Citation: | Sun HY, He Y, Qiao SD et al. Highly sensitive and real-simultaneous CH4/C2H2 dual-gas LITES sensor based on Lissajous pattern multi-pass cell. Opto-Electron Sci 3, 240013 (2024). doi: 10.29026/oes.2024.240013 |
[1] | Leal-Junior A, Avellar L, Biazi V et al. Multifunctional flexible optical waveguide sensor: on the bioinspiration for ultrasensitive sensors development. Opto-Electron Adv 5, 210098 (2022). doi: 10.29026/oea.2022.210098 |
[2] | Dong L, Li CG, Sanchez NP et al. Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser. Appl Phys Lett 108, 011106 (2016). doi: 10.1063/1.4939452 |
[3] | Wan F, Wang R, Ge H et al. Optical feedback frequency locking: impact of directly reflected field and responding strategies. Opt Express 32, 12428–12437 (2024). doi: 10.1364/OE.520346 |
[4] | Xu BX, Fan XY, Wang S et al. Sub-femtometer-resolution absolute spectroscopy with sweeping electro-optic combs. Opto-Electron Adv 5, 210023 (2022). doi: 10.29026/oea.2022.210023 |
[5] | Zhang ZD, Peng T, Nie XY et al. Entangled photons enabled time-frequency-resolved coherent Raman spectroscopy and applications to electronic coherences at femtosecond scale. Light Sci Appl 11, 274 (2022). doi: 10.1038/s41377-022-00953-y |
[6] | Jiang SL, Chen FF, Zhao Y et al. Broadband all-fiber optical phase modulator based on photo-thermal effect in a gas-filled hollow-core fiber. Opto-Electron Adv 6, 220085 (2023). doi: 10.29026/oea.2023.220085 |
[7] | Hou JF, Liu XN, Liu YH et al. Highly sensitive CO2-LITES sensor based on a self-designed low-frequency quartz tuning fork and fiber-coupled MPC. Chin Opt Lett 22, 073001 (2024). doi: 10.3788/COL202422.073001 |
[8] | Zheng ZH, Zhu SK, Chen Y et al. Towards integrated mode-division demultiplexing spectrometer by deep learning. Opto-Electron Sci 1, 220012 (2022). doi: 10.29026/oes.2022.220012 |
[9] | Qiao SD, He Y, Sun HY et al. Ultra-highly sensitive dual gases detection based on photoacoustic spectroscopy by exploiting a long-wave, high-power, wide-tunable, single-longitudinal-mode solid-state laser. Light Sci Appl 13, 100 (2024). doi: 10.1038/s41377-024-01459-5 |
[10] | Li DR, Wang NN, Zhang TY et al. Label-free fiber nanograting sensor for real-time in situ early monitoring of cellular apoptosis. Adv Photonics 4, 016001 (2022). |
[11] | Lang ZT, Qiao SD, Ma YF. Fabry-Perot-based phase demodulation of heterodyne light-induced thermoelastic spectroscopy. Light Adv Manuf 4, 233-242 (2023). |
[12] | Wang XY, Qiu XK, Liu ML et al. Flat soliton microcomb source. Opto-Electron Sci 2, 230024 (2023). doi: 10.29026/oes.2023.230024 |
[13] | Zhang L, Zhang M, Chen TN et al. Ultrahigh-resolution on-chip spectrometer with silicon photonic resonators. Opto-Electron Adv 5, 210100 (2022). doi: 10.29026/oea.2022.210100 |
[14] | Sun WF, Wang XK, Zhang Y. Terahertz generation from laser-induced plasma. Opto-Electron Sci 1, 220003 (2022). doi: 10.29026/oes.2022.220003 |
[15] | Liu XN, Ma YF. New temperature measurement method based on light-induced thermoelastic spectroscopy. Opt Lett 48, 5687–5690 (2023). doi: 10.1364/OL.503287 |
[16] | Chen WP, Qiao SD, He Y et al. Mid-infrared all-fiber light-induced thermoelastic spectroscopy sensor based on hollow-core anti-resonant fiber. Photoacoustics 36, 100594 (2024). doi: 10.1016/j.pacs.2024.100594 |
[17] | Hashimoto K, Nakamura T, Kageyama T et al. Upconversion time-stretch infrared spectroscopy. Light Sci Appl 12, 48 (2023). doi: 10.1038/s41377-023-01096-4 |
[18] | Zhang C, Qiao SD, He Y et al. Trace gas sensor based on a multi-pass-retro-reflection-enhanced differential Helmholtz photoacoustic cell and a power amplified diode laser. Opt Express 32, 848–856 (2024). doi: 10.1364/OE.512104 |
[19] | Wang YQ, Zhang JH, Zheng YC et al. Brillouin scattering spectrum for liquid detection and applications in oceanography. Opto-Electron Adv 6, 220016 (2023). doi: 10.29026/oea.2023.220016 |
[20] | Gao H, Fan XH, Wang YX et al. Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction. Opto-Electron Sci 2, 220026 (2023). doi: 10.29026/oes.2023.220026 |
[21] | Shao LG, Fang B, Zheng F et al. Simultaneous detection of atmospheric CO and CH4 based on TDLAS using a single 2.3 μm DFB laser. Spectrochim Acta A Mol Biomol Spectrosc 222, 117118 (2019). doi: 10.1016/j.saa.2019.05.023 |
[22] | Zhang C, He Y, Qiao SD et al. Differential integrating sphere-based photoacoustic spectroscopy gas sensing. Opt Lett 48, 5089–5092 (2023). doi: 10.1364/OL.500214 |
[23] | Kosterev AA, Bakhirkin YA, Curl RF et al. Quartz-enhanced photoacoustic spectroscopy. Opt Lett 27, 1902–1904 (2002). doi: 10.1364/OL.27.001902 |
[24] | Li B, Feng CF, Wu HP et al. Calibration-free mid-infrared exhaled breath sensor based on BF-QEPAS for real-time ammonia measurements at ppb level. Sens Actuators B Chem 358, 131510 (2022). doi: 10.1016/j.snb.2022.131510 |
[25] | Chen WP, Qiao SD, Lang ZT et al. Hollow-waveguide-based light-induced thermoelastic spectroscopy sensing. Opt Lett 48, 3989–3992 (2023). doi: 10.1364/OL.497685 |
[26] | Menduni G, Zifarelli A, Sampaolo A et al. High-concentration methane and ethane QEPAS detection employing partial least squares regression to filter out energy relaxation dependence on gas matrix composition. Photoacoustics 26, 100349 (2022). doi: 10.1016/j.pacs.2022.100349 |
[27] | Ma YF, Lewicki R, Razeghi M et al. QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL. Opt Express 21, 1008–1019 (2013). |
[28] | Shi C, Wang DE, Wang Z et al. A mid-infrared fiber-coupled QEPAS nitric oxide sensor for real-time engine exhaust monitoring. IEEE Sens J 17, 7418–7424 (2017). doi: 10.1109/JSEN.2017.2758640 |
[29] | Lang ZT, Qiao SD, Liang TT et al. Dual-frequency modulated heterodyne quartz-enhanced photoacoustic spectroscopy. Opt Express 32, 379–386 (2024). doi: 10.1364/OE.506861 |
[30] | Chao F, Liang TT, Qiao SD et al. Quartz-enhanced photoacoustic spectroscopy sensing using trapezoidal- and round-head quartz tuning forks. Opt Lett 49, 770–773 (2024). doi: 10.1364/OL.513628 |
[31] | Ma YF, He Y, Yu X et al. HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork. Sens Actuators B Chem 233, 388–393 (2016). doi: 10.1016/j.snb.2016.04.114 |
[32] | Wu HP, Sampaolo A, Dong L et al. Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing. Appl Phys Lett 107, 111104 (2015). doi: 10.1063/1.4930995 |
[33] | Ma YF, He Y, Tong Y et al. Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection. Opt Express 26, 32103–32110 (2018). doi: 10.1364/OE.26.032103 |
[34] | Liu XN, Qiao SD, Ma YF. Highly sensitive methane detection based on light-induced thermoelastic spectroscopy with a 2.33 μm diode laser and adaptive Savitzky-Golay filtering. Opt Express 30, 1304–1313 (2022). doi: 10.1364/OE.446294 |
[35] | Wu Q, Lv HH, Li JM et al. Side-excitation light-induced thermoelastic spectroscopy. Opt Lett 48, 562–565 (2023). doi: 10.1364/OL.478630 |
[36] | Ma YF, Liang TT, Qiao SD et al. Highly sensitive and fast hydrogen detection based on light-induced thermoelastic spectroscopy. Ultrafast Sci 3, 0024 (2023). doi: 10.34133/ultrafastscience.0024 |
[37] | Sun B, Patimisco P, Sampaolo A et al. Light-induced thermoelastic sensor for ppb-level H2S detection in a SF6 gas matrices exploiting a mini-multi-pass cell and quartz tuning fork photodetector. Photoacoustics 33, 100553 (2023). doi: 10.1016/j.pacs.2023.100553 |
[38] | Liu XN, Ma YF. Sensitive carbon monoxide detection based on light-induced thermoelastic spectroscopy with a fiber-coupled multipass cell [Invited]. Chin Opt Lett 20, 031201 (2022). doi: 10.3788/COL202220.031201 |
[39] | Hu LE, Zheng CT, Zhang MH et al. Long-distance in-situ methane detection using near-infrared light-induced thermo-elastic spectroscopy. Photoacoustics 21, 100230 (2021). doi: 10.1016/j.pacs.2020.100230 |
[40] | Hudzikowski A, Głuszek A, Krzempek K et al. Compact, spherical mirror-based dense astigmatic-like pattern multipass cell design aided by a genetic algorithm. Opt Express 29, 26127–26136 (2021). doi: 10.1364/OE.432541 |
[41] | He Y, Ma YF, Tong Y et al. Ultra-high sensitive light-induced thermoelastic spectroscopy sensor with a high Q-factor quartz tuning fork and a multipass cell. Opt Lett 44, 1904–1907 (2019). doi: 10.1364/OL.44.001904 |
[42] | Liu YH, Qiao SD, Fang C et al. A highly sensitive LITES sensor based on a multi-pass cell with dense spot pattern and a novel quartz tuning fork with low frequency. Opto-Electron Adv 7, 230230 (2024). doi: 10.29026/oea.2024.230230 |
[43] | Liu YH, Ma YF. Advances in multipass cell for absorption spectroscopy-based trace gas sensing technology [Invited]. Chin Opt Lett 21, 033001 (2023). doi: 10.3788/COL202321.033001 |
[44] | Engel GS, Moyer EJ. Precise multipass Herriott cell design: derivation of controlling design equations. Opt Lett 32, 704–706 (2007). doi: 10.1364/OL.32.000704 |
[45] | Li CL, Liu LL, Qiu XB et al. Optical heterodyne Herriott-type multipass laser absorption spectrometer. Chin Opt Lett 13, 013001 (2015). doi: 10.3788/COL201513.013001 |
[46] | Tarsitano CG, Webster CR. Multilaser Herriott cell for planetary tunable laser spectrometers. Appl Opt 46, 6923–6935 (2007). doi: 10.1364/AO.46.006923 |
[47] | Han X, Li CX, Guo M et al. Fiber-optic trace gas sensing based on graphite excited photoacoustic wave. Sens Actuators B Chem 408, 135546 (2024). doi: 10.1016/j.snb.2024.135546 |
[48] | McManus JB, Kebabian PL, Zahniser MS. Astigmatic mirror multipass absorption cells for long-path-length spectroscopy. Appl Opt 34, 3336–3348 (1995). doi: 10.1364/AO.34.003336 |
[49] | De Geyter C. Van de Maele K, Hauser B et al. Hydrogen and methane breath test in the diagnosis of lactose intolerance. Nutrients 13, 3261 (2021). doi: 10.3390/nu13093261 |
[50] | Liang TT, Qiao SD, Chen YJ et al. High-sensitivity methane detection based on QEPAS and H-QEPAS technologies combined with a self-designed 8.7 kHz quartz tuning fork. Photoacoustics 36, 100592 (2024). doi: 10.1016/j.pacs.2024.100592 |
[51] | Marshall ST, Schwartz DK, Medlin JW. Selective acetylene detection through surface modification of metal–insulator–semiconductor sensors with alkanethiolate monolayers. Sens Actuators B Chem 136, 315–319 (2009). doi: 10.1016/j.snb.2008.11.026 |
[52] | Miller KL, Morrison E, Marshall ST et al. Experimental and modeling studies of acetylene detection in hydrogen/acetylene mixtures on PdM bimetallic metal–insulator–semiconductor devices. Sens Actuators B Chem 156, 924–931 (2011). doi: 10.1016/j.snb.2011.03.007 |
[53] | Zhang LW, Zhang ZR, Sun PS et al. A dual-gas sensor for simultaneous detection of methane and acetylene based on time-sharing scanning assisted wavelength modulation spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 239, 118495 (2020). doi: 10.1016/j.saa.2020.118495 |
[54] | Zheng KY, Zheng CT, Yao D et al. A near-infrared C2H2/CH4 dual-gas sensor system combining off-axis integrated-cavity output spectroscopy and frequency-division-multiplexing-based wavelength modulation spectroscopy. Analyst 144, 2003–2010 (2019). doi: 10.1039/C8AN02164C |
[55] | Ye WL, Xia ZK, Hu LE et al. Infrared dual-gas CH4/C2H2 sensor system based on dual-channel off-beam quartz-enhanced photoacoustic spectroscopy and time-division multiplexing technique. Spectrochim Acta A Mol Biomol Spectrosc 285, 121908 (2023). doi: 10.1016/j.saa.2022.121908 |
[56] | Wang KY, Shao LG, Chen JJ et al. A dual-laser sensor based on off-axis integrated cavity output spectroscopy and time-division multiplexing method. Sensors 20, 6192 (2020). doi: 10.3390/s20216192 |
[57] | Raza M, Xu K, Lu ZM et al. Simultaneous methane and acetylene detection using frequency-division multiplexed laser absorption spectroscopy. Opt Laser Technol 154, 108285 (2022). doi: 10.1016/j.optlastec.2022.108285 |
[58] | Dong M, Zheng CT, Yao D et al. Double-range near-infrared acetylene detection using a dual spot-ring Herriott cell (DSR-HC). Opt Express 26, 12081–12091 (2018). doi: 10.1364/OE.26.012081 |
[59] | Hu Z, Shi YP, Niu MS et al. Near-infrared dual-gas sensor for simultaneous detection of CO and CH4 using a double spot-ring plane-concave multipass cell and a digital laser frequency stabilization system. Opt Express 32, 14169–14186 (2024). doi: 10.1364/OE.521613 |
[60] | Liu K, Wang L, Tan T et al. Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell. Sens Actuators B Chem 220, 1000–1005 (2015). doi: 10.1016/j.snb.2015.05.136 |
[61] | Cui RY, Dong L, Wu HP et al. Generalized optical design of two-spherical-mirror multi-pass cells with dense multi-circle spot patterns. Appl Phys Lett 116, 091103 (2020). doi: 10.1063/1.5145356 |
[62] | Kong R, Sun T, Liu P et al. Optical design and analysis of a two-spherical-mirror-based multipass cell. Appl Opt 59, 1545–1552 (2020). doi: 10.1364/AO.381632 |
[63] | Tuzson B, Mangold M, Looser H et al. Compact multipass optical cell for laser spectroscopy. Opt Lett 38, 257–259 (2013). doi: 10.1364/OL.38.000257 |
[64] | Graf M, Emmenegger L, Tuzson B. Compact, circular, and optically stable multipass cell for mobile laser absorption spectroscopy. Opt Lett 43, 2434–2437 (2018). doi: 10.1364/OL.43.002434 |
Structure diagram of three-mirror astigmatic MPC. L: long side of mirrors; W: wide side of mirrors; d: distance from mirror to the origin; α: angle between mirrors; θ: the angle between the incident laser and the z axis; φ: the angle between the projection of the incident ray in the x-y plane and the x axis.
(a) Simulated results of dual-path Lissajous patterns on three mirrors. (b) The diagram of double optical paths in Lissajous patterns MPC.
(a) Measured distribution of dual-path Lissajous patterns on three mirrors. (b) The picture of the three mirrors MPC with dual-path Lissajous pattern.
Schematic diagram of simultaneous CH4/C2H2 dual-gas LITES sensor based on LSDM-MPC and trapezoidal-head QTF. RFA: Raman fiber amplifier; EDFA: Erbium doped fiber amplifier; C-lens: collimating lens; F-lens: focusing lenses; QTF: quartz tuning fork.
(a) The responses of PD1 to path 1 and path 2, respectively. Insert: The absorbance of 200 ppm CH4 at
Frequency response of the trapezoidal-head QTF1 and QTF2 in the dual-gas LITES sensor.
(a) 2f signal amplitude of 200 ppm CH4 with different modulation depth based LITES sensor. (b) 2f signal amplitude of 200 ppm C2H2 with different modulation depth based LITES sensor.
(a) Relationship between 2f peak value of CH4 LITES and output power of RFA. Insert: 2f WMS signal waveform of CH4. (b) Relationship between 2f signal amplitude of C2H2 LITES and output power of EDFA. Insert: 2f WMS signal waveform of C2H2.
(a) Noise level and SNR of CH4 detection with different output power of RFA. Insert: Noise signal at maximum output power of RFA. (b) Noise level and SNR of C2H2 detection with different output power of EDFA. Insert: Noise signal at maximum output power of EDFA.
(a) Concentration responses of dual-gas LITES sensor based on LSDM-MPC and trapezoidal-head QTF. (b) The linear relationship between 2f signal amplitude and concentration of CH4 and C2H2.
(a) Continuous noise detection in CH4 LITES sensor. (b) Normal distribution of experimental points for noise detection. (c) Allan variance analysis of path 1 for CH4 detection.
(a) Continuous noise detection in C2H2 LITES sensor. (b) Normal distribution of experimental points for noise detection. (c) Allan variance analysis of path 2 for C2H2 detection.