Citation: | Gao PL, Li C, Zhou H et al. Eco-friendly quantum-dot light-emitting diode display technologies: prospects and challenges. Opto-Electron Sci x, 240028 (2025). doi: 10.29026/oes.2025.240028 |
[1] | García de Arquer FP, Talapin DV, Klimov VI et al. Semiconductor quantum dots: technological progress and future challenges. Science 373, eaaz8541 (2021). doi: 10.1126/science.aaz8541 |
[2] | Liu MX, Yazdani N, Yarema M et al. Colloidal quantum dot electronics. Nat Electron 4, 548–558 (2021). doi: 10.1038/s41928-021-00632-7 |
[3] | Jang E, Jang H. Review: quantum dot light-emitting diodes. Chem Rev 123, 4663–4692 (2023). doi: 10.1021/acs.chemrev.2c00695 |
[4] | Liu JJ, Yang XX, Xu QL et al. Unraveling the efficiency losses and improving methods in quantum dot-based infrared up-conversion photodetectors. Opto-Electron Sci 3, 230029 (2024). doi: 10.29026/oes.2024.230029 |
[5] | Zhang LF, Xu H, Zhang XH et al. Highly Sensitive, stable InP quantum dot fluorescent probes for quantitative immunoassay through nanostructure tailoring and biotin–streptavidin coupling. Inorg Chem 63, 4604–4613 (2024). doi: 10.1021/acs.inorgchem.3c04153 |
[6] | He JH. High-performance warm white LED based on thermally stable all inorganic perovskite quantum dots. Opto-Electron Adv 6, 230022 (2023). doi: 10.29026/oea.2023.230022 |
[7] | Shen HB, Gao Q, Zhang YB et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat Photonics 13, 192–197 (2019). doi: 10.1038/s41566-019-0364-z |
[8] | Song JJ, Wang OY, Shen HB et al. Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer. Adv Funct Mater 29, 1808377 (2019). doi: 10.1002/adfm.201808377 |
[9] | Lee T, Kim BJ, Lee H et al. Bright and stable quantum dot light-emitting diodes. Adv Mater 34, 2106276 (2022). doi: 10.1002/adma.202106276 |
[10] | De Trizio L, Prato M, Genovese A et al. Strongly fluorescent Quaternary Cu–In–Zn–S nanocrystals prepared from Cu1- xInS2 nanocrystals by partial cation exchange. Chem Mater 24, 2400–2406 (2012). doi: 10.1021/cm301211e |
[11] | Zang HD, Li HB, Makarov NS et al. Thick-shell CuInS2/ZnS quantum dots with suppressed “blinking” and narrow single-particle emission line widths. Nano Lett 17, 1787–1795 (2017). doi: 10.1021/acs.nanolett.6b05118 |
[12] | Huang GX, Huang Y, Liu ZL et al. White light-emitting diodes based on Quaternary Ag-In-Ga-S quantum dots and their influences on melatonin suppression index. J Lumin 233, 117903 (2021). doi: 10.1016/j.jlumin.2021.117903 |
[13] | Hoisang W, Uematsu T, Torimoto T et al. Surface ligand chemistry on Quaternary Ag(In xGa1− x)S2 semiconductor quantum dots for improving photoluminescence properties. Nanoscale Adv 4, 849–857 (2022). doi: 10.1039/D1NA00684C |
[14] | Wu Z, Xu LM, Wang JD et al. Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes. Opto-Electron Adv 7, 240050 (2024). doi: 10.29026/oea.2024.240050 |
[15] | Kim BY, Kim JH, Lee KH et al. Synthesis of highly efficient azure-to-blue-emitting Zn–Cu–Ga–S quantum dots. Chem Commun 53, 4088–4091 (2017). doi: 10.1039/C7CC00952F |
[16] | Yoon SY, Kim YH, Jo DY et al. Efficient synthesis of multinary Zn-Cu-Ga-Se1−xSx quantum dots as full visible-covering emitters and their tricolored white electroluminescence. Chem Eng J 410, 128426 (2021). doi: 10.1016/j.cej.2021.128426 |
[17] | Wu ZH, Liu P, Zhang WD et al. Development of InP quantum dot-based light-emitting diodes. ACS Energy Lett 5, 1095–1106 (2020). doi: 10.1021/acsenergylett.9b02824 |
[18] | Lin GM, Ouyang QL, Hu R et al. In vivo toxicity assessment of non-cadmium quantum dots in BALB/c mice. Nanomedicine 11, 341–350 (2015). doi: 10.1016/j.nano.2014.10.002 |
[19] | Zhu CY, Chen Z, Gao S et al. Recent advances in non-toxic quantum dots and their biomedical applications. Prog Nat Sci Mater Int 29, 628–640 (2019). doi: 10.1016/j.pnsc.2019.11.007 |
[20] | Park J, Won YH, Han Y et al. Tuning hot carrier dynamics of InP/ZnSe/ZnS quantum dots by shell morphology control. Small 18, 2105492 (2022). doi: 10.1002/smll.202105492 |
[21] | Zhang FL, Su ZC, Li Z, Zhu Y, Gagrani N et al. High-speed multiwavelength InGaAs/InP quantum well nanowire array micro-LEDs for next generation optical communications. Opto-Electron Sci 2, 230003 (2023). doi: 10.29026/oes.2023.230003 |
[22] | Won YH, Cho O, Kim T et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575, 634–638 (2019). doi: 10.1038/s41586-019-1771-5 |
[23] | Chao WC, Chiang TH, Liu YC et al. High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility. Commun Mater 2, 96 (2021). doi: 10.1038/s43246-021-00203-5 |
[24] | Kim J, Roh J, Park M et al. Recent advances and challenges of colloidal quantum dot light-emitting diodes for display applications. Adv Mater 36, 2212220 (2024). doi: 10.1002/adma.202212220 |
[25] | Liu H, Chen PX, Cui YY et al. InP semiconductor nanocrystals: synthesis, optical properties, and applications. Adv Opt Mater 11, 2300425 (2023). doi: 10.1002/adom.202300425 |
[26] | Brodu A, Ballottin MV, Buhot J et al. Exciton-phonon coupling in InP quantum dots with ZnS and and (Zn, Cd) Se shells. Phys Rev B 101, 125413 (2020). doi: 10.1103/PhysRevB.101.125413 |
[27] | Kim T, Won YH, Jang E et al. Negative trion auger recombination in highly luminescent InP/ZnSe/ZnS quantum dots. Nano Lett 21, 2111–2116 (2021). doi: 10.1021/acs.nanolett.0c04740 |
[28] | Kim YH, Yoon SY, Yang H. Blue-emissive ZnSeTe quantum dots and their electroluminescent devices. J Phys Chem Lett 15, 2142–2151 (2024). doi: 10.1021/acs.jpclett.4c00070 |
[29] | Ryzhikov V, Tamulaitis G, Starzhinskiy N et al. Luminescence dynamics in ZnSeTe scintillators. J Lumin 101, 45–53 (2003). doi: 10.1016/S0022-2313(02)00387-3 |
[30] | Makhnii VP, Tkachenko IV. Mechanism for forming the red emission band of ZnSe scintillation crystals. J Opt Technol 70, 665–668 (2003). doi: 10.1364/JOT.70.000665 |
[31] | Micic OI, Curtis CJ, Jones KM et al. Synthesis and characterization of InP quantum dots. J Phys Chem 98, 4966–4969 (1994). doi: 10.1021/j100070a004 |
[32] | Cao, Banin U. Growth and properties of semiconductor core/shell nanocrystals with InAs cores. J Am Chem Soc 122, 9692–9702 (2000). doi: 10.1021/ja001386g |
[33] | Lim J, Bae WK, Lee D et al. InP@ZnSeS, core@composition gradient shell quantum dots with enhanced stability. Chem Mater 23, 4459–4463 (2011). doi: 10.1021/cm201550w |
[34] | Reiss P, Quemard G, Carayon S et al. Luminescent ZnSe nanocrystals of high color purity. Mater Chem Phys 84, 10–13 (2004). doi: 10.1016/j.matchemphys.2003.11.002 |
[35] | Ippen C, Greco T, Kim Y et al. ZnSe/ZnS quantum dots as emitting material in blue QD-LEDs with narrow emission peak and wavelength tunability. Org Electron 15, 126–131 (2014). doi: 10.1016/j.orgel.2013.11.003 |
[36] | Jang EP, Han CY, Lim SW et al. Synthesis of alloyed ZnSeTe quantum dots as bright, color-pure blue emitters. ACS Appl Mater Interfaces 11, 46062–46069 (2019). doi: 10.1021/acsami.9b14763 |
[37] | Li HY, Zhang WJ, Bian YY et al. ZnF2-assisted synthesis of highly luminescent InP/ZnSe/ZnS quantum dots for efficient and stable electroluminescence. Nano Lett 22, 4067–4073 (2022). doi: 10.1021/acs.nanolett.2c00763 |
[38] | Du WX, Cheng CY, Tian JJ. Efficient solution-processed InP quantum-dots light-emitting diodes enabled by suppressing hole injection loss. Nano Res 16, 7511–7517 (2023). doi: 10.1007/s12274-022-5268-4 |
[39] | Han MG, Lee Y, Kwon H et al. InP-based quantum dot light-emitting diode with a blended emissive layer. ACS Energy Lett 6, 1577–1585 (2021). |
[40] | Jeong BG, Chang JH, Hahm D et al. Interface polarization in heterovalent core–shell nanocrystals. Nat Mater 21, 246–252 (2022). doi: 10.1038/s41563-021-01119-8 |
[41] | Yeom JE, Shin DH, Lampande R et al. Good charge balanced inverted red InP/ZnSe/ZnS-quantum dot light-emitting diode with new high mobility and deep HOMO level hole transport layer. ACS Energy Lett 5, 3868–3875 (2020). doi: 10.1021/acsenergylett.0c02193 |
[42] | Li Y, Hou XQ, Dai XL et al. Stoichiometry-controlled InP-based quantum dots: synthesis, photoluminescence, and electroluminescence. J Am Chem Soc 141, 6448–6452 (2019). doi: 10.1021/jacs.8b12908 |
[43] | Lee S, Park SM, Jung ED et al. Dipole engineering through the orientation of interface molecules for efficient InP quantum dot light-emitting diodes. J Am Chem Soc 144, 20923–20930 (2022). doi: 10.1021/jacs.2c09705 |
[44] | Jeon Y, Sim S, Shin D et al. All-solution-processed top-emitting InP quantum dot light-emitting diode with polyethylenimine interfacial layer. Adv Electron Mater 10, 2400195 (2024). doi: 10.1002/aelm.202400195 |
[45] | Bian YY, Yan XH, Chen F et al. Efficient green InP-based QD-LED by controlling electron injection and leakage. Nature 635, 854–859 (2024). doi: 10.1038/s41586-024-08197-z |
[46] | Cheng YB, Li Q, Chen MY et al. High-brightness green InP-based QLEDs enabled by in-situ passivating core surface with zinc myristate. Mater Futures 3, 025201 (2024). doi: 10.1088/2752-5724/ad3a83 |
[47] | Li LF, Luo YN, Wu QQ et al. Efficient and bright green InP quantum dot light-emitting diodes enabled by a self-assembled dipole interface monolayer. Nanoscale 15, 2837–2842 (2023). doi: 10.1039/D2NR06618A |
[48] | Yu P, Cao S, Shan YL et al. Highly efficient green InP-based quantum dot light-emitting diodes regulated by inner alloyed shell component. Light Sci Appl 11, 162 (2022). doi: 10.1038/s41377-022-00855-z |
[49] | Gao PL, Zhang Y, Qi P et al. Efficient InP green quantum‐dot light‐emitting diodes based on organic electron transport layer. Adv Opt Mater 10, 2202066 (2022). doi: 10.1002/adom.202202066 |
[50] | Wu QQ, Wang L, Cao F et al. Bridging chloride anions enables efficient and stable InP green quantum-dot light-emitting diodes. Adv Opt Mater 11, 2300659 (2023). doi: 10.1002/adom.202300659 |
[51] | Moon H, Lee W, Kim J et al. Composition-tailored ZnMgO nanoparticles for electron transport layers of highly efficient and bright InP-based quantum dot light emitting diodes. Chem Commun 55, 13299–13302 (2019). doi: 10.1039/C9CC06882A |
[52] | Wu QQ, Cao F, Wang S et al. Quasi-shell-growth strategy achieves stable and efficient green InP quantum dot light-emitting diodes. Adv Sci 9, 2200959 (2022). doi: 10.1002/advs.202200959 |
[53] | Kim J, Hong A, Hahm D et al. Realization of highly efficient InP quantum dot light-emitting diodes through in-depth investigation of exciton-harvesting layers. Adv Opt Mater 11, 2300088 (2023). doi: 10.1002/adom.202300088 |
[54] | Yoon SY, Lee YJ, Yang H et al. Performance enhancement of InP quantum dot light-emitting diodes via a surface-functionalized ZnMgO electron transport layer. ACS Energy Lett 7, 2247–2255 (2022). doi: 10.1021/acsenergylett.2c01065 |
[55] | Li D, Feng JW, Zhu YQ et al. Enhanced efficiency of top-emission InP-based green quantum dot light-emitting diodes with optimized angular distribution. Nano Res 14, 4243–4249 (2021). doi: 10.1007/s12274-021-3596-4 |
[56] | Liu P, Lou YJ, Ding SH et al. Green InP/ZnSeS/ZnS core multi-shelled quantum dots synthesized with aminophosphine for effective display applications. Adv Funct Mater 31, 2008453 (2021). doi: 10.1002/adfm.202008453 |
[57] | Zhang H, Hu N, Zeng ZP et al. High-efficiency green InP quantum dot-based electroluminescent device comprising thick-shell quantum dots. Adv Opt Mater 7, 1801602 (2019). doi: 10.1002/adom.201801602 |
[58] | Yoon SY, Han JN, Lee YJ et al. Highly emissive green ZnSeTe quantum dots: effects of core size on their optical properties and comparison with InP counterparts. ACS Energy Lett 8, 1131–1140 (2023). doi: 10.1021/acsenergylett.2c02924 |
[59] | Zhang WD, Tan YZ, Duan XJ et al. High quantum yield blue InP/ZnS/ZnS quantum dots based on bromine passivation for efficient blue light‐emitting diodes. Adv Opt Mater 10, 2200685 (2022). doi: 10.1002/adom.202200685 |
[60] | Kim KH, Jo JH, Jo DY et al. Cation-exchange-derived InGaP alloy quantum dots toward blue emissivity. Chem Mater 32, 3537–3544 (2020). doi: 10.1021/acs.chemmater.0c00551 |
[61] | Zhang WD, Ding SH, Zhuang WD et al. InP/ZnS/ZnS core/shell blue quantum dots for efficient light-emitting diodes. Adv Funct Mater 30, 2005303 (2020). doi: 10.1002/adfm.202005303 |
[62] | Suh YH, Lee S, Jung SM et al. Engineering core size of InP quantum dot with incipient ZnS for blue emission. Adv Opt Mater 10, 2102372 (2022). doi: 10.1002/adom.202102372 |
[63] | Zhang H, Ma XY, Lin QL et al. High-brightness blue InP quantum dot-based electroluminescent devices: the role of shell thickness. J Phys Chem Lett 11, 960–967 (2020). doi: 10.1021/acs.jpclett.9b03567 |
[64] | Tan, Y, Zhang W, Xiao X et al. Enhancing hole injection by electric dipoles for efficient blue InP QLEDs. Appl Phys Lett 119, 221105 (2021). doi: 10.1063/5.0071508 |
[65] | Kim T, Kim KH, Kim S et al. Efficient and stable blue quantum dot light-emitting diode. Nature 586, 385–389 (2020). doi: 10.1038/s41586-020-2791-x |
[66] | Lee SH, Song SW, Yoon SY et al. Heterostructural tailoring of blue ZnSeTe quantum dots toward high-color purity and high-efficiency electroluminescence. Chem Eng J 429, 132464 (2022). doi: 10.1016/j.cej.2021.132464 |
[67] | Yuan CX, Tian FS, Chen SM. ZnSeTe blue top-emitting QLEDs with color saturation near Rec. 2020 standards and efficiency over 18.16%. Nano Res 16, 5517–5524 (2023). doi: 10.1007/s12274-022-5172-y |
[68] | Bi YH, Cao S, Yu P et al. Reducing emission linewidth of pure-blue ZnSeTe quantum dots through shell engineering toward high color purity light-emitting diodes. Small 19, 2303247 (2023). doi: 10.1002/smll.202303247 |
[69] | Gao M, Tu YF, Tian DD et al. Alleviating electron over-injection for efficient cadmium-free quantum dot light-emitting diodes toward deep-blue emission. ACS Photonics 9, 1400–1408 (2022). doi: 10.1021/acsphotonics.2c00155 |
[70] | Gao M, Yang HW, Shen HB et al. Bulk-like ZnSe quantum dots enabling efficient ultranarrow blue light-emitting diodes. Nano Lett 21, 7252–7260 (2021). doi: 10.1021/acs.nanolett.1c02284 |
[71] | Cheng CY, Yu BB, Huang F et al. Near-unity quantum yield ZnSeTe quantum dots enabled by controlling shell growth for efficient deep-blue light-emitting diodes. Adv Funct Mater 21, 2313811 (2024). |
[72] | Han CY, Lee SH, Song SW et al. More than 9% efficient ZnSeTe quantum dot-based blue electroluminescent devices. ACS Energy Lett 5, 1568–1576 (2020). doi: 10.1021/acsenergylett.0c00638 |
[73] | Wang AQ, Shen HB, Zang SP et al. Bright, efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes. Nanoscale 7, 2951–2959 (2015). doi: 10.1039/C4NR06593J |
[74] | Cho H, Park S, Shin H et al. Highly efficient deep blue Cd-free quantum dot light-emitting diodes by a p-type doped emissive layer. Small 16, 2002109 (2020). doi: 10.1002/smll.202002109 |
[75] | Kim S, Kim JA, Kim T et al. Efficient blue-light-emitting Cd-free colloidal quantum well and its application in electroluminescent devices. Chem Mater 32, 5200–5207 (2020). doi: 10.1021/acs.chemmater.0c01275 |
[76] | Zheng ZS, Ren ZW, Xia WL et al. Bromide decorated eco-friendly ZnSeTe/ZnSe/ZnS quantum dots for efficient blue light-emitting diodes. Adv Mater Interfaces 10, 2202241 (2023). doi: 10.1002/admi.202202241 |
[77] | Park S, Son C, Kang S et al. Development of highly efficient blue-emitting ZnSexTe1-x/ZnSe/ZnS quantum dots and their electroluminescence application. J Ind Eng Chem 88, 348–355 (2020). doi: 10.1016/j.jiec.2020.05.003 |
[78] | Yang ZW, Wu QQ, Zhou XC et al. A seed-mediated and double shell strategy to realize large-size ZnSe/ZnS/ZnS quantum dots for high color purity blue light-emitting diodes. Nanoscale 13, 4562–4568 (2021). doi: 10.1039/D0NR05025C |
[79] | Jo JH, Jo DY, Lee SH et al. InP-based quantum dots having an InP core, composition-gradient ZnSeS inner shell, and ZnS outer shell with sharp, bright emissivity, and blue absorptivity for display devices. ACS Appl Nano Mater 3, 1972–1980 (2020). doi: 10.1021/acsanm.0c00008 |
[80] | Long R, Chen XP, Zhang XH et al. Carboxylic-free synthesis of InP quantum dots for highly efficient and bright electroluminescent device. Adv Opt Mater 11, 2202594 (2023). doi: 10.1002/adom.202202594 |
[81] | Haubold S, Haase M, Kornowski A et al. Strongly luminescent InP/ZnS core-shell nanoparticles. Chemphyschem 2, 331–334 (2001). doi: 10.1002/1439-7641(20010518)2:5<331::AID-CPHC331>3.0.CO;2-0 |
[82] | Kim S, Kim T, Kang M et al. Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes. J Am Chem Soc 134, 3804–3809 (2012). doi: 10.1021/ja210211z |
[83] | Sun ZJ, Wu QQ, Wang S et al. Suppressing the cation exchange at the core/shell interface of InP quantum dots by a selenium shielding layer enables efficient green light-emitting diodes. ACS Appl Mater Interfaces 14, 15401–15406 (2022). doi: 10.1021/acsami.2c01699 |
[84] | Zhao HB, Hu HL, Zheng JP et al. One-pot synthesis of InP multishell quantum dots for narrow-bandwidth light-emitting devices. ACS Appl Nano Mater 6, 3797–3802 (2023). doi: 10.1021/acsanm.2c05498 |
[85] | Min JJ, Zhang Y, Zhou YM et al. Size engineering of trap effects in oxidized and hydroxylated ZnSe quantum dots. Nano Lett 22, 3604–3611 (2022). doi: 10.1021/acs.nanolett.2c00118 |
[86] | Long ZW, Liu MR, Wu XG et al. A reactivity-controlled epitaxial growth strategy for synthesizing large nanocrystals. Nat Synth 2, 296–304 (2023). doi: 10.1038/s44160-022-00210-5 |
[87] | Lin XY, Yang Y, Li XY et al. Blue lasers using low-toxicity colloidal quantum dots. Nat Nanotechnol 1, (2024). doi: 10.1038/s41565-024-01812-0 |
[88] | Imran M, Paritmongkol W, Mills HA et al. Molecular-additive-assisted tellurium homogenization in ZnSeTe quantum dots. Adv Mater 35, 2303528 (2023). doi: 10.1002/adma.202303528 |
[89] | Tamang S, Lincheneau C, Hermans Y et al. Chemistry of InP nanocrystal syntheses. Chem Mater 28, 2491–2506 (2016). doi: 10.1021/acs.chemmater.5b05044 |
[90] | Baquero EA, Virieux H, Swain RA et al. Synthesis of oxide-free InP quantum dots: surface control and H2-assisted growth. Chem Mater 29, 9623–9627 (2017). doi: 10.1021/acs.chemmater.7b04069 |
[91] | Chen B, Li DY, Wang F. InP quantum dots: synthesis and lighting applications. Small 16, 2002454 (2020). doi: 10.1002/smll.202002454 |
[92] | De Roo J, Baquero EA, Coppel Y et al. Insights into the ligand shell, coordination mode, and reactivity of carboxylic acid capped metal oxide nanocrystals. Chem Plus Chem 81, 1216–1223 (2016). doi: 10.1002/cplu.201600372 |
[93] | Cheng HF, Yang NL, Liu GG et al. Ligand-exchange-induced amorphization of Pd nanomaterials for highly efficient electrocatalytic hydrogen evolution reaction. Adv Mater 32, 1902964 (2020). doi: 10.1002/adma.201902964 |
[94] | Sun HC, Buhro WE. Reversible Z-type to L-type ligand exchange on Zinc-blende cadmium selenide nanoplatelets. Chem Mater 32, 5814–5826 (2020). doi: 10.1021/acs.chemmater.0c01712 |
[95] | Kim J, Kim Y, Park K et al. Ligand effect in 1-octanethiol passivation of InP/ZnSe/ZnS quantum dots-evidence of incomplete surface passivation during synthesis. Small 18, 2203093 (2022). doi: 10.1002/smll.202203093 |
[96] | Xu TF, Xiang WC, Ru XN et al. Enhancing stability and efficiency of inverted inorganic perovskite solar cells with in-situ interfacial cross-linked modifier. Adv Mater 36, 2312237 (2024). doi: 10.1002/adma.202312237 |
[97] | Moon H, Lee C, Lee W et al. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv Mater 31, 1804294 (2019). doi: 10.1002/adma.201804294 |
[98] | Liu GY, Zhang S, Xu LL et al. Recent advances of eco-friendly quantum dots light-emitting diodes for display. Prog Quantum Electron 86, 100415 (2022). doi: 10.1016/j.pquantelec.2022.100415 |
[99] | Park Y, Klöckner B, Hahm D et al. Origin of enhanced efficiency and stability in diblock copolymer-grafted Cd-free quantum dot-based light-emitting diodes. J Mater Chem C 9, 10398–10405 (2021). doi: 10.1039/D1TC02534A |
[100] | Cho S, Lim SN, Kim HS et al. Air-stable and environmentally friendly full color-emitting ZnSeTe/ZnSe/ZnS quantum dots for display applications. ACS Appl Nano Mater 5, 18905–18911 (2022). doi: 10.1021/acsanm.2c04677 |
[101] | Lee BJ, Kim TY, Kim I et al. Bright and stable ZnSeTe core/shell quantum dots enabled by surface passivation with organozinc halide ligands. Chem Mater 36, 471–481 (2024). doi: 10.1021/acs.chemmater.3c02461 |
[102] | Colvin VL, Schlamp MC, Alivisatos AP. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994). doi: 10.1038/370354a0 |
[103] | Shu YF, Lin X, Qin HY et al. Quantum dots for display applications. Angew Chem 132, 22496–22507 (2020). doi: 10.1002/ange.202004857 |
[104] | Mueller AH, Petruska MA, Achermann M et al. Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers. Nano Lett 5, 1039–1044 (2005). doi: 10.1021/nl050384x |
[105] | Qian L, Zheng Y, Xue JG et al. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat Photonics 5, 543–548 (2011). doi: 10.1038/nphoton.2011.171 |
[106] | Son SR, Yang KP, Park J et al. Highly efficient and eco-friendly InP-based quantum dot light-emitting diodes with a synergetic combination of a liquid metal cathode and size-controlled ZnO nanoparticles. Mater Chem Phys 287, 126322 (2022). doi: 10.1016/j.matchemphys.2022.126322 |
[107] | Lee CY, Naik Mude N, Lampande R et al. Efficient cadmium-free inverted red quantum dot light-emitting diodes. ACS Appl Mater Interfaces 11, 36917–36924 (2019). doi: 10.1021/acsami.9b12514 |
[108] | Wang LS, Lin J, Liu XY et al. Mg-doped ZnO nanoparticle films as the interlayer between the ZnO electron transport layer and InP quantum dot layer for light-emitting diodes. J Phys Chem C 124, 8758–8765 (2020). doi: 10.1021/acs.jpcc.0c00351 |
[109] | Ning MJ, Cao S, Li QY et al. Improving performance of InP-based quantum dot light-emitting diodes by controlling defect states of the ZnO electron transport layer. J Phys Chem C 127, 824–830 (2023). doi: 10.1021/acs.jpcc.2c07893 |
[110] | Mude NN, Kim SJ, Lampande R et al. An efficient organic and inorganic hybrid interlayer for high performance inverted red cadmium-free quantum dot light-emitting diodes. Nanoscale Adv 4, 904–910 (2022). doi: 10.1039/D1NA00716E |
[111] | Wang YM, Wu QQ, Wang L et al. Boosting the efficiency and stability of green InP quantum dot light emitting diodes by interface dipole modulation. J Mater Chem C 10, 8192–8198 (2022). doi: 10.1039/D2TC01522F |
[112] | Lee T, Hahm D, Kim K et al. Highly efficient and bright inverted top-emitting InP quantum dot light-emitting diodes introducing a hole-suppressing interlayer. Small 15, 1905162 (2019). doi: 10.1002/smll.201905162 |
[113] | Zhang TQ, Zhao FQ, Liu P et al. Understanding and hindering the electron leakage in green InP quantum-dot light-emitting diodes. Adv Photonics Res 4, 2300146 (2023). doi: 10.1002/adpr.202300146 |
[114] | Bao Z, Jiang ZF, Su Q et al. ZnSe: Te/ZnSeS/ZnS nanocrystals: an access to cadmium-free pure-blue quantum-dot light-emitting diodes. Nanoscale 12, 11556–11561 (2020). doi: 10.1039/D0NR01019G |
[115] | Li HY, Bian YY, Zhang WJ et al. High performance InP-based quantum dot light-emitting diodes via the suppression of field-enhanced electron delocalization. Adv Funct Mater 32, 2204529 (2022). doi: 10.1002/adfm.202204529 |
[116] | Tolmachev DO, Fernée MJ, Shornikova EV et al. Positive trions in InP/ZnSe/ZnS colloidal nanocrystals. ACS Nano 18, 9378–9388 (2024). doi: 10.1021/acsnano.3c09971 |
[117] | Chandrasekaran V, Scarpelli L, Masia F et al. Exciton dephasing by phonon-induced scattering between bright exciton states in InP/ZnSe colloidal quantum dots. ACS Nano 17, 12118–12126 (2023). doi: 10.1021/acsnano.2c12182 |
[118] | Baek H, Kang S, Heo J et al. Insights into structural defect formation in individual InP/ZnSe/ZnS quantum dots under UV oxidation. Nat Commun 15, 1671 (2024). doi: 10.1038/s41467-024-45944-2 |
[119] | Ma SL, Cao F, Jia GH et al. Blue ZnSeTe quantum dot light-emitting diodes with low efficiency roll-off enabled by an in situ hybridization of ZnMgO nanoparticles and amino alcohol molecules. Nanoscale 16, 10441–10447 (2024). doi: 10.1039/D4NR01515K |
[120] | Li CL, Nishikawa K, Ando M et al. Synthesis of Cd-free water-soluble ZnSe1− xTe x nanocrystals with high luminescence in the blue region. J Colloid Interface Sci 321, 468–476 (2008). doi: 10.1016/j.jcis.2008.02.009 |
[121] | Chang JH, Lee HJ, Rhee S et al. Pushing the band gap envelope of quasi-type II heterostructured nanocrystals to blue: ZnSe/ZnSe1- XTe X/ZnSe spherical quantum wells. Energy Mater Adv 2021, 3245731 (2021). |
[122] | Cai WB, Ren YJ, Huang ZG et al. Emission mechanism of bright and eco-friendly ZnSeTe quantum dots. Adv Opt Mater 12, 2301970 (2024). doi: 10.1002/adom.202301970 |
[123] | Huang ZG, Sun Q, Zhao SY et al. Deciphering ultrafast carrier dynamics of eco-friendly ZnSeTe-based quantum dots: toward high-quality blue–green emitters. J Phys Chem Lett 12, 11931–11938 (2021). doi: 10.1021/acs.jpclett.1c03478 |
[124] | Chang JH, Jung D, Lee HJ et al. Impact of morphological inhomogeneity on excitonic states in highly mismatched alloy ZnSe1– XTe X nanocrystals. J Phys Chem Lett 13, 11464–11472 (2022). doi: 10.1021/acs.jpclett.2c03050 |
[125] | Lee YJ, Kim S, Lee J et al. Crystallographic and photophysical analysis on facet-controlled defect-free blue-emitting quantum dots. Adv Mater 36, 2311719 (2024). doi: 10.1002/adma.202311719 |
[126] | Yang ZW, Lin GL, Bai JY et al. Inkjet-printed blue InP/ZnS/ZnS quantum dot light-emitting diodes. Chem Eng J 450, 138413 (2022). doi: 10.1016/j.cej.2022.138413 |
[127] | Bai JY, Hu HL, Yu YS et al. Achieving high performance InP quantum dot light-emitting devices by using inkjet printing. Org Electron 113, 106705 (2023). doi: 10.1016/j.orgel.2022.106705 |
[128] | Zhan SJ, Suh YH, Fan XB et al. Inkjet-printed multi-color arrays based on eco-friendly quantum dot light emitting diodes with tailored hole transport layer. J Soc Inf Disp 30, 748–757 (2022). doi: 10.1002/jsid.1133 |
[129] | Lee H, Suh YH, Fan XB et al. Air stable eco-friendly quantum dots with a light-mediated photoinitiator for an inkjet printed flexible light emitting diode. J Mater Chem C 10, 10708–10718 (2022). doi: 10.1039/D2TC00851C |
Sequential chart of key achievements in the evolution of eco-friendly QLEDs.
Key challenges in the development of InP-based QDs and ZnSe-based QDs.
The synthesis strategies for InP QDs. (a) Gradient shell QDs (b) Multi-shelled QDs synthesized with aminophosphine. (c) Introducing a GaP layer between the InP core and ZnS shell to passivate the surface and eliminate traps. (d) Potential distribution and energy level shifts in core-shell heterostructured QDs with high PLQY. (e) Epitaxial deposition of ZnS on InP QDs. (f) Suppressing the cation exchange at the core/shell interface of InP QDs. (g) Temperature gradient solution growth strategy for the growth of the inner shell layer. (h) A quasi-ZnSe shell to minimize surface defects in the InP core with Ostwald ripening hindrance and lifetime extension. (i) ZnF2-assisted synthesis for removing the surface oxide layer of InP QDs to produce high-lifetime QLEDs. Figure reproduced with permission from: (a) ref.33, Elsevier; (b) ref.56, John Wiley and Sons; (c) ref.82, American Chemical Society; (d) ref.40, Springer Nature; (e) ref.42, (f) ref.83, (g) ref.84, American Chemical Society. (h) ref.52, John Wiley and Sons; (i) ref.37, American Chemical Society.
The synthesis strategies for ZnSe QDs. (a) Synthesis scheme for large ZnSe/ZnS QDs. (b) Bulk-like ZnSe core QDs. (c) A reactivity-controlled epitaxial growth strategy. (d) Alloyed ZnSeTe QDs with high PLQY. (e) Heterostructural tailoring of blue ZnSeTe QDs. (f) Controlling the internal ZnSe shell thickness of the QDs. (g) Controlling shell growth of ZnSeTe QDs. (h) Chematic illustrations of the synthesis of ZnTeSe (core), ZnTeSe/ZnSe (C/S) and ZnTeSe/ZnSe/ZnS (C/S/S) QDs, with corresponding TEM images. (i) Influence of Te clustering on optical properties of ZnSeTe QDs. Figure reproduced with permission from: (a) ref.35, Elsevier; (b) ref.70, American Chemical Society; (c) ref.86, Springer Nature; (d) ref.36, American Chemical Society; (e) ref.66, Elsevier; (f) ref.68, John Wiley and Sons; (g) ref.71, John Wiley and Sons; (h) ref.65, Springer Nature; (i) ref.88, John Wiley and Sons.
The ligand exchange strategies for InP QDs. (a) Replacing oleic acid ligands with hexanoic acid. (b) Substituting oleic acid ligands with semiconducting diblock copolymer units. (c) Modifying InP QDs with different alkyl diamines. (d) Investigating the ligand effect in the passivation of InP QDs. Figure reproduced with permission from: (a) ref.22, Springer Nature; (b) ref.99, Royal Society of Chemistry; (c) ref.23, Springer Nature; (d) ref.95, John Wiley and Sons.
ZnSe QDs ligand exchange strategies. (a) Chloride passivation via liquid or solid ligand exchange with oleic acid. (b) Bromide decoration of ZnSeTe/ZnSe/ZnS QDs. (c) Oleic acid surface ligand exchange with an alkanethiol variant. (d) Introduction of 4MBZC as a dual-ion passivation ligand. Figure reproduced with permission from: (a) ref.65, Springer Nature; (b) ref.76, John Wiley and Sons; (c) ref.100, (d) ref.94, American Chemical Society.
Development of QLED device structure.
The improvement of the charge balance in InP-QLEDs. (a) Acrylate-functionalized ZnMgO. (b) The PEABr:MABr interlayer between ZnMgO and Al cathode. (c) Organic PO-T2T as an ETL to prevent the over-injection of electrons, leading to improved charge balance within the QLEDs. The molecular structure of (d) BFTP-regulated TFB self-assembled dipole interface monolayer, enhancing hole injection efficiency into InP QDs. (e) B-PTAA as an alternative material for HTL with high hole mobility and a deep HOMO level. (f) DBTA utilized as HTL. (g) A blended EML by combining DOFL-TPD with InP-based QD. Figure reproduced with permission from: (a) ref.54, American Chemical Society; (b) ref.111, Royal Society of Chemistry; (c) ref.49, John Wiley and Sons; (d) ref.47, Royal Society of Chemistry; (e) ref.38, Tsinghua University Press; (f) ref.41, American Chemical Society; (g) ref.39, American Chemical Society.
Enhancements in charge balancing of blue ZnSe-based QLEDs. (a) Illustration of the structure and energy level alignment in a conventional QLED device. (b) Modification of ZnMgO NPs through additional Mg reaction. (c) Employment of Sn-doped ZnO to mitigate electron over-injection. (d) Demonstration of ZnSeTe-based blue top-emitting QLEDs. Figure reproduced with permission from: (a) ref.114, Royal Society of Chemistry; (b) ref.72, (c) ref.69, American Chemical Society. (d) ref.67, Springer Nature.
The degradation mechanisms of InP-based QLEDs. (a) The impacts of the electron delocalization and the associated energy transfers on the characteristics of InP-based QLEDs. (b) The STEM and HR-TEM images. (c) Photoluminescence spectra of QDs in varying magnetic fields. (d) Depiction of exciton decoherence as a phonon-mediated, thermally activated process. (e) Emission quenching of InP/ZnSe/ZnS QDs under UV exposure. Figure reproduced with permission from: (a) ref.115, (b) ref.20, John Wiley and Sons; (c) ref.116, American Chemical Society; (d) ref.117, American Chemical Society; (e) ref.118, Springer Nature.
Mechanism for the blue emission of ZnSe-based QLED. (a) Radial probabilities for the presence of electrons and holes of excitons in QD with/without irradiation. (b) Absorption (dashed line) and PL spectra (solid line) of ZnSe QDs with varying Te ratios and ZnSe shell thicknesses. (c) The temperature-dependent PL spectroscopy of the main and tail emission. (d) Size-dependent molar absorption coefficients. (e) PL spectra along with schematic diagrams. (f) Impact of nearest-neighbor pairs of Te atoms on the optical properties of ZnSe/ZnSe1–XTeX/ZnSe/ZnS NCs; Copyright 2022, American Chemical Society. (g) Morphological and crystalline structural changes upon excess HF treatment over the synthesis process. Figure reproduced with permission from: (a) ref.120, American Chemical Society; (b) ref.121, authors; ref.122, John Wiley and Sons; (c) ref.58, (e) ref.123, (f) ref.124, American Chemical Society; (g) ref.125, John Wiley and Sons.
Recent progress on eco-friendly QD patterning technologies. (a) Inkjet-printed QLED utilizing blue InP/ZnS/ZnS QDs as emission layer. (b) Nanoimprinting-aided inkjet-printed QLED for enhanced light extraction. (c) Cadmium-free RGB inkjet-printed QLED. (d) Comparison of InP-based green QLEDs printed with and without photoinitiator inclusion. Figure reproduced with permission from: (a) ref.126, (b) ref.127, Elsevier; (c) ref.128, John Wiley and Sons; (d) ref.129, Royal Society of Chemistry.