Xie ZL, Meng C, Yue DH et al. Tip-enhanced Raman scattering of glucose molecules. Opto-Electron Sci 4, 240027 (2025). doi: 10.29026/oes.2025.240027
Citation: Xie ZL, Meng C, Yue DH et al. Tip-enhanced Raman scattering of glucose molecules. Opto-Electron Sci 4, 240027 (2025). doi: 10.29026/oes.2025.240027

Article Open Access

Tip-enhanced Raman scattering of glucose molecules

More Information
  • Glucose molecules are of great significance being one of the most important molecules in metabolic chain. However, due to the small Raman scattering cross-section and weak/non-adsorption on bare metals, accurately obtaining their "fingerprint information" remains a huge obstacle. Herein, we developed a tip-enhanced Raman scattering (TERS) technique to address this challenge. Adopting an optical fiber radial vector mode internally illuminates the plasmonic fiber tip to effectively suppress the background noise while generating a strong electric-field enhanced tip hotspot. Furthermore, the tip hotspot approaching the glucose molecules was manipulated via the shear-force feedback to provide more freedom for selecting substrates. Consequently, our TERS technique achieves the visualization of all Raman modes of glucose molecules within spectral window of 400–3200 cm−1, which is not achievable through the far-field/surface-enhanced Raman, or the existing TERS techniques. Our TERS technique offers a powerful tool for accurately identifying Raman scattering of molecules, paving the way for biomolecular analysis.
  • 加载中
  • [1] Levy T, Voeltzke K, Hruby L et al. mTORC1 regulates cell survival under glucose starvation through 4EBP1/2-mediated translational reprogramming of fatty acid metabolism. Nat Commun 15, 4083 (2024). doi: 10.1038/s41467-024-48386-y

    CrossRef Google Scholar

    [2] Prahalad P, Scheinker D, Desai M et al. Equitable implementation of a precision digital health program for glucose management in individuals with newly diagnosed type 1 diabetes. Nat Med 30, 2067–2075 (2024). doi: 10.1038/s41591-024-02975-y

    CrossRef Google Scholar

    [3] Zou K, Rouskin S, Dervishi K et al. Life span extension by glucose restriction is abrogated by methionine supplementation: cross-talk between glucose and methionine and implication of methionine as a key regulator of life span. Sci Adv 6, eaba1306 (2020). doi: 10.1126/sciadv.aba1306

    CrossRef Google Scholar

    [4] Ibrahim MA, Allam M, El-Haes H et al. Analysis of the structure and vibrational spectra of glucose and fructose. Eclet Quim 31, 15–21 (2006).

    Google Scholar

    [5] Lewis BE, Schramm VL. Conformational equilibrium isotope effects in glucose by 13C NMR spectroscopy and computational studies. J Am Chem Soc 123, 1327–1336 (2001). doi: 10.1021/ja003291k

    CrossRef Google Scholar

    [6] Zhang T, Li YT, Lv XM et al. Ultra-sensitive and unlabeled SERS nanosheets for specific identification of glucose in body fluids. Adv Funct Mater 34, 2315668 (2024). doi: 10.1002/adfm.202315668

    CrossRef Google Scholar

    [7] Yang D, Afroosheh S, Lee JO et al. Glucose sensing using surface-enhanced Raman-mode constraining. Anal Chem 90, 14269–14278 (2018). doi: 10.1021/acs.analchem.8b03420

    CrossRef Google Scholar

    [8] Ahmadianyazdi A, Lan Nguyen NH, Xu J et al. Glucose measurement via Raman spectroscopy of graphene: principles and operation. Nano Res 15, 8697–8704 (2022). doi: 10.1007/s12274-022-4587-9

    CrossRef Google Scholar

    [9] Sun XC. Glucose detection through surface-enhanced Raman spectroscopy: a review. Anal Chim Acta 1206, 339226 (2022). doi: 10.1016/j.aca.2021.339226

    CrossRef Google Scholar

    [10] Shafer-Peltier KE, Haynes CL, Glucksberg MR et al. Toward a glucose biosensor based on surface-enhanced Raman scattering. J Am Chem Soc 125, 588–593 (2003). doi: 10.1021/ja028255v

    CrossRef Google Scholar

    [11] Sooraj KP, Ranjan M, Rao R et al. SERS based detection of glucose with lower concentration than blood glucose level using plasmonic nanoparticle arrays. Appl Surf Sci 447, 576–581 (2018). doi: 10.1016/j.apsusc.2018.04.020

    CrossRef Google Scholar

    [12] Shao MR, Ji C, Tan JB et al. Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response. Opto-Electron Adv 6, 230094 (2023). doi: 10.29026/oea.2023.230094

    CrossRef Google Scholar

    [13] Wang WQ, Huang ZW. Stimulated Raman scattering microscopy with phase-controlled light focusing and aberration correction for rapid and label-free, volumetric deep tissue imaging. Opto-Electronic Adv 7, 240064 (2024). doi: 10.29026/oea.2024.240064

    CrossRef Google Scholar

    [14] Li SS, Fang YN, Wang JF. Control of light–matter interactions in two-dimensional materials with nanoparticle-on-mirror structures. Opto-Electron Sci 3, 240011 (2024). doi: 10.29026/oes.2024.240011

    CrossRef Google Scholar

    [15] Stuart DA, Yuen JM, Shah N et al. In vivo glucose measurement by surface-enhanced Raman spectroscopy. Anal Chem 78, 7211–7215 (2006). doi: 10.1021/ac061238u

    CrossRef Google Scholar

    [16] Rycenga M, McLellan JM, Xia YN. A SERS study of the molecular structure of alkanethiol monolayers on Ag nanocubes in the presence of aqueous glucose. Chem Phys Lett 463, 166–171 (2008). doi: 10.1016/j.cplett.2008.08.062

    CrossRef Google Scholar

    [17] Ham J, Yun BJ, Koh WG. SERS-based biosensing platform using shape-coded hydrogel microparticles incorporating silver nanoparticles. Sens Actuators B Chem 341, 129989 (2021). doi: 10.1016/j.snb.2021.129989

    CrossRef Google Scholar

    [18] Meng QS, Zhang JX, Zhang Y et al. Local heating and Raman thermometry in a single molecule. Sci Adv 10, eadl1015 (2024). doi: 10.1126/sciadv.adl1015

    CrossRef Google Scholar

    [19] Imada H, Imai-Imada M, Miwa K et al. Single-molecule laser nanospectroscopy with micro-electron volt energy resolution. Science 373, 95–98 (2021). doi: 10.1126/science.abg8790

    CrossRef Google Scholar

    [20] Zhang R, Zhang Y, Dong ZC et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013). doi: 10.1038/nature12151

    CrossRef Google Scholar

    [21] Lee J, Crampton KT, Tallarida N et al. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature 568, 78–82 (2019). doi: 10.1038/s41586-019-1059-9

    CrossRef Google Scholar

    [22] Chen C, Li WZ, Song YC et al. Formation of water and glucose clusters by hydrogen bonds in glucose aqueous solutions. Comput Theor Chem 984, 85–92 (2012). doi: 10.1016/j.comptc.2012.01.013

    CrossRef Google Scholar

    [23] Deckert-Gaudig T, Kämmer E, Deckert V. Tracking of nanoscale structural variations on a single amyloid fibril with tip-enhanced Raman scattering. J Biophotonics 5, 215–219 (2012). doi: 10.1002/jbio.201100142

    CrossRef Google Scholar

    [24] Ma XZ, Zhu YZ, Yu N et al. Toward high-contrast atomic force microscopy-tip-enhanced Raman spectroscopy imaging: nanoantenna-mediated remote-excitation on sharp-tip silver nanowire probes. Nano Lett 19, 100–107 (2019). doi: 10.1021/acs.nanolett.8b03399

    CrossRef Google Scholar

    [25] Berweger S, Atkin JM, Olmon RL et al. Adiabatic tip-plasmon focusing for nano-Raman spectroscopy. J Phys Chem Lett 1, 3427–3432 (2010). doi: 10.1021/jz101289z

    CrossRef Google Scholar

    [26] Zhang WD, Huang LG, Wei KY et al. High-order optical vortex generation in a few-mode fiber via cascaded acoustically driven vector mode conversion. Opt Lett 41, 5082–5085 (2016). doi: 10.1364/OL.41.005082

    CrossRef Google Scholar

    [27] Zhang WD, Huang LG, Wei KY et al. Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave. Opt Express 24, 10376–10384 (2016). doi: 10.1364/OE.24.010376

    CrossRef Google Scholar

    [28] Liu M, Lu FF, Zhang WD et al. Highly efficient plasmonic nanofocusing on a metallized fiber tip with internal illumination of the radial vector mode using an acousto-optic coupling approach. Nanophotonics 8, 921–929 (2019). doi: 10.1515/nanoph-2019-0027

    CrossRef Google Scholar

    [29] Lu FF, Zhang WD, Huang LG et al. Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip. Opto-Electron Adv 1, 180010 (2018).

    Google Scholar

    [30] Oskooi AF, Roundy D, Ibanescu M et al. MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput Phys Commun 181, 687–702 (2010). doi: 10.1016/j.cpc.2009.11.008

    CrossRef Google Scholar

    [31] Haynes WM. CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2016).

    Google Scholar

    [32] Palik ED. Handbook of Optical Constants of Solids (Academic Press, Orlando, 1985).

    Google Scholar

    [33] Karrai K, Grober RD. Piezoelectric tip-sample distance control for near field optical microscopes. Appl Phys Lett 66, 1842–1844 (1995). doi: 10.1063/1.113340

    CrossRef Google Scholar

    [34] Wang X, Zhang AH, Zhi MC et al. Glucose concentration measured by the hybrid coherent anti-Stokes Raman-scattering technique. Phys Rev A 81, 013813 (2010). doi: 10.1103/PhysRevA.81.013813

    CrossRef Google Scholar

    [35] Kang JW, Park YS, Chang H et al. Direct observation of glucose fingerprint using in vivo Raman spectroscopy. Sci Adv 6, eaay5206 (2020). doi: 10.1126/sciadv.aay5206

    CrossRef Google Scholar

    [36] Hariharan PC, Pople JA. Accuracy of AHn equilibrium geometries by single determinant molecular orbital theory. Mol Phys 27, 209–214 (1974). doi: 10.1080/00268977400100171

    CrossRef Google Scholar

    [37] Lu T, Chen FW. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33, 580–592 (2012). doi: 10.1002/jcc.22885

    CrossRef Google Scholar

    [38] Kobayashi K, Unno H, Takizawa H et al. Chemical treatment effect of Si (111) surfaces in H2SO4: H2O2 solution. Jpn J Appl Phys 35, 5925–5928 (1996). doi: 10.1143/JJAP.35.5925

    CrossRef Google Scholar

  • Supplementary information for Tip-enhanced Raman scattering of glucose molecules
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint