Sun HY, He Y, Qiao SD et al. Highly sensitive and real-simultaneous CH4/C2H2 dual-gas LITES sensor based on Lissajous pattern multi-pass cell. Opto-Electron Sci 3, 240013 (2024). doi: 10.29026/oes.2024.240013
Citation: Sun HY, He Y, Qiao SD et al. Highly sensitive and real-simultaneous CH4/C2H2 dual-gas LITES sensor based on Lissajous pattern multi-pass cell. Opto-Electron Sci 3, 240013 (2024). doi: 10.29026/oes.2024.240013

Article Open Access

Highly sensitive and real-simultaneous CH4/C2H2 dual-gas LITES sensor based on Lissajous pattern multi-pass cell

More Information
  • In this paper, a novel highly sensitive methane (CH4) and acetylene (C2H2) dual-gas light-induced thermoelectric spectroscopy (LITES) sensor based on Lissajous space-division multiplexed (LSDM) technology and trapezoidal-head quartz tuning fork (QTF) detector was reported for the first time. A theoretical LSDM model was established on the basis of three-mirror astigmatic multi-pass cell (MPC) and it was used to design a pair of Lissajous spot patterns with optical path length to volume ratios (OPL/Vs) of 13.5 cm-2 and 13.3 cm-2, respectively. Two self-designed trapezoidal-head QTFs with low resonant frequencies of less than 10 kHz and quality factor of ~12000 were adopted to enhance the detection ability. Two kinds of fiber amplifier, erbium doped fiber amplifier (EDFA) and Raman fiber amplifier (RFA), were combined to amplify the output power of two diode lasers to improve the excitation strength. After optimization, minimum detection limit (MDL) of 268.8 ppb and 91.4 ppb for real-simultaneous CH4 and C2H2 sensing were obtained, respectively. When the integration time of the system were 150 s and 100 s, the MDLs could be improved to 54.8 ppb and 26.1 ppb, accordingly. Further improvement methods for such sensor were discussed.
  • 加载中
  • [1] Leal-Junior A, Avellar L, Biazi V et al. Multifunctional flexible optical waveguide sensor: on the bioinspiration for ultrasensitive sensors development. Opto-Electron Adv 5, 210098 (2022). doi: 10.29026/oea.2022.210098

    CrossRef Google Scholar

    [2] Dong L, Li CG, Sanchez NP et al. Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser. Appl Phys Lett 108, 011106 (2016). doi: 10.1063/1.4939452

    CrossRef Google Scholar

    [3] Wan F, Wang R, Ge H et al. Optical feedback frequency locking: impact of directly reflected field and responding strategies. Opt Express 32, 12428–12437 (2024). doi: 10.1364/OE.520346

    CrossRef Google Scholar

    [4] Xu BX, Fan XY, Wang S et al. Sub-femtometer-resolution absolute spectroscopy with sweeping electro-optic combs. Opto-Electron Adv 5, 210023 (2022). doi: 10.29026/oea.2022.210023

    CrossRef Google Scholar

    [5] Zhang ZD, Peng T, Nie XY et al. Entangled photons enabled time-frequency-resolved coherent Raman spectroscopy and applications to electronic coherences at femtosecond scale. Light Sci Appl 11, 274 (2022). doi: 10.1038/s41377-022-00953-y

    CrossRef Google Scholar

    [6] Jiang SL, Chen FF, Zhao Y et al. Broadband all-fiber optical phase modulator based on photo-thermal effect in a gas-filled hollow-core fiber. Opto-Electron Adv 6, 220085 (2023). doi: 10.29026/oea.2023.220085

    CrossRef Google Scholar

    [7] Hou JF, Liu XN, Liu YH et al. Highly sensitive CO2-LITES sensor based on a self-designed low-frequency quartz tuning fork and fiber-coupled MPC. Chin Opt Lett 22, 073001 (2024). doi: 10.3788/COL202422.073001

    CrossRef Google Scholar

    [8] Zheng ZH, Zhu SK, Chen Y et al. Towards integrated mode-division demultiplexing spectrometer by deep learning. Opto-Electron Sci 1, 220012 (2022). doi: 10.29026/oes.2022.220012

    CrossRef Google Scholar

    [9] Qiao SD, He Y, Sun HY et al. Ultra-highly sensitive dual gases detection based on photoacoustic spectroscopy by exploiting a long-wave, high-power, wide-tunable, single-longitudinal-mode solid-state laser. Light Sci Appl 13, 100 (2024). doi: 10.1038/s41377-024-01459-5

    CrossRef Google Scholar

    [10] Li DR, Wang NN, Zhang TY et al. Label-free fiber nanograting sensor for real-time in situ early monitoring of cellular apoptosis. Adv Photonics 4, 016001 (2022).

    Google Scholar

    [11] Lang ZT, Qiao SD, Ma YF. Fabry-Perot-based phase demodulation of heterodyne light-induced thermoelastic spectroscopy. Light Adv Manuf 4, 233-242 (2023).

    Google Scholar

    [12] Wang XY, Qiu XK, Liu ML et al. Flat soliton microcomb source. Opto-Electron Sci 2, 230024 (2023). doi: 10.29026/oes.2023.230024

    CrossRef Google Scholar

    [13] Zhang L, Zhang M, Chen TN et al. Ultrahigh-resolution on-chip spectrometer with silicon photonic resonators. Opto-Electron Adv 5, 210100 (2022). doi: 10.29026/oea.2022.210100

    CrossRef Google Scholar

    [14] Sun WF, Wang XK, Zhang Y. Terahertz generation from laser-induced plasma. Opto-Electron Sci 1, 220003 (2022). doi: 10.29026/oes.2022.220003

    CrossRef Google Scholar

    [15] Liu XN, Ma YF. New temperature measurement method based on light-induced thermoelastic spectroscopy. Opt Lett 48, 5687–5690 (2023). doi: 10.1364/OL.503287

    CrossRef Google Scholar

    [16] Chen WP, Qiao SD, He Y et al. Mid-infrared all-fiber light-induced thermoelastic spectroscopy sensor based on hollow-core anti-resonant fiber. Photoacoustics 36, 100594 (2024). doi: 10.1016/j.pacs.2024.100594

    CrossRef Google Scholar

    [17] Hashimoto K, Nakamura T, Kageyama T et al. Upconversion time-stretch infrared spectroscopy. Light Sci Appl 12, 48 (2023). doi: 10.1038/s41377-023-01096-4

    CrossRef Google Scholar

    [18] Zhang C, Qiao SD, He Y et al. Trace gas sensor based on a multi-pass-retro-reflection-enhanced differential Helmholtz photoacoustic cell and a power amplified diode laser. Opt Express 32, 848–856 (2024). doi: 10.1364/OE.512104

    CrossRef Google Scholar

    [19] Wang YQ, Zhang JH, Zheng YC et al. Brillouin scattering spectrum for liquid detection and applications in oceanography. Opto-Electron Adv 6, 220016 (2023). doi: 10.29026/oea.2023.220016

    CrossRef Google Scholar

    [20] Gao H, Fan XH, Wang YX et al. Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction. Opto-Electron Sci 2, 220026 (2023). doi: 10.29026/oes.2023.220026

    CrossRef Google Scholar

    [21] Shao LG, Fang B, Zheng F et al. Simultaneous detection of atmospheric CO and CH4 based on TDLAS using a single 2.3 μm DFB laser. Spectrochim Acta A Mol Biomol Spectrosc 222, 117118 (2019). doi: 10.1016/j.saa.2019.05.023

    CrossRef Google Scholar

    [22] Zhang C, He Y, Qiao SD et al. Differential integrating sphere-based photoacoustic spectroscopy gas sensing. Opt Lett 48, 5089–5092 (2023). doi: 10.1364/OL.500214

    CrossRef Google Scholar

    [23] Kosterev AA, Bakhirkin YA, Curl RF et al. Quartz-enhanced photoacoustic spectroscopy. Opt Lett 27, 1902–1904 (2002). doi: 10.1364/OL.27.001902

    CrossRef Google Scholar

    [24] Li B, Feng CF, Wu HP et al. Calibration-free mid-infrared exhaled breath sensor based on BF-QEPAS for real-time ammonia measurements at ppb level. Sens Actuators B Chem 358, 131510 (2022). doi: 10.1016/j.snb.2022.131510

    CrossRef Google Scholar

    [25] Chen WP, Qiao SD, Lang ZT et al. Hollow-waveguide-based light-induced thermoelastic spectroscopy sensing. Opt Lett 48, 3989–3992 (2023). doi: 10.1364/OL.497685

    CrossRef Google Scholar

    [26] Menduni G, Zifarelli A, Sampaolo A et al. High-concentration methane and ethane QEPAS detection employing partial least squares regression to filter out energy relaxation dependence on gas matrix composition. Photoacoustics 26, 100349 (2022). doi: 10.1016/j.pacs.2022.100349

    CrossRef Google Scholar

    [27] Ma YF, Lewicki R, Razeghi M et al. QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL. Opt Express 21, 1008–1019 (2013).

    Google Scholar

    [28] Shi C, Wang DE, Wang Z et al. A mid-infrared fiber-coupled QEPAS nitric oxide sensor for real-time engine exhaust monitoring. IEEE Sens J 17, 7418–7424 (2017). doi: 10.1109/JSEN.2017.2758640

    CrossRef Google Scholar

    [29] Lang ZT, Qiao SD, Liang TT et al. Dual-frequency modulated heterodyne quartz-enhanced photoacoustic spectroscopy. Opt Express 32, 379–386 (2024). doi: 10.1364/OE.506861

    CrossRef Google Scholar

    [30] Chao F, Liang TT, Qiao SD et al. Quartz-enhanced photoacoustic spectroscopy sensing using trapezoidal- and round-head quartz tuning forks. Opt Lett 49, 770–773 (2024). doi: 10.1364/OL.513628

    CrossRef Google Scholar

    [31] Ma YF, He Y, Yu X et al. HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork. Sens Actuators B Chem 233, 388–393 (2016). doi: 10.1016/j.snb.2016.04.114

    CrossRef Google Scholar

    [32] Wu HP, Sampaolo A, Dong L et al. Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing. Appl Phys Lett 107, 111104 (2015). doi: 10.1063/1.4930995

    CrossRef Google Scholar

    [33] Ma YF, He Y, Tong Y et al. Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection. Opt Express 26, 32103–32110 (2018). doi: 10.1364/OE.26.032103

    CrossRef Google Scholar

    [34] Liu XN, Qiao SD, Ma YF. Highly sensitive methane detection based on light-induced thermoelastic spectroscopy with a 2.33 μm diode laser and adaptive Savitzky-Golay filtering. Opt Express 30, 1304–1313 (2022). doi: 10.1364/OE.446294

    CrossRef Google Scholar

    [35] Wu Q, Lv HH, Li JM et al. Side-excitation light-induced thermoelastic spectroscopy. Opt Lett 48, 562–565 (2023). doi: 10.1364/OL.478630

    CrossRef Google Scholar

    [36] Ma YF, Liang TT, Qiao SD et al. Highly sensitive and fast hydrogen detection based on light-induced thermoelastic spectroscopy. Ultrafast Sci 3, 0024 (2023). doi: 10.34133/ultrafastscience.0024

    CrossRef Google Scholar

    [37] Sun B, Patimisco P, Sampaolo A et al. Light-induced thermoelastic sensor for ppb-level H2S detection in a SF6 gas matrices exploiting a mini-multi-pass cell and quartz tuning fork photodetector. Photoacoustics 33, 100553 (2023). doi: 10.1016/j.pacs.2023.100553

    CrossRef Google Scholar

    [38] Liu XN, Ma YF. Sensitive carbon monoxide detection based on light-induced thermoelastic spectroscopy with a fiber-coupled multipass cell [Invited]. Chin Opt Lett 20, 031201 (2022). doi: 10.3788/COL202220.031201

    CrossRef Google Scholar

    [39] Hu LE, Zheng CT, Zhang MH et al. Long-distance in-situ methane detection using near-infrared light-induced thermo-elastic spectroscopy. Photoacoustics 21, 100230 (2021). doi: 10.1016/j.pacs.2020.100230

    CrossRef Google Scholar

    [40] Hudzikowski A, Głuszek A, Krzempek K et al. Compact, spherical mirror-based dense astigmatic-like pattern multipass cell design aided by a genetic algorithm. Opt Express 29, 26127–26136 (2021). doi: 10.1364/OE.432541

    CrossRef Google Scholar

    [41] He Y, Ma YF, Tong Y et al. Ultra-high sensitive light-induced thermoelastic spectroscopy sensor with a high Q-factor quartz tuning fork and a multipass cell. Opt Lett 44, 1904–1907 (2019). doi: 10.1364/OL.44.001904

    CrossRef Google Scholar

    [42] Liu YH, Qiao SD, Fang C et al. A highly sensitive LITES sensor based on a multi-pass cell with dense spot pattern and a novel quartz tuning fork with low frequency. Opto-Electron Adv 7, 230230 (2024). doi: 10.29026/oea.2024.230230

    CrossRef Google Scholar

    [43] Liu YH, Ma YF. Advances in multipass cell for absorption spectroscopy-based trace gas sensing technology [Invited]. Chin Opt Lett 21, 033001 (2023). doi: 10.3788/COL202321.033001

    CrossRef Google Scholar

    [44] Engel GS, Moyer EJ. Precise multipass Herriott cell design: derivation of controlling design equations. Opt Lett 32, 704–706 (2007). doi: 10.1364/OL.32.000704

    CrossRef Google Scholar

    [45] Li CL, Liu LL, Qiu XB et al. Optical heterodyne Herriott-type multipass laser absorption spectrometer. Chin Opt Lett 13, 013001 (2015). doi: 10.3788/COL201513.013001

    CrossRef Google Scholar

    [46] Tarsitano CG, Webster CR. Multilaser Herriott cell for planetary tunable laser spectrometers. Appl Opt 46, 6923–6935 (2007). doi: 10.1364/AO.46.006923

    CrossRef Google Scholar

    [47] Han X, Li CX, Guo M et al. Fiber-optic trace gas sensing based on graphite excited photoacoustic wave. Sens Actuators B Chem 408, 135546 (2024). doi: 10.1016/j.snb.2024.135546

    CrossRef Google Scholar

    [48] McManus JB, Kebabian PL, Zahniser MS. Astigmatic mirror multipass absorption cells for long-path-length spectroscopy. Appl Opt 34, 3336–3348 (1995). doi: 10.1364/AO.34.003336

    CrossRef Google Scholar

    [49] De Geyter C. Van de Maele K, Hauser B et al. Hydrogen and methane breath test in the diagnosis of lactose intolerance. Nutrients 13, 3261 (2021). doi: 10.3390/nu13093261

    CrossRef Google Scholar

    [50] Liang TT, Qiao SD, Chen YJ et al. High-sensitivity methane detection based on QEPAS and H-QEPAS technologies combined with a self-designed 8.7 kHz quartz tuning fork. Photoacoustics 36, 100592 (2024). doi: 10.1016/j.pacs.2024.100592

    CrossRef Google Scholar

    [51] Marshall ST, Schwartz DK, Medlin JW. Selective acetylene detection through surface modification of metal–insulator–semiconductor sensors with alkanethiolate monolayers. Sens Actuators B Chem 136, 315–319 (2009). doi: 10.1016/j.snb.2008.11.026

    CrossRef Google Scholar

    [52] Miller KL, Morrison E, Marshall ST et al. Experimental and modeling studies of acetylene detection in hydrogen/acetylene mixtures on PdM bimetallic metal–insulator–semiconductor devices. Sens Actuators B Chem 156, 924–931 (2011). doi: 10.1016/j.snb.2011.03.007

    CrossRef Google Scholar

    [53] Zhang LW, Zhang ZR, Sun PS et al. A dual-gas sensor for simultaneous detection of methane and acetylene based on time-sharing scanning assisted wavelength modulation spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 239, 118495 (2020). doi: 10.1016/j.saa.2020.118495

    CrossRef Google Scholar

    [54] Zheng KY, Zheng CT, Yao D et al. A near-infrared C2H2/CH4 dual-gas sensor system combining off-axis integrated-cavity output spectroscopy and frequency-division-multiplexing-based wavelength modulation spectroscopy. Analyst 144, 2003–2010 (2019). doi: 10.1039/C8AN02164C

    CrossRef Google Scholar

    [55] Ye WL, Xia ZK, Hu LE et al. Infrared dual-gas CH4/C2H2 sensor system based on dual-channel off-beam quartz-enhanced photoacoustic spectroscopy and time-division multiplexing technique. Spectrochim Acta A Mol Biomol Spectrosc 285, 121908 (2023). doi: 10.1016/j.saa.2022.121908

    CrossRef Google Scholar

    [56] Wang KY, Shao LG, Chen JJ et al. A dual-laser sensor based on off-axis integrated cavity output spectroscopy and time-division multiplexing method. Sensors 20, 6192 (2020). doi: 10.3390/s20216192

    CrossRef Google Scholar

    [57] Raza M, Xu K, Lu ZM et al. Simultaneous methane and acetylene detection using frequency-division multiplexed laser absorption spectroscopy. Opt Laser Technol 154, 108285 (2022). doi: 10.1016/j.optlastec.2022.108285

    CrossRef Google Scholar

    [58] Dong M, Zheng CT, Yao D et al. Double-range near-infrared acetylene detection using a dual spot-ring Herriott cell (DSR-HC). Opt Express 26, 12081–12091 (2018). doi: 10.1364/OE.26.012081

    CrossRef Google Scholar

    [59] Hu Z, Shi YP, Niu MS et al. Near-infrared dual-gas sensor for simultaneous detection of CO and CH4 using a double spot-ring plane-concave multipass cell and a digital laser frequency stabilization system. Opt Express 32, 14169–14186 (2024). doi: 10.1364/OE.521613

    CrossRef Google Scholar

    [60] Liu K, Wang L, Tan T et al. Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell. Sens Actuators B Chem 220, 1000–1005 (2015). doi: 10.1016/j.snb.2015.05.136

    CrossRef Google Scholar

    [61] Cui RY, Dong L, Wu HP et al. Generalized optical design of two-spherical-mirror multi-pass cells with dense multi-circle spot patterns. Appl Phys Lett 116, 091103 (2020). doi: 10.1063/1.5145356

    CrossRef Google Scholar

    [62] Kong R, Sun T, Liu P et al. Optical design and analysis of a two-spherical-mirror-based multipass cell. Appl Opt 59, 1545–1552 (2020). doi: 10.1364/AO.381632

    CrossRef Google Scholar

    [63] Tuzson B, Mangold M, Looser H et al. Compact multipass optical cell for laser spectroscopy. Opt Lett 38, 257–259 (2013). doi: 10.1364/OL.38.000257

    CrossRef Google Scholar

    [64] Graf M, Emmenegger L, Tuzson B. Compact, circular, and optically stable multipass cell for mobile laser absorption spectroscopy. Opt Lett 43, 2434–2437 (2018). doi: 10.1364/OL.43.002434

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(2)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint