholar

    [47] Riazi-Esfahani M, Khademi M R, Mazloumi M, et al. Macular surgery using intraoperative spectral domain optical coherence tomography[J]. J Ophthalmic Vis Res, 2015, 10(3): 309. doi: 10.4103/2008-322X.170355

    CrossRef Google Scholar

    [48] Pichi F, Alkabes M, Nucci P, et al. Intraoperative SD-OCT in macular surgery[J]. Ophthalmic Surg Lasers Imaging, 2012, 43(S6): S54−S60. doi: 10.3928/15428877-20121001-08

    CrossRef Google Scholar

    [49] Yeow J T W, Yang V X D, Chahwan A, et al. Micromachined 2-D scanner for 3-D optical coherence tomography[J]. Sens Actuators A Phys, 2005, 117(2): 331−340. doi: 10.1016/j.sna.2004.06.021

    CrossRef Google Scholar

    [50] Jung W, Zhang J, Wang L, et al. Three-dimensional optical coherence tomography employing a 2-axis microelectromechanical scanning mirror[J]. IEEE J Sel Top Quantum Electron, 2005, 11(4): 806−810. doi: 10.1109/JSTQE.2005.857683

    CrossRef Google Scholar

    [51] Aguirre A D, Herz P R, Chen Y, et al. Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and En face imaging[J]. Opt Express, 2007, 15(5): 2445−2453. doi: 10.1364/OE.15.002445

    CrossRef Google Scholar

    [52] Grulkowski I, Liu J J, Potsaid B, et al. Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers[J]. Biomed Opt Express, 2012, 3(11): 2733−2751. doi: 10.1364/BOE.3.002733

    CrossRef Google Scholar

    [53] Grulkowski I, Liu J J, Potsaid B, et al. High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source[J]. Opt Lett, 2013, 38(5): 673−675. doi: 10.1364/OL.38.000673

    CrossRef Google Scholar

    [54] Nankivil D, Waterman G, LaRocca F, et al. Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe[J]. Biomed Opt Express, 2015, 6(11): 4516−4528. doi: 10.1364/BOE.6.004516

    CrossRef Google Scholar

    [55] LaRocca F, Nankivil D, DuBose T, et al. In vivo cellular-resolution retinal imaging in infants and children using an ultracompact handheld probe[J]. Nat Photonics, 2016, 10(9): 580−584. doi: 10.1038/nphoton.2016.141

    CrossRef Google Scholar

    [56] Asami T, Terasaki H, Ito Y, et al. Development of a fiber-optic optical coherence tomography probe for intraocular use[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): OCT568−OCT574. doi: 10.1167/iovs.15-18853

    CrossRef Google Scholar

    [57] Joos K M, Shen J H. Miniature real-time intraoperative forward-imaging optical coherence tomography probe[J]. Biomed Opt Express, 2013, 4(8): 1342−1350. doi: 10.1364/BOE.4.001342

    CrossRef Google Scholar

    [58] Song C, Park D Y, Gehlbach P L, et al. Fiber-optic OCT sensor guided “SMART” micro-forceps for microsurgery[J]. Biomed Opt Express, 2013, 4(7): 1045−1050. doi: 10.1364/BOE.4.001045

    CrossRef Google Scholar

    [59] Cheon G W, Huang Y, Cha J, et al. Accurate real-time depth control for CP-SSOCT distal sensor based handheld microsurgery tools[J]. Biomed Opt Express, 2015, 6(5): 1942−1953. doi: 10.1364/BOE.6.001942

    CrossRef Google Scholar

    [60] Song C, Gehlbach P L, Kang J U. Active tremor cancellation by a “smart” handheld vitreoretinal microsurgical tool using swept source optical coherence tomography[J]. Opt Express, 2012, 20(21): 23414−23421. doi: 10.1364/OE.20.023414

    CrossRef Google Scholar

    [61] Yu H R, Shen J H, Shah R J, et al. Evaluation of microsurgical tasks with OCT-guided and/or robot-assisted ophthalmic forceps[J]. Biomed Opt Express, 2015, 6(2): 457−472. doi: 10.1364/BOE.6.000457

    CrossRef Google Scholar

    [62] Binder S, Falkner-Radler C I, Hauger C, et al. Feasibility of intrasurgical spectral-domain optical coherence tomography[J]. Retina, 2011, 31(7): 1332−1336. doi: 10.1097/IAE.0b013e3182019c18

    CrossRef Google Scholar

    [63] Posarelli C, Sartini F, Casini G, et al. What is the impact of intraoperative microscope-integrated OCT in ophthalmic surgery? Relevant applications and outcomes. A systematic review[J]. J Clin Med, 2020, 9(6): 1682. doi: 10.3390/jcm9061682

    CrossRef Google Scholar

    [64] Lankenau E, Klinger D, Winter C, et al. Combining optical coherence tomography (OCT) with an operating microscope[C]//Advances in Medical Engineering, 2007: 343–348. doi: 10.1007/978-3-540-68764-1_57.

    Google Scholar

    [65] Ehlers J P. Intraoperative optical coherence tomography: past, present, and future[J]. Eye, 2016, 30(2): 193−201. doi: 10.1038/eye.2015.255

    CrossRef Google Scholar

    [66] Geerling G, Müller M, Winter C, et al. Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery[J]. Arch Ophthalmol, 2005, 123(2): 253−257. doi: 10.1001/archopht.123.2.253

    CrossRef Google Scholar

    [67] Probst J, Hillmann D, Lankenau E M, et al. Optical coherence tomography with online visualization of more than seven rendered volumes per second[J]. J Biomed Opt, 2010, 15(2): 026014. doi: 10.1117/1.3314898

    CrossRef Google Scholar

    [68] Tao Y K, Srivastava S K, Ehlers J P. Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers[J]. Biomed Opt Express, 2014, 5(6): 1877−1885. doi: 10.1364/BOE.5.001877

    CrossRef Google Scholar

    [69] Ehlers J P, Kaiser P K, Srivastava S K. Intraoperative optical coherence tomography using the RESCAN 700: preliminary results from the DISCOVER study[J]. Br J Ophthalmol, 2014, 98(10): 1329−1332. doi: 10.1136/bjophthalmol-2014-305294

    CrossRef Google Scholar

    [70] Ehlers J P, Modi Y S, Pecen P E, et al. The DISCOVER study 3-year results: feasibility and usefulness of microscope-integrated intraoperative OCT during ophthalmic surgery[J]. Ophthalmology, 2018, 125(7): 1014−1027. doi: 10.1016/j.ophtha.2017.12.037

    CrossRef Google Scholar

    [71] Tuifua T S, Sood A B, Abraham J R, et al. Epiretinal membrane surgery using intraoperative OCT-guided membrane removal in the DISCOVER study versus conventional membrane removal[J]. Ophthalmol Retina, 2021, 5(12): 1254−1262. doi: 10.1016/j.oret.2021.02.013

    CrossRef Google Scholar

    [72] Hahn P, Carrasco-Zevallos O, Cunefare D, et al. Intrasurgical human retinal imaging with manual instrument tracking using a microscope-integrated spectral-domain optical coherence tomography device[J]. Transl Vis Sci Technol, 2015, 4(4): 1. doi: 10.1167/tvst.4.4.1

    CrossRef Google Scholar

    [73] Ehlers J P, Goshe J, Dupps W J, et al. Determination of feasibility and utility of microscope-integrated optical coherence tomography during ophthalmic surgery: the DISCOVER study RESCAN results[J]. JAMA Ophthalmol, 2015, 133(10): 1124−1132. doi: 10.1001/jamaophthalmol.2015.2376

    CrossRef Google Scholar

    [74] Zhang K, Kang J U. Real-time intraoperative 4D full-range FD-OCT based on the dual graphics processing units architecture for microsurgery guidance[J]. Biomed Opt Express, 2011, 2(4): 764−770. doi: 10.1364/BOE.2.000764

    CrossRef Google Scholar

    [75] Kang J U, Huang Y, Cha J, et al. Real-time three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries[J]. J Biomed Opt, 2012, 17(8): 081403. doi: 10.1117/1.JBO.17.8.081403

    CrossRef Google Scholar

    [76] Li X Q, Wei L, Dong X C, et al. Microscope-integrated optical coherence tomography for image-aided positioning of glaucoma surgery[J]. J Biomed Opt, 2015, 20(7): 076001. doi: 10.1117/1.JBO.20.7.076001

    CrossRef Google Scholar

    [77] Fang W Y, Li Q C, Fan J Y, et al. Microscope-integrated intraoperative optical coherence tomography for anterior segment surgical maneuvers[J]. Transl Vis Sci Technol, 2020, 9(7): 18. doi: 10.1167/tvst.9.7.18

    CrossRef Google Scholar

    [78] Xu H, Fang W Y, Liu G X, et al. Feasibility of microscope-integrated swept-source optical coherence tomography in canaloplasty[J]. Ann Transl Med, 2020, 8(23): 1577. doi: 10.21037/ATM-20-3469

    CrossRef Google Scholar

    [79] Shen L B, Carrasco-Zevallos O, Keller B, et al. Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography[J]. Biomed Opt Express, 2016, 7(5): 1711−1726. doi: 10.1364/BOE.7.001711

    CrossRef Google Scholar

    [80] Carrasco-Zevallos O M, Keller B, Viehland C, et al. Optical coherence tomography for retinal surgery: perioperative analysis to real-time four-dimensional image-guided surgery[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): OCT37−OCT50. doi: 10.1167/iovs.16-19277

    CrossRef Google Scholar

    [81] Viehland C, Keller B, Carrasco-Zevallos O M, et al. Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT[J]. Biomed Opt Express, 2016, 7(5): 1815−1829. doi: 10.1364/BOE.7.001815

    CrossRef Google Scholar

    [82] Hsu S T, Gabr H, Viehland C, et al. Volumetric measurement of subretinal blebs using microscope-integrated optical coherence tomography[J]. Transl Vis Sci Technol, 2018, 7(2): 19. doi: 10.1167/tvst.7.2.19

    CrossRef Google Scholar

    [83] Vajzovic L, Sleiman K, Viehland C, et al. Four-dimensional microscope-integrated optical coherence tomography guidance in a model eye subretinal surgery[J]. Retina, 2019, 39(S1): S194−S198. doi: 10.1097/IAE.0000000000002518

    CrossRef Google Scholar

    [84] Gabr H, Chen X, Zevallos-Carrasco O M, et al. Visualization from intraoperative swept-source microscope-integrated optical coherence tomography in vitrectomy for complications of proliferative diabetic retinopathy[J]. Retina, 2018, 38(S1): S110−S120. doi: 10.1097/IAE.0000000000002021

    CrossRef Google Scholar

    [85] Pfau M, Michels S, Binder S, et al. Clinical experience with the first commercially available intraoperative optical coherence tomography system[J]. Ophthalmic Surg Lasers Imaging Retina, 2015, 46(10): 1001−1008. doi: 10.3928/23258160-20151027-03

    CrossRef Google Scholar

    [86] Ehlers J P, Srivastava S K, Feiler D, et al. Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback[J]. PLoS One, 2014, 9(8): e105224. doi: 10.1371/journal.pone.0105224

    CrossRef Google Scholar

    [87] Bleicher I D, Jackson-Atogi M, Viehland C, et al. Depth-based, motion-stabilized colorization of microscope-integrated optical coherence tomography volumes for microscope-independent microsurgery[J]. Transl Vis Sci Technol, 2018, 7(6): 1. doi: 10.1167/tvst.7.6.1

    CrossRef Google Scholar

    [88] Zhao H X, Li K, Yang F, et al. Customized anterior segment photoacoustic imaging for ophthalmic burn evaluation in vivo[J]. Opto-Electron Adv, 2021, 4(6): 200017. doi: 10.29026/oea.2021.200017

    CrossRef Google Scholar

  • With the development of microsurgery, minimally invasive ophthalmic surgery has become the primary means for the treatment of eye diseases. Ophthalmic surgeries need to observe the structure under the surface and accurately locate the surgical instruments in real time. Conventional surgical operating microscope is difficult to use for ophthalmic intraoperative imaging due to its lack of depth information. Optical coherence tomography (OCT) is a non-contact tomography technology that can provide depth information during ophthalmic surgeries. It has been widely used in clinical ophthalmic surgery because of its non-invasive imaging mode, fast imaging speed, and high imaging quality.

    Typical intraoperative OCT devices can be divided into handheld OCT (HHOCT) and microscope-integrated OCT (MIOCT). Handheld OCT can be further divided into external HHOCT probe, needle-based HHOCT probe, and OCT-integrated surgical instrument. HHOCT can optimize the volume interference caused by traditional tabletop equipments. The external HHOCT probe has the advantages of non-contact and non-invasiveness. The needle-based HHOCT probe can enter the eye under minimally invasive conditions to image the fundus structure, while the OCT integrated surgical instrument can ensure the alignment between the image and the end of the instrument, which is conducive to the judgment of the position of the instrument during eye surgeries.

    Microscope-integrated OCT is another way of intraoperative OCT imaging that is realized by integrating the optical system of both microscope and OCT. In this way, there is no need to interrupt the operation or add operators. At present, MIOCT real-time two-dimensional imaging is relatively mature and has been widely used in ophthalmic ssurgeries. With the development of graphics processing unit (GPU) and the introduction of swept frequency OCT (SS-OCT), intraoperative real-time three-dimensional imaging has become the future trend of MIOCT. However, there are still some problems in 3D OCT imaging, such as blurred structure surface, poor edge definition, and difficult recognition of surgical instruments. Improving image contrast is the key to solve the problems above. An effective approach is to use volume enhancement rendering algorithm for feature enhancement and shadow coloring. Another method is to use coloration in the process of volume rendering based on depth and intensity signals, and thus enhances the ability to recognize the retinal deformation and the contact between instrument and membrane.

    The significance of OCT imaging in ophthalmic surgery has been proved in experiments on animal eyes, human eye models, and clinical cases. In recent years, commercial OCT surgical navigation equipment has already been widely used in ophthalmic clinical surgery. With the progress of image processing technology, image and ophthalmology, OCT surgical navigation equipment will further promote the innovation of ophthalmic surgery, and thus promote the development of the ophthalmology field.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(16)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint