Citation: | Shi Z L, He J L, Wang J J, et al. Design of tunable circular dichroism extrinsic chiral metasurface based on phase change material GST[J]. Opto-Electron Eng, 2022, 49(10): 220092. doi: 10.12086/oee.2022.220092 |
[1] | Kim J, Rana A S, Kim Y, et al. Chiroptical metasurfaces: principles, classification, and applications[J]. Sensors, 2021, 21(13): 4381. doi: 10.3390/s21134381 |
[2] | Li F Y, Li Y X, Tang T T, et al. Dual-band terahertz all-silicon metasurface with giant chirality for frequency-undifferentiated near-field imaging[J]. Opt Express, 2022, 30(9): 14232−14242. doi: 10.1364/OE.455956 |
[3] | Ren Y, Jiang C, Tang B. Asymmetric transmission in bilayer chiral metasurfaces for both linearly and circularly polarized waves[J]. J Opt Soc Am B, 2020, 37(11): 3379−3385. doi: 10.1364/JOSAB.401783 |
[4] | Chen H R, Cheng Y Z, Zhao J C, et al. Multi-band terahertz chiral metasurface with giant optical activities and negative refractive index based on T-shaped resonators[J]. Mod Phys Lett B, 2018, 32(30): 1850366. doi: 10.1142/S0217984918503669 |
[5] | Plum E, Fedotov V A, Zheludev N I. Optical activity in extrinsically chiral metamaterial[J]. Appl Phys Lett, 2008, 93(19): 191911. doi: 10.1063/1.3021082 |
[6] | Du K, Barkaoui H, Zhang X D, et al. Optical metasurfaces towards multifunctionality and tunability[J]. Nanophotonics, 2022, 11(9): 1761−1781. doi: 10.1515/nanoph-2021-0684 |
[7] | Gong Z L, Yang F Y, Wang L T, et al. Phase change materials in photonic devices[J]. J Appl Phys, 2021, 129(3): 030902. doi: 10.1063/5.0027868 |
[8] | 严巍, 王纪永, 曲俞睿, 等. 基于相变材料超表面的光学调控[J]. 物理学报, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453 Yan W, Wang J Y, Qu Y R, et al. Tunable metasurfaces based on phase-change materials[J]. Acta Phys Sin, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453 |
[9] | Sun S L, He Q, Hao J M, et al. Electromagnetic metasurfaces: physics and applications[J]. Adv Opt Photonics, 2019, 11(2): 380−479. doi: 10.1364/AOP.11.000380 |
[10] | Song M W, Wang D, Peana S, et al. Colors with plasmonic nanostructures: a full-spectrum review[J]. Appl Phys Rev, 2019, 6(4): 041308. doi: 10.1063/1.5110051 |
[11] | Abdollahramezani S, Hemmatyar O, Taghinejad H, et al. Tunable nanophotonics enabled by chalcogenide phase-change materials[J]. Nanophotonics, 2020, 9(5): 1189−1241. doi: 10.1515/nanoph-2020-0039 |
[12] | Cao T, Cen M J. Fundamentals and applications of chalcogenide phase-change material photonics[J]. Adv Theory Simul, 2019, 2(8): 1900094. doi: 10.1002/adts.201900094 |
[13] | Ding F, Yang Y Q, Bozhevolnyi S I. Dynamic metasurfaces using phase-change chalcogenides[J]. Adv Opt Mater, 2019, 7(14): 1801709. doi: 10.1002/adom.201801709 |
[14] | Dong G H, Qin C H, Lv T T, et al. Dynamic chiroptical responses in transmissive metamaterial using phase-change material[J]. J Phys D Appl Phys, 2020, 53(28): 285104. doi: 10.1088/1361-6463/ab8516 |
[15] | Plum E, Liu X X, Fedotov V A, et al. Metamaterials: optical activity without chirality[J]. Phys Rev Lett, 2009, 102(11): 113902. doi: 10.1103/PhysRevLett.102.113902 |
[16] | Plum E, Fedotov V A, Zheludev N I. Extrinsic electromagnetic chirality in metamaterials[J]. J Opt A Pure Appl Opt, 2009, 11(7): 074009. doi: 10.1088/1464-4258/11/7/074009 |
[17] | Feng C, Wang Z B, Lee S, et al. Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams[J]. Opt Commun, 2012, 285(10–11): 2750−2754. doi: 10.1016/j.optcom.2012.01.062 |
[18] | Lee S, Wang Z B, Feng C, et al. Circular dichroism in planar extrinsic chirality metamaterial at oblique incident beam[J]. Opt Commun, 2013, 309: 201−204. doi: 10.1016/j.optcom.2013.07.033 |
[19] | Cao T, Zhang L, Simpson R E, et al. Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials[J]. Opt Express, 2013, 21(23): 27841−27851. doi: 10.1364/OE.21.027841 |
[20] | Cao T, Li Y, Wei C W, et al. Numerical study of tunable enhanced chirality in multilayer stack achiral phase-change metamaterials[J]. Opt Express, 2017, 25(9): 9911−9925. doi: 10.1364/OE.25.009911 |
[21] | Yin X H, Schäferling M, Michel A K U, et al. Active chiral plasmonics[J]. Nano Lett, 2015, 15(7): 4255−4260. doi: 10.1021/nl5042325 |
[22] | Ardakani A G, Moradi K. Strong circular dichroism in a non-chiral metasurface based on an array of metallic V-shaped nanostructures[J]. Eur Phys J Plus, 2018, 133(2): 73. doi: 10.1140/epjp/i2018-11909-0 |
[23] | Hao X R, Li J, Zheng C L, et al. Optically tunable extrinsic chirality of single-layer metal metasurface for terahertz wave[J]. Opt Commun, 2022, 512: 127554. doi: 10.1016/j.optcom.2021.127554 |
[24] | Song M W, Li X, Pu M B, et al. Color display and encryption with a plasmonic polarizing metamirror[J]. Nanophotonics, 2018, 7(1): 323−331. doi: 10.1515/nanoph-2017-0062 |
[25] | Johnson P B, Christy R W. Optical constants of the noble metals[J]. Phys Rev B, 1972, 6(12): 4370−4379. doi: 10.1103/PhysRevB.6.4370 |
[26] | 王金金, 朱邱豪, 董建峰. 可调谐手征超表面电磁特性研究进展[J]. 光电工程, 2021, 48(2): 200218. doi: 10.12086/oee.2021.200218 Wang J J, Zhu Q H, Dong J F. Research progress of electromagnetic properties of tunable chiral metasurfaces[J]. Opto-Electron Eng, 2021, 48(2): 200218. doi: 10.12086/oee.2021.200218 |
[27] | de Galarreta C R, Alexeev A M, Au Y Y, et al. Nonvolatile reconfigurable phase‐change metadevices for beam steering in the near infrared[J]. Adv Funct Mater, 2018, 28(10): 1704993. doi: 10.1002/adfm.201704993 |
[28] | Gholipour B, Zhang J F, MacDonald K F, et al. An all-optical, non-volatile, bidirectional, phase-change meta-switch[J]. Adv Mater, 2013, 25(22): 3050−3054. doi: 10.1002/adma.201300588 |
Chiral metasurfaces have physical properties that are difficult to achieve with natural materials, such as strong circular dichroism (CD) and optical activity (OA), asymmetric transmission (AT), and negative refractive index. Unlike the conventional chiral metasurfaces, the structure of extrinsic chiral metasurface is symmetrical. Its chiral electromagnetic response is generated by the effect of oblique incidence of light combined with the non-chiral structure, which reduces the common problems of complex structure, single function, and narrow band width of some metasurfaces. However, once a conventional metasurface is manufactured, its function is also fixed. Therefore, many scholars have been working on tunable extrinsic chiral metasurfaces. By adding tunable materials such as phase change material (PCM), graphene, liquid crystals, etc. in the design of the metasurfaces, together with the action of external excitation, the electromagnetic properties of the metasurfaces can be tuned to achieve wavefront tuning of electromagnetic waves, which has potential applications in various optical devices such as sensors, polarizers, and detectors.
Phase change material Ge2Sb2Te5 can perform non-volatile, fast, and reversible switching between amorphous and crystalline states by electrical or optical excitation. The metasurface based on phase change materials is one of the current research hotspots, but there is no research has been reported on tunable metasurface with external chiral characteristics in the optical frequency band.
In this paper, a tunable extrinsic chiral metasurface with giant circular dichroism in the optical frequency band is proposed. The unit cell of the metasurface consists of two symmetrical square silver split rings and a GST film sandwiched between them. Compared with the works reported in the existing literature, the CD of the metasurface is larger and the tuning range is wider. In the frequency range of 50 THz~300 THz, the CD of this extrinsic chiral metasurface is up to 0.85 when the GST is amorphous. Due to the large loss of the crystalline GST, the extrinsic chiral response is weakened and the maximum CD is 0.52 in the crystalline state. The GST switches between two phase states (amorphous-crystalline) and enables the frequency tuning range to reach about 70 THz. Further studies have shown that the CD can be tuned by changing the incident angle and the geometric parameters of the GST layer. When θ = 0° and φ = 0°, the CD is zero in all frequency bands, which means when the wave is incident normally, there is no intrinsic chiral characteristics when the wave is incident normally. The electric field distributions at the resonance point in different phase states are also investigated. This work provides a way to realize devices such as efficient polarization modulation devices, circular polarizers, and polarization filters in the optical frequency band.
Schematic diagram of the designed extrinsic chiral metasurface structure array and its unit cell structure. (a) The principle of extrinsic chirality and the direction of oblique incidence; (b) Unit cell structure; (c) The specific structural parameters
(a) Dielectric constants of amorphous and crystalline GST [27-28]; (b) Sketch of phase transitions between crystalline and amorphous phases of GST [8]
Transmission coefficients for (a) crystalline and (b) amorphous states of GST
The CD spectra for amorphous and crystalline states of GST at θ = 50° and φ = 0°
The curve of CD parameters with different incidence angles θ in GST (a) amorphous and (b) crystalline states when φ = 0°; The curve of CD parameters with different incidence projection angles φ in GST (c) amorphous and (d) crystalline states when θ = 50°
The CD spectra with different (a) period p and (b) thickness t in the amorphous state of GST layer
Electric field distribution when θ = 0°,φ = 0°. (a) Crystalline GST, LCP incidence, f =130 THz; (b) Crystalline GST, RCP incidence, f =130 THz; (c) Amorphous GST, LCP incidence, f = 200 THz; (d) Amorphous GST, RCP incidence, f = 200 THz
Electric field distribution when θ = 50°,φ = 0°. (a) Crystalline GST, LCP incidence, f =130 THz; (b) Crystalline GST, RCP incidence, f =130 THz; (c) Amorphous GST, LCP incidence, f = 200 THz; (d) Amorphous GST, RCP incidence, f = 200 THz