Gao PL, Li C, Zhou H et al. Eco-friendly quantum-dot light-emitting diode display technologies: prospects and challenges. Opto-Electron Sci x, 240028 (2025). doi: 10.29026/oes.2025.240028
Citation: Gao PL, Li C, Zhou H et al. Eco-friendly quantum-dot light-emitting diode display technologies: prospects and challenges. Opto-Electron Sci x, 240028 (2025). doi: 10.29026/oes.2025.240028

Review Open Access

Eco-friendly quantum-dot light-emitting diode display technologies: prospects and challenges

More Information
  • Eco-friendly quantum-dot light-emitting diodes (QLEDs), which employ colloidal quantum dots (QDs) such as InP, and ZnSe, stand out due to their low toxicity, color purity, and high efficiency. Currently, significant advancements have been made in the performance of cadmium-free QLEDs. However, several challenges persist in the industrialization of eco-friendly QLED displays. For instance, (1) the poor performance, characterized by low photoluminescence quantum yield (PLQY), unstable ligand, and charge imbalance, cannot be effectively addressed with a solitary strategy; (2) the degradation mechanism, involving emission quenching, morphological inhomogeneity, and field-enhanced electron delocalization remains unclear; (3) the lack of techniques for color patterning, such as optical lithography and transfer printing. Herein, we undertake a specific review of all technological breakthroughs that endeavor to tackle the above challenges associated with cadmium-free QLED displays. We begin by reviewing the evolution, architecture, and operational characteristics of eco-friendly QLEDs, highlighting the photoelectric properties of QDs, carrier transport layer stability, and device lifetime. Subsequently, we focus our attention not only on the latest insights into device degradation mechanisms, particularly, but also on the remarkable technological progress in color patterning techniques. To conclude, we provide a synthesis of the promising prospects, current challenges, potential solutions, and emerging research trends for QLED displays.
  • 加载中
  • [1] García de Arquer FP, Talapin DV, Klimov VI et al. Semiconductor quantum dots: technological progress and future challenges. Science 373, eaaz8541 (2021). doi: 10.1126/science.aaz8541

    CrossRef Google Scholar

    [2] Liu MX, Yazdani N, Yarema M et al. Colloidal quantum dot electronics. Nat Electron 4, 548–558 (2021). doi: 10.1038/s41928-021-00632-7

    CrossRef Google Scholar

    [3] Jang E, Jang H. Review: quantum dot light-emitting diodes. Chem Rev 123, 4663–4692 (2023). doi: 10.1021/acs.chemrev.2c00695

    CrossRef Google Scholar

    [4] Liu JJ, Yang XX, Xu QL et al. Unraveling the efficiency losses and improving methods in quantum dot-based infrared up-conversion photodetectors. Opto-Electron Sci 3, 230029 (2024). doi: 10.29026/oes.2024.230029

    CrossRef Google Scholar

    [5] Zhang LF, Xu H, Zhang XH et al. Highly Sensitive, stable InP quantum dot fluorescent probes for quantitative immunoassay through nanostructure tailoring and biotin–streptavidin coupling. Inorg Chem 63, 4604–4613 (2024). doi: 10.1021/acs.inorgchem.3c04153

    CrossRef Google Scholar

    [6] He JH. High-performance warm white LED based on thermally stable all inorganic perovskite quantum dots. Opto-Electron Adv 6, 230022 (2023). doi: 10.29026/oea.2023.230022

    CrossRef Google Scholar

    [7] Shen HB, Gao Q, Zhang YB et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat Photonics 13, 192–197 (2019). doi: 10.1038/s41566-019-0364-z

    CrossRef Google Scholar

    [8] Song JJ, Wang OY, Shen HB et al. Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer. Adv Funct Mater 29, 1808377 (2019). doi: 10.1002/adfm.201808377

    CrossRef Google Scholar

    [9] Lee T, Kim BJ, Lee H et al. Bright and stable quantum dot light-emitting diodes. Adv Mater 34, 2106276 (2022). doi: 10.1002/adma.202106276

    CrossRef Google Scholar

    [10] De Trizio L, Prato M, Genovese A et al. Strongly fluorescent Quaternary Cu–In–Zn–S nanocrystals prepared from Cu1- xInS2 nanocrystals by partial cation exchange. Chem Mater 24, 2400–2406 (2012). doi: 10.1021/cm301211e

    CrossRef Google Scholar

    [11] Zang HD, Li HB, Makarov NS et al. Thick-shell CuInS2/ZnS quantum dots with suppressed “blinking” and narrow single-particle emission line widths. Nano Lett 17, 1787–1795 (2017). doi: 10.1021/acs.nanolett.6b05118

    CrossRef Google Scholar

    [12] Huang GX, Huang Y, Liu ZL et al. White light-emitting diodes based on Quaternary Ag-In-Ga-S quantum dots and their influences on melatonin suppression index. J Lumin 233, 117903 (2021). doi: 10.1016/j.jlumin.2021.117903

    CrossRef Google Scholar

    [13] Hoisang W, Uematsu T, Torimoto T et al. Surface ligand chemistry on Quaternary Ag(In xGa1− x)S2 semiconductor quantum dots for improving photoluminescence properties. Nanoscale Adv 4, 849–857 (2022). doi: 10.1039/D1NA00684C

    CrossRef Google Scholar

    [14] Wu Z, Xu LM, Wang JD et al. Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes. Opto-Electron Adv 7, 240050 (2024). doi: 10.29026/oea.2024.240050

    CrossRef Google Scholar

    [15] Kim BY, Kim JH, Lee KH et al. Synthesis of highly efficient azure-to-blue-emitting Zn–Cu–Ga–S quantum dots. Chem Commun 53, 4088–4091 (2017). doi: 10.1039/C7CC00952F

    CrossRef Google Scholar

    [16] Yoon SY, Kim YH, Jo DY et al. Efficient synthesis of multinary Zn-Cu-Ga-Se1−xSx quantum dots as full visible-covering emitters and their tricolored white electroluminescence. Chem Eng J 410, 128426 (2021). doi: 10.1016/j.cej.2021.128426

    CrossRef Google Scholar

    [17] Wu ZH, Liu P, Zhang WD et al. Development of InP quantum dot-based light-emitting diodes. ACS Energy Lett 5, 1095–1106 (2020). doi: 10.1021/acsenergylett.9b02824

    CrossRef Google Scholar

    [18] Lin GM, Ouyang QL, Hu R et al. In vivo toxicity assessment of non-cadmium quantum dots in BALB/c mice. Nanomedicine 11, 341–350 (2015). doi: 10.1016/j.nano.2014.10.002

    CrossRef Google Scholar

    [19] Zhu CY, Chen Z, Gao S et al. Recent advances in non-toxic quantum dots and their biomedical applications. Prog Nat Sci Mater Int 29, 628–640 (2019). doi: 10.1016/j.pnsc.2019.11.007

    CrossRef Google Scholar

    [20] Park J, Won YH, Han Y et al. Tuning hot carrier dynamics of InP/ZnSe/ZnS quantum dots by shell morphology control. Small 18, 2105492 (2022). doi: 10.1002/smll.202105492

    CrossRef Google Scholar

    [21] Zhang FL, Su ZC, Li Z, Zhu Y, Gagrani N et al. High-speed multiwavelength InGaAs/InP quantum well nanowire array micro-LEDs for next generation optical communications. Opto-Electron Sci 2, 230003 (2023). doi: 10.29026/oes.2023.230003

    CrossRef Google Scholar

    [22] Won YH, Cho O, Kim T et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575, 634–638 (2019). doi: 10.1038/s41586-019-1771-5

    CrossRef Google Scholar

    [23] Chao WC, Chiang TH, Liu YC et al. High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility. Commun Mater 2, 96 (2021). doi: 10.1038/s43246-021-00203-5

    CrossRef Google Scholar

    [24] Kim J, Roh J, Park M et al. Recent advances and challenges of colloidal quantum dot light-emitting diodes for display applications. Adv Mater 36, 2212220 (2024). doi: 10.1002/adma.202212220

    CrossRef Google Scholar

    [25] Liu H, Chen PX, Cui YY et al. InP semiconductor nanocrystals: synthesis, optical properties, and applications. Adv Opt Mater 11, 2300425 (2023). doi: 10.1002/adom.202300425

    CrossRef Google Scholar

    [26] Brodu A, Ballottin MV, Buhot J et al. Exciton-phonon coupling in InP quantum dots with ZnS and and (Zn, Cd) Se shells. Phys Rev B 101, 125413 (2020). doi: 10.1103/PhysRevB.101.125413

    CrossRef Google Scholar

    [27] Kim T, Won YH, Jang E et al. Negative trion auger recombination in highly luminescent InP/ZnSe/ZnS quantum dots. Nano Lett 21, 2111–2116 (2021). doi: 10.1021/acs.nanolett.0c04740

    CrossRef Google Scholar

    [28] Kim YH, Yoon SY, Yang H. Blue-emissive ZnSeTe quantum dots and their electroluminescent devices. J Phys Chem Lett 15, 2142–2151 (2024). doi: 10.1021/acs.jpclett.4c00070

    CrossRef Google Scholar

    [29] Ryzhikov V, Tamulaitis G, Starzhinskiy N et al. Luminescence dynamics in ZnSeTe scintillators. J Lumin 101, 45–53 (2003). doi: 10.1016/S0022-2313(02)00387-3

    CrossRef Google Scholar

    [30] Makhnii VP, Tkachenko IV. Mechanism for forming the red emission band of ZnSe scintillation crystals. J Opt Technol 70, 665–668 (2003). doi: 10.1364/JOT.70.000665

    CrossRef Google Scholar

    [31] Micic OI, Curtis CJ, Jones KM et al. Synthesis and characterization of InP quantum dots. J Phys Chem 98, 4966–4969 (1994). doi: 10.1021/j100070a004

    CrossRef Google Scholar

    [32] Cao, Banin U. Growth and properties of semiconductor core/shell nanocrystals with InAs cores. J Am Chem Soc 122, 9692–9702 (2000). doi: 10.1021/ja001386g

    CrossRef Google Scholar

    [33] Lim J, Bae WK, Lee D et al. InP@ZnSeS, core@composition gradient shell quantum dots with enhanced stability. Chem Mater 23, 4459–4463 (2011). doi: 10.1021/cm201550w

    CrossRef Google Scholar

    [34] Reiss P, Quemard G, Carayon S et al. Luminescent ZnSe nanocrystals of high color purity. Mater Chem Phys 84, 10–13 (2004). doi: 10.1016/j.matchemphys.2003.11.002

    CrossRef Google Scholar

    [35] Ippen C, Greco T, Kim Y et al. ZnSe/ZnS quantum dots as emitting material in blue QD-LEDs with narrow emission peak and wavelength tunability. Org Electron 15, 126–131 (2014). doi: 10.1016/j.orgel.2013.11.003

    CrossRef Google Scholar

    [36] Jang EP, Han CY, Lim SW et al. Synthesis of alloyed ZnSeTe quantum dots as bright, color-pure blue emitters. ACS Appl Mater Interfaces 11, 46062–46069 (2019). doi: 10.1021/acsami.9b14763

    CrossRef Google Scholar

    [37] Li HY, Zhang WJ, Bian YY et al. ZnF2-assisted synthesis of highly luminescent InP/ZnSe/ZnS quantum dots for efficient and stable electroluminescence. Nano Lett 22, 4067–4073 (2022). doi: 10.1021/acs.nanolett.2c00763

    CrossRef Google Scholar

    [38] Du WX, Cheng CY, Tian JJ. Efficient solution-processed InP quantum-dots light-emitting diodes enabled by suppressing hole injection loss. Nano Res 16, 7511–7517 (2023). doi: 10.1007/s12274-022-5268-4

    CrossRef Google Scholar

    [39] Han MG, Lee Y, Kwon H et al. InP-based quantum dot light-emitting diode with a blended emissive layer. ACS Energy Lett 6, 1577–1585 (2021).

    Google Scholar

    [40] Jeong BG, Chang JH, Hahm D et al. Interface polarization in heterovalent core–shell nanocrystals. Nat Mater 21, 246–252 (2022). doi: 10.1038/s41563-021-01119-8

    CrossRef Google Scholar

    [41] Yeom JE, Shin DH, Lampande R et al. Good charge balanced inverted red InP/ZnSe/ZnS-quantum dot light-emitting diode with new high mobility and deep HOMO level hole transport layer. ACS Energy Lett 5, 3868–3875 (2020). doi: 10.1021/acsenergylett.0c02193

    CrossRef Google Scholar

    [42] Li Y, Hou XQ, Dai XL et al. Stoichiometry-controlled InP-based quantum dots: synthesis, photoluminescence, and electroluminescence. J Am Chem Soc 141, 6448–6452 (2019). doi: 10.1021/jacs.8b12908

    CrossRef Google Scholar

    [43] Lee S, Park SM, Jung ED et al. Dipole engineering through the orientation of interface molecules for efficient InP quantum dot light-emitting diodes. J Am Chem Soc 144, 20923–20930 (2022). doi: 10.1021/jacs.2c09705

    CrossRef Google Scholar

    [44] Jeon Y, Sim S, Shin D et al. All-solution-processed top-emitting InP quantum dot light-emitting diode with polyethylenimine interfacial layer. Adv Electron Mater 10, 2400195 (2024). doi: 10.1002/aelm.202400195

    CrossRef Google Scholar

    [45] Bian YY, Yan XH, Chen F et al. Efficient green InP-based QD-LED by controlling electron injection and leakage. Nature 635, 854–859 (2024). doi: 10.1038/s41586-024-08197-z

    CrossRef Google Scholar

    [46] Cheng YB, Li Q, Chen MY et al. High-brightness green InP-based QLEDs enabled by in-situ passivating core surface with zinc myristate. Mater Futures 3, 025201 (2024). doi: 10.1088/2752-5724/ad3a83

    CrossRef Google Scholar

    [47] Li LF, Luo YN, Wu QQ et al. Efficient and bright green InP quantum dot light-emitting diodes enabled by a self-assembled dipole interface monolayer. Nanoscale 15, 2837–2842 (2023). doi: 10.1039/D2NR06618A

    CrossRef Google Scholar

    [48] Yu P, Cao S, Shan YL et al. Highly efficient green InP-based quantum dot light-emitting diodes regulated by inner alloyed shell component. Light Sci Appl 11, 162 (2022). doi: 10.1038/s41377-022-00855-z

    CrossRef Google Scholar

    [49] Gao PL, Zhang Y, Qi P et al. Efficient InP green quantum‐dot light‐emitting diodes based on organic electron transport layer. Adv Opt Mater 10, 2202066 (2022). doi: 10.1002/adom.202202066

    CrossRef Google Scholar

    [50] Wu QQ, Wang L, Cao F et al. Bridging chloride anions enables efficient and stable InP green quantum-dot light-emitting diodes. Adv Opt Mater 11, 2300659 (2023). doi: 10.1002/adom.202300659

    CrossRef Google Scholar

    [51] Moon H, Lee W, Kim J et al. Composition-tailored ZnMgO nanoparticles for electron transport layers of highly efficient and bright InP-based quantum dot light emitting diodes. Chem Commun 55, 13299–13302 (2019). doi: 10.1039/C9CC06882A

    CrossRef Google Scholar

    [52] Wu QQ, Cao F, Wang S et al. Quasi-shell-growth strategy achieves stable and efficient green InP quantum dot light-emitting diodes. Adv Sci 9, 2200959 (2022). doi: 10.1002/advs.202200959

    CrossRef Google Scholar

    [53] Kim J, Hong A, Hahm D et al. Realization of highly efficient InP quantum dot light-emitting diodes through in-depth investigation of exciton-harvesting layers. Adv Opt Mater 11, 2300088 (2023). doi: 10.1002/adom.202300088

    CrossRef Google Scholar

    [54] Yoon SY, Lee YJ, Yang H et al. Performance enhancement of InP quantum dot light-emitting diodes via a surface-functionalized ZnMgO electron transport layer. ACS Energy Lett 7, 2247–2255 (2022). doi: 10.1021/acsenergylett.2c01065

    CrossRef Google Scholar

    [55] Li D, Feng JW, Zhu YQ et al. Enhanced efficiency of top-emission InP-based green quantum dot light-emitting diodes with optimized angular distribution. Nano Res 14, 4243–4249 (2021). doi: 10.1007/s12274-021-3596-4

    CrossRef Google Scholar

    [56] Liu P, Lou YJ, Ding SH et al. Green InP/ZnSeS/ZnS core multi-shelled quantum dots synthesized with aminophosphine for effective display applications. Adv Funct Mater 31, 2008453 (2021). doi: 10.1002/adfm.202008453

    CrossRef Google Scholar

    [57] Zhang H, Hu N, Zeng ZP et al. High-efficiency green InP quantum dot-based electroluminescent device comprising thick-shell quantum dots. Adv Opt Mater 7, 1801602 (2019). doi: 10.1002/adom.201801602

    CrossRef Google Scholar

    [58] Yoon SY, Han JN, Lee YJ et al. Highly emissive green ZnSeTe quantum dots: effects of core size on their optical properties and comparison with InP counterparts. ACS Energy Lett 8, 1131–1140 (2023). doi: 10.1021/acsenergylett.2c02924

    CrossRef Google Scholar

    [59] Zhang WD, Tan YZ, Duan XJ et al. High quantum yield blue InP/ZnS/ZnS quantum dots based on bromine passivation for efficient blue light‐emitting diodes. Adv Opt Mater 10, 2200685 (2022). doi: 10.1002/adom.202200685

    CrossRef Google Scholar

    [60] Kim KH, Jo JH, Jo DY et al. Cation-exchange-derived InGaP alloy quantum dots toward blue emissivity. Chem Mater 32, 3537–3544 (2020). doi: 10.1021/acs.chemmater.0c00551

    CrossRef Google Scholar

    [61] Zhang WD, Ding SH, Zhuang WD et al. InP/ZnS/ZnS core/shell blue quantum dots for efficient light-emitting diodes. Adv Funct Mater 30, 2005303 (2020). doi: 10.1002/adfm.202005303

    CrossRef Google Scholar

    [62] Suh YH, Lee S, Jung SM et al. Engineering core size of InP quantum dot with incipient ZnS for blue emission. Adv Opt Mater 10, 2102372 (2022). doi: 10.1002/adom.202102372

    CrossRef Google Scholar

    [63] Zhang H, Ma XY, Lin QL et al. High-brightness blue InP quantum dot-based electroluminescent devices: the role of shell thickness. J Phys Chem Lett 11, 960–967 (2020). doi: 10.1021/acs.jpclett.9b03567

    CrossRef Google Scholar

    [64] Tan, Y, Zhang W, Xiao X et al. Enhancing hole injection by electric dipoles for efficient blue InP QLEDs. Appl Phys Lett 119, 221105 (2021). doi: 10.1063/5.0071508

    CrossRef Google Scholar

    [65] Kim T, Kim KH, Kim S et al. Efficient and stable blue quantum dot light-emitting diode. Nature 586, 385–389 (2020). doi: 10.1038/s41586-020-2791-x

    CrossRef Google Scholar

    [66] Lee SH, Song SW, Yoon SY et al. Heterostructural tailoring of blue ZnSeTe quantum dots toward high-color purity and high-efficiency electroluminescence. Chem Eng J 429, 132464 (2022). doi: 10.1016/j.cej.2021.132464

    CrossRef Google Scholar

    [67] Yuan CX, Tian FS, Chen SM. ZnSeTe blue top-emitting QLEDs with color saturation near Rec. 2020 standards and efficiency over 18.16%. Nano Res 16, 5517–5524 (2023). doi: 10.1007/s12274-022-5172-y

    CrossRef Google Scholar

    [68] Bi YH, Cao S, Yu P et al. Reducing emission linewidth of pure-blue ZnSeTe quantum dots through shell engineering toward high color purity light-emitting diodes. Small 19, 2303247 (2023). doi: 10.1002/smll.202303247

    CrossRef Google Scholar

    [69] Gao M, Tu YF, Tian DD et al. Alleviating electron over-injection for efficient cadmium-free quantum dot light-emitting diodes toward deep-blue emission. ACS Photonics 9, 1400–1408 (2022). doi: 10.1021/acsphotonics.2c00155

    CrossRef Google Scholar

    [70] Gao M, Yang HW, Shen HB et al. Bulk-like ZnSe quantum dots enabling efficient ultranarrow blue light-emitting diodes. Nano Lett 21, 7252–7260 (2021). doi: 10.1021/acs.nanolett.1c02284

    CrossRef Google Scholar

    [71] Cheng CY, Yu BB, Huang F et al. Near-unity quantum yield ZnSeTe quantum dots enabled by controlling shell growth for efficient deep-blue light-emitting diodes. Adv Funct Mater 21, 2313811 (2024).

    Google Scholar

    [72] Han CY, Lee SH, Song SW et al. More than 9% efficient ZnSeTe quantum dot-based blue electroluminescent devices. ACS Energy Lett 5, 1568–1576 (2020). doi: 10.1021/acsenergylett.0c00638

    CrossRef Google Scholar

    [73] Wang AQ, Shen HB, Zang SP et al. Bright, efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes. Nanoscale 7, 2951–2959 (2015). doi: 10.1039/C4NR06593J

    CrossRef Google Scholar

    [74] Cho H, Park S, Shin H et al. Highly efficient deep blue Cd-free quantum dot light-emitting diodes by a p-type doped emissive layer. Small 16, 2002109 (2020). doi: 10.1002/smll.202002109

    CrossRef Google Scholar

    [75] Kim S, Kim JA, Kim T et al. Efficient blue-light-emitting Cd-free colloidal quantum well and its application in electroluminescent devices. Chem Mater 32, 5200–5207 (2020). doi: 10.1021/acs.chemmater.0c01275

    CrossRef Google Scholar

    [76] Zheng ZS, Ren ZW, Xia WL et al. Bromide decorated eco-friendly ZnSeTe/ZnSe/ZnS quantum dots for efficient blue light-emitting diodes. Adv Mater Interfaces 10, 2202241 (2023). doi: 10.1002/admi.202202241

    CrossRef Google Scholar

    [77] Park S, Son C, Kang S et al. Development of highly efficient blue-emitting ZnSexTe1-x/ZnSe/ZnS quantum dots and their electroluminescence application. J Ind Eng Chem 88, 348–355 (2020). doi: 10.1016/j.jiec.2020.05.003

    CrossRef Google Scholar

    [78] Yang ZW, Wu QQ, Zhou XC et al. A seed-mediated and double shell strategy to realize large-size ZnSe/ZnS/ZnS quantum dots for high color purity blue light-emitting diodes. Nanoscale 13, 4562–4568 (2021). doi: 10.1039/D0NR05025C

    CrossRef Google Scholar

    [79] Jo JH, Jo DY, Lee SH et al. InP-based quantum dots having an InP core, composition-gradient ZnSeS inner shell, and ZnS outer shell with sharp, bright emissivity, and blue absorptivity for display devices. ACS Appl Nano Mater 3, 1972–1980 (2020). doi: 10.1021/acsanm.0c00008

    CrossRef Google Scholar

    [80] Long R, Chen XP, Zhang XH et al. Carboxylic-free synthesis of InP quantum dots for highly efficient and bright electroluminescent device. Adv Opt Mater 11, 2202594 (2023). doi: 10.1002/adom.202202594

    CrossRef Google Scholar

    [81] Haubold S, Haase M, Kornowski A et al. Strongly luminescent InP/ZnS core-shell nanoparticles. Chemphyschem 2, 331–334 (2001). doi: 10.1002/1439-7641(20010518)2:5<331::AID-CPHC331>3.0.CO;2-0

    CrossRef Google Scholar

    [82] Kim S, Kim T, Kang M et al. Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes. J Am Chem Soc 134, 3804–3809 (2012). doi: 10.1021/ja210211z

    CrossRef Google Scholar

    [83] Sun ZJ, Wu QQ, Wang S et al. Suppressing the cation exchange at the core/shell interface of InP quantum dots by a selenium shielding layer enables efficient green light-emitting diodes. ACS Appl Mater Interfaces 14, 15401–15406 (2022). doi: 10.1021/acsami.2c01699

    CrossRef Google Scholar

    [84] Zhao HB, Hu HL, Zheng JP et al. One-pot synthesis of InP multishell quantum dots for narrow-bandwidth light-emitting devices. ACS Appl Nano Mater 6, 3797–3802 (2023). doi: 10.1021/acsanm.2c05498

    CrossRef Google Scholar

    [85] Min JJ, Zhang Y, Zhou YM et al. Size engineering of trap effects in oxidized and hydroxylated ZnSe quantum dots. Nano Lett 22, 3604–3611 (2022). doi: 10.1021/acs.nanolett.2c00118

    CrossRef Google Scholar

    [86] Long ZW, Liu MR, Wu XG et al. A reactivity-controlled epitaxial growth strategy for synthesizing large nanocrystals. Nat Synth 2, 296–304 (2023). doi: 10.1038/s44160-022-00210-5

    CrossRef Google Scholar

    [87] Lin XY, Yang Y, Li XY et al. Blue lasers using low-toxicity colloidal quantum dots. Nat Nanotechnol 1, (2024). doi: 10.1038/s41565-024-01812-0

    CrossRef Google Scholar

    [88] Imran M, Paritmongkol W, Mills HA et al. Molecular-additive-assisted tellurium homogenization in ZnSeTe quantum dots. Adv Mater 35, 2303528 (2023). doi: 10.1002/adma.202303528

    CrossRef Google Scholar

    [89] Tamang S, Lincheneau C, Hermans Y et al. Chemistry of InP nanocrystal syntheses. Chem Mater 28, 2491–2506 (2016). doi: 10.1021/acs.chemmater.5b05044

    CrossRef Google Scholar

    [90] Baquero EA, Virieux H, Swain RA et al. Synthesis of oxide-free InP quantum dots: surface control and H2-assisted growth. Chem Mater 29, 9623–9627 (2017). doi: 10.1021/acs.chemmater.7b04069

    CrossRef Google Scholar

    [91] Chen B, Li DY, Wang F. InP quantum dots: synthesis and lighting applications. Small 16, 2002454 (2020). doi: 10.1002/smll.202002454

    CrossRef Google Scholar

    [92] De Roo J, Baquero EA, Coppel Y et al. Insights into the ligand shell, coordination mode, and reactivity of carboxylic acid capped metal oxide nanocrystals. Chem Plus Chem 81, 1216–1223 (2016). doi: 10.1002/cplu.201600372

    CrossRef Google Scholar

    [93] Cheng HF, Yang NL, Liu GG et al. Ligand-exchange-induced amorphization of Pd nanomaterials for highly efficient electrocatalytic hydrogen evolution reaction. Adv Mater 32, 1902964 (2020). doi: 10.1002/adma.201902964

    CrossRef Google Scholar

    [94] Sun HC, Buhro WE. Reversible Z-type to L-type ligand exchange on Zinc-blende cadmium selenide nanoplatelets. Chem Mater 32, 5814–5826 (2020). doi: 10.1021/acs.chemmater.0c01712

    CrossRef Google Scholar

    [95] Kim J, Kim Y, Park K et al. Ligand effect in 1-octanethiol passivation of InP/ZnSe/ZnS quantum dots-evidence of incomplete surface passivation during synthesis. Small 18, 2203093 (2022). doi: 10.1002/smll.202203093

    CrossRef Google Scholar

    [96] Xu TF, Xiang WC, Ru XN et al. Enhancing stability and efficiency of inverted inorganic perovskite solar cells with in-situ interfacial cross-linked modifier. Adv Mater 36, 2312237 (2024). doi: 10.1002/adma.202312237

    CrossRef Google Scholar

    [97] Moon H, Lee C, Lee W et al. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv Mater 31, 1804294 (2019). doi: 10.1002/adma.201804294

    CrossRef Google Scholar

    [98] Liu GY, Zhang S, Xu LL et al. Recent advances of eco-friendly quantum dots light-emitting diodes for display. Prog Quantum Electron 86, 100415 (2022). doi: 10.1016/j.pquantelec.2022.100415

    CrossRef Google Scholar

    [99] Park Y, Klöckner B, Hahm D et al. Origin of enhanced efficiency and stability in diblock copolymer-grafted Cd-free quantum dot-based light-emitting diodes. J Mater Chem C 9, 10398–10405 (2021). doi: 10.1039/D1TC02534A

    CrossRef Google Scholar

    [100] Cho S, Lim SN, Kim HS et al. Air-stable and environmentally friendly full color-emitting ZnSeTe/ZnSe/ZnS quantum dots for display applications. ACS Appl Nano Mater 5, 18905–18911 (2022). doi: 10.1021/acsanm.2c04677

    CrossRef Google Scholar

    [101] Lee BJ, Kim TY, Kim I et al. Bright and stable ZnSeTe core/shell quantum dots enabled by surface passivation with organozinc halide ligands. Chem Mater 36, 471–481 (2024). doi: 10.1021/acs.chemmater.3c02461

    CrossRef Google Scholar

    [102] Colvin VL, Schlamp MC, Alivisatos AP. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994). doi: 10.1038/370354a0

    CrossRef Google Scholar

    [103] Shu YF, Lin X, Qin HY et al. Quantum dots for display applications. Angew Chem 132, 22496–22507 (2020). doi: 10.1002/ange.202004857

    CrossRef Google Scholar

    [104] Mueller AH, Petruska MA, Achermann M et al. Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers. Nano Lett 5, 1039–1044 (2005). doi: 10.1021/nl050384x

    CrossRef Google Scholar

    [105] Qian L, Zheng Y, Xue JG et al. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat Photonics 5, 543–548 (2011). doi: 10.1038/nphoton.2011.171

    CrossRef Google Scholar

    [106] Son SR, Yang KP, Park J et al. Highly efficient and eco-friendly InP-based quantum dot light-emitting diodes with a synergetic combination of a liquid metal cathode and size-controlled ZnO nanoparticles. Mater Chem Phys 287, 126322 (2022). doi: 10.1016/j.matchemphys.2022.126322

    CrossRef Google Scholar

    [107] Lee CY, Naik Mude N, Lampande R et al. Efficient cadmium-free inverted red quantum dot light-emitting diodes. ACS Appl Mater Interfaces 11, 36917–36924 (2019). doi: 10.1021/acsami.9b12514

    CrossRef Google Scholar

    [108] Wang LS, Lin J, Liu XY et al. Mg-doped ZnO nanoparticle films as the interlayer between the ZnO electron transport layer and InP quantum dot layer for light-emitting diodes. J Phys Chem C 124, 8758–8765 (2020). doi: 10.1021/acs.jpcc.0c00351

    CrossRef Google Scholar

    [109] Ning MJ, Cao S, Li QY et al. Improving performance of InP-based quantum dot light-emitting diodes by controlling defect states of the ZnO electron transport layer. J Phys Chem C 127, 824–830 (2023). doi: 10.1021/acs.jpcc.2c07893

    CrossRef Google Scholar

    [110] Mude NN, Kim SJ, Lampande R et al. An efficient organic and inorganic hybrid interlayer for high performance inverted red cadmium-free quantum dot light-emitting diodes. Nanoscale Adv 4, 904–910 (2022). doi: 10.1039/D1NA00716E

    CrossRef Google Scholar

    [111] Wang YM, Wu QQ, Wang L et al. Boosting the efficiency and stability of green InP quantum dot light emitting diodes by interface dipole modulation. J Mater Chem C 10, 8192–8198 (2022). doi: 10.1039/D2TC01522F

    CrossRef Google Scholar

    [112] Lee T, Hahm D, Kim K et al. Highly efficient and bright inverted top-emitting InP quantum dot light-emitting diodes introducing a hole-suppressing interlayer. Small 15, 1905162 (2019). doi: 10.1002/smll.201905162

    CrossRef Google Scholar

    [113] Zhang TQ, Zhao FQ, Liu P et al. Understanding and hindering the electron leakage in green InP quantum-dot light-emitting diodes. Adv Photonics Res 4, 2300146 (2023). doi: 10.1002/adpr.202300146

    CrossRef Google Scholar

    [114] Bao Z, Jiang ZF, Su Q et al. ZnSe: Te/ZnSeS/ZnS nanocrystals: an access to cadmium-free pure-blue quantum-dot light-emitting diodes. Nanoscale 12, 11556–11561 (2020). doi: 10.1039/D0NR01019G

    CrossRef Google Scholar

    [115] Li HY, Bian YY, Zhang WJ et al. High performance InP-based quantum dot light-emitting diodes via the suppression of field-enhanced electron delocalization. Adv Funct Mater 32, 2204529 (2022). doi: 10.1002/adfm.202204529

    CrossRef Google Scholar

    [116] Tolmachev DO, Fernée MJ, Shornikova EV et al. Positive trions in InP/ZnSe/ZnS colloidal nanocrystals. ACS Nano 18, 9378–9388 (2024). doi: 10.1021/acsnano.3c09971

    CrossRef Google Scholar

    [117] Chandrasekaran V, Scarpelli L, Masia F et al. Exciton dephasing by phonon-induced scattering between bright exciton states in InP/ZnSe colloidal quantum dots. ACS Nano 17, 12118–12126 (2023). doi: 10.1021/acsnano.2c12182

    CrossRef Google Scholar

    [118] Baek H, Kang S, Heo J et al. Insights into structural defect formation in individual InP/ZnSe/ZnS quantum dots under UV oxidation. Nat Commun 15, 1671 (2024). doi: 10.1038/s41467-024-45944-2

    CrossRef Google Scholar

    [119] Ma SL, Cao F, Jia GH et al. Blue ZnSeTe quantum dot light-emitting diodes with low efficiency roll-off enabled by an in situ hybridization of ZnMgO nanoparticles and amino alcohol molecules. Nanoscale 16, 10441–10447 (2024). doi: 10.1039/D4NR01515K

    CrossRef Google Scholar

    [120] Li CL, Nishikawa K, Ando M et al. Synthesis of Cd-free water-soluble ZnSe1− xTe x nanocrystals with high luminescence in the blue region. J Colloid Interface Sci 321, 468–476 (2008). doi: 10.1016/j.jcis.2008.02.009

    CrossRef Google Scholar

    [121] Chang JH, Lee HJ, Rhee S et al. Pushing the band gap envelope of quasi-type II heterostructured nanocrystals to blue: ZnSe/ZnSe1- XTe X/ZnSe spherical quantum wells. Energy Mater Adv 2021, 3245731 (2021).

    Google Scholar

    [122] Cai WB, Ren YJ, Huang ZG et al. Emission mechanism of bright and eco-friendly ZnSeTe quantum dots. Adv Opt Mater 12, 2301970 (2024). doi: 10.1002/adom.202301970

    CrossRef Google Scholar

    [123] Huang ZG, Sun Q, Zhao SY et al. Deciphering ultrafast carrier dynamics of eco-friendly ZnSeTe-based quantum dots: toward high-quality blue–green emitters. J Phys Chem Lett 12, 11931–11938 (2021). doi: 10.1021/acs.jpclett.1c03478

    CrossRef Google Scholar

    [124] Chang JH, Jung D, Lee HJ et al. Impact of morphological inhomogeneity on excitonic states in highly mismatched alloy ZnSe1– XTe X nanocrystals. J Phys Chem Lett 13, 11464–11472 (2022). doi: 10.1021/acs.jpclett.2c03050

    CrossRef Google Scholar

    [125] Lee YJ, Kim S, Lee J et al. Crystallographic and photophysical analysis on facet-controlled defect-free blue-emitting quantum dots. Adv Mater 36, 2311719 (2024). doi: 10.1002/adma.202311719

    CrossRef Google Scholar

    [126] Yang ZW, Lin GL, Bai JY et al. Inkjet-printed blue InP/ZnS/ZnS quantum dot light-emitting diodes. Chem Eng J 450, 138413 (2022). doi: 10.1016/j.cej.2022.138413

    CrossRef Google Scholar

    [127] Bai JY, Hu HL, Yu YS et al. Achieving high performance InP quantum dot light-emitting devices by using inkjet printing. Org Electron 113, 106705 (2023). doi: 10.1016/j.orgel.2022.106705

    CrossRef Google Scholar

    [128] Zhan SJ, Suh YH, Fan XB et al. Inkjet-printed multi-color arrays based on eco-friendly quantum dot light emitting diodes with tailored hole transport layer. J Soc Inf Disp 30, 748–757 (2022). doi: 10.1002/jsid.1133

    CrossRef Google Scholar

    [129] Lee H, Suh YH, Fan XB et al. Air stable eco-friendly quantum dots with a light-mediated photoinitiator for an inkjet printed flexible light emitting diode. J Mater Chem C 10, 10708–10718 (2022). doi: 10.1039/D2TC00851C

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint