Zhang Z, Li GY, Liu YL et al. Robust measurement of orbital angular momentum of a partially coherent vortex beam under amplitude and phase perturbations. Opto-Electron Sci 3, 240001 (2024). doi: 10.29026/oes.2024.240001
Citation: Zhang Z, Li GY, Liu YL et al. Robust measurement of orbital angular momentum of a partially coherent vortex beam under amplitude and phase perturbations. Opto-Electron Sci 3, 240001 (2024). doi: 10.29026/oes.2024.240001

Article Open Access

Robust measurement of orbital angular momentum of a partially coherent vortex beam under amplitude and phase perturbations

More Information
  • The ability to overcome the negative effects, induced by obstacles and turbulent atmosphere, is a core challenge of long-distance information transmission, and it is of great significance in free-space optical communication. The spatial-coherence structure, that characterizes partially coherent fields, provides a new degree of freedom for carrying information. However, due to the influence of the complex transmission environment, the spatial-coherence structure is severely damaged during the propagation path, which undoubtedly limits its ability to transmit information. Here, we realize the robust far-field orbital angular momentum (OAM) transmission and detection by modulating the spatial-coherence structure of a partially coherent vortex beam with the help of the cross-phase. The cross-phase enables the OAM information, quantified by the topological charge, hidden in the spatial-coherence structure can be stably transmitted to the far field and can resist the influence of obstructions and turbulence within the communication link. This is due to the self-reconstruction property of the spatial-coherence structure embedded with the cross-phase. We demonstrate experimentally that the topological charge information can be recognized well by measuring the spatial-coherence structure in the far field, exhibiting a set of distinct and separated dark rings even under amplitude and phase perturbations. Our findings open a door for robust optical signal transmission through the complex environment and may find application in optical communication through a turbulent atmosphere.
  • 加载中
  • [1] Gbur GJ. Singular Optics (CRC Press, Boca Raton, 2017).

    Google Scholar

    [2] Willner AE, Huang H, Yan Y et al. Optical communications using orbital angular momentum beams. Adv Opt Photonics 7, 66 (2015). doi: 10.1364/AOP.7.000066

    CrossRef Google Scholar

    [3] He H, Friese MEJ, Heckenberg NR et al. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys Rev Lett 75, 826–829 (1995). doi: 10.1103/PhysRevLett.75.826

    CrossRef Google Scholar

    [4] Paterson L, MacDonald MP, Arlt J et al. Controlled rotation of optically trapped microscopic particles. Science 292, 912–914 (2001). doi: 10.1126/science.1058591

    CrossRef Google Scholar

    [5] Yang YJ, Ren YX, Chen MZ et al. Optical trapping with structured light: a review. Adv Photonics 3, 034001 (2021). doi: 10.1117/1.AP.3.3.034001

    CrossRef Google Scholar

    [6] Tamburini F, Anzolin G, Umbriaco G et al. Overcoming the rayleigh criterion limit with optical vortices. Phys Rev Lett 97, 163903 (2006). doi: 10.1103/PhysRevLett.97.163903

    CrossRef Google Scholar

    [7] Qiu XD, Li FS, Zhang WH et al. Spiral phase contrast imaging in nonlinear optics: seeing phase objects using invisible illumination. Optica 5, 208–212 (2018). doi: 10.1364/OPTICA.5.000208

    CrossRef Google Scholar

    [8] Lavery MPJ, Speirits FC, Barnett SM et al. Detection of a spinning object using light's orbital angular momentum. Science 341, 537–540 (2013). doi: 10.1126/science.1239936

    CrossRef Google Scholar

    [9] Kong LJ, Zhang WX, Li P et al. High capacity topological coding based on nested vortex knots and links. Nat Commun 13, 2705 (2022). doi: 10.1038/s41467-022-30381-w

    CrossRef Google Scholar

    [10] Wen YH, Chremmos I, Chen YJ et al. Arbitrary multiplication and division of the orbital angular momentum of light. Phys Rev Lett 124, 213901 (2020). doi: 10.1103/PhysRevLett.124.213901

    CrossRef Google Scholar

    [11] Fang XY, Ren HR, Gu M. Orbital angular momentum holography for high-security encryption. Nat Photonics 14, 102–108 (2020). doi: 10.1038/s41566-019-0560-x

    CrossRef Google Scholar

    [12] Andrews LC, Phillips RL. Laser Beam Propagation through Random Media 2nd ed (SPIE Press, Bellingham, 2005).

    Google Scholar

    [13] Popoff S, Lerosey G, Fink M et al. Image transmission through an opaque material. Nat Commun 1, 81 (2010). doi: 10.1038/ncomms1078

    CrossRef Google Scholar

    [14] Zeng J, Liu XL, Zhao CL et al. Spiral spectrum of a Laguerre-Gaussian beam propagating in anisotropic non-Kolmogorov turbulent atmosphere along horizontal path. Opt Express 27, 25342–25356 (2019). doi: 10.1364/OE.27.025342

    CrossRef Google Scholar

    [15] Ricklin JC, Davidson FM. Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication. J Opt Soc Am A 19, 1794–1802 (2002).

    Google Scholar

    [16] Wang F, Chen YH, Liu XL et al. Self-reconstruction of partially coherent light beams scattered by opaque obstacles. Opt Express 24, 23735–23746 (2016). doi: 10.1364/OE.24.023735

    CrossRef Google Scholar

    [17] Korotkova O, Gbur G. Applications of optical coherence theory. Prog Opt 65, 43–104 (2020).

    Google Scholar

    [18] Chen YH, Ponomarenko SA, Cai YJ. Experimental generation of optical coherence lattices. Appl Phys Lett 109, 061107 (2016). doi: 10.1063/1.4960966

    CrossRef Google Scholar

    [19] Liu XL, Shen Y, Liu L et al. Experimental demonstration of vortex phase-induced reduction in scintillation of a partially coherent beam. Opt Lett 38, 5323–5326 (2013). doi: 10.1364/OL.38.005323

    CrossRef Google Scholar

    [20] Wang HT, Wang H, Ruan QF et al. Coloured vortex beams with incoherent white light illumination. Nat Nanotechnol 18, 264–272 (2023). doi: 10.1038/s41565-023-01319-0

    CrossRef Google Scholar

    [21] Yang GL, Su JH, Li Y et al. A study of resolution improvement in Noncoherent optical coherence imaging. Adv Math Phys 2022, 3232323 (2022).

    Google Scholar

    [22] Zhao CL, Cai YJ. Trapping two types of particles using a focused partially coherent elegant Laguerre-Gaussian beam. Opt Lett 36, 2251–2253 (2011). doi: 10.1364/OL.36.002251

    CrossRef Google Scholar

    [23] Chen YH, Wang F, Cai YJ. Partially coherent light beam shaping via complex spatial coherence structure engineering. Adv Phys X 7, 2009742 (2022).

    Google Scholar

    [24] Bai YH, Lv HR, Fu X et al. Vortex beam: generation and detection of orbital angular momentum [Invited]. Chin Opt Lett 20, 012601 (2022). doi: 10.3788/COL202220.012601

    CrossRef Google Scholar

    [25] Liu XL, Zeng J, Cai YJ. Review on vortex beams with low spatial coherence. Adv Phys X 4, 1626766 (2019). doi: 10.1080/23746149.2019.1626766

    CrossRef Google Scholar

    [26] Zhao CL, Wang F, Dong Y et al. Effect of spatial coherence on determining the topological charge of a vortex beam. Appl Phys Lett 101, 261104 (2012). doi: 10.1063/1.4773236

    CrossRef Google Scholar

    [27] Yang YJ, Mazilu M, Dholakia K. Measuring the orbital angular momentum of partially coherent optical vortices through singularities in their cross-spectral density functions. Opt Lett 37, 4949–4951 (2012). doi: 10.1364/OL.37.004949

    CrossRef Google Scholar

    [28] Liu RF, Wang FR, Chen DX et al. Measuring mode indices of a partially coherent vortex beam with Hanbury brown and Twiss type experiment. Appl Phys Lett 108, 051107 (2016). doi: 10.1063/1.4941422

    CrossRef Google Scholar

    [29] Liu XL, Wu TF, Liu L et al. Experimental determination of the azimuthal and radial mode orders of a partially coherent LGpl beam. Chin Opt Lett 3, 030002 (2017). doi: 10.3788/COL201715.030002

    CrossRef Google Scholar

    [30] Liu YL, Chen YH, Wang F et al. Robust far-field imaging by spatial coherence engineering. Opto-Electron Adv 4, 210027 (2021). doi: 10.29026/oea.2021.210027

    CrossRef Google Scholar

    [31] Liu YL, Zhang X, Dong Z et al. Robust far-field optical image transmission with structured random light beams. Phys Rev Appl 17, 024043 (2022). doi: 10.1103/PhysRevApplied.17.024043

    CrossRef Google Scholar

    [32] Liu XL, Peng XF, Liu L et al. Self-reconstruction of the degree of coherence of a partially coherent vortex beam obstructed by an opaque obstacle. Appl Phys Lett 110, 181104 (2017). doi: 10.1063/1.4982786

    CrossRef Google Scholar

    [33] Peng XF, Liu L, Wang F et al. Twisted Laguerre-Gaussian Schell-model beam and its orbital angular moment. Opt Express 26, 33956–33969 (2018). doi: 10.1364/OE.26.033956

    CrossRef Google Scholar

    [34] Gbur G, Tyson RK. Vortex beam propagation through atmospheric turbulence and topological charge conservation. J Opt Soc Am A 25, 225–230 (2008). doi: 10.1364/JOSAA.25.000225

    CrossRef Google Scholar

    [35] Li JH, Zeng J, Duan ML. Classification of coherent vortices creation and distance of topological charge conservation in non-Kolmogorov atmospheric turbulence. Opt Express 23, 11556–11565 (2015). doi: 10.1364/OE.23.011556

    CrossRef Google Scholar

    [36] Yu JY, Huang Y, Wang F et al. Scintillation properties of a partially coherent vector beam with vortex phase in turbulent atmosphere. Opt Express 27, 26676–26688 (2019). doi: 10.1364/OE.27.026676

    CrossRef Google Scholar

    [37] Liang G, Wang Q. Controllable conversion between Hermite Gaussian and Laguerre Gaussian modes due to cross phase. Opt Express 27, 10684–10691 (2019). doi: 10.1364/OE.27.010684

    CrossRef Google Scholar

    [38] Wan LP, Zhao DM. Controllable rotating Gaussian Schell-model beams. Opt Lett 44, 735–738 (2019). doi: 10.1364/OL.44.000735

    CrossRef Google Scholar

    [39] Ren Y, Wang C, Liu T et al. Polygonal shaping and multi-singularity manipulation of optical vortices via high-order cross-phase. Opt Express 28, 26257–26266 (2020). doi: 10.1364/OE.397345

    CrossRef Google Scholar

    [40] Xin L, Li ZQ, Monfared YE et al. Flexible autofocusing properties of ring Pearcey beams by means of a cross phase. Opt Lett 46, 70–73 (2021). doi: 10.1364/OL.413380

    CrossRef Google Scholar

    [41] Simon R, Mukunda N. Twist phase in Gaussian-beam optics. J Opt Soc Am A 15, 2373–2382 (1998). doi: 10.1364/JOSAA.15.002373

    CrossRef Google Scholar

    [42] Xu ZH, Liu XL, Chen YH et al. Self-healing properties of Hermite-Gaussian correlated Schell-model beams. Opt Express 28, 2828–2837 (2020). doi: 10.1364/OE.383805

    CrossRef Google Scholar

    [43] Mandel L, Wolf E. Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995).

    Google Scholar

    [44] Ma PJ, Kacerovská B, Khosravi R et al. Numerical approach for studying the evolution of the degrees of coherence of partially coherent beams propagation through an ABCD optical system. Appl Sci 9, 2084 (2019). doi: 10.3390/app9102084

    CrossRef Google Scholar

    [45] Peng DM, Huang ZF, Liu YL et al. Optical coherence encryption with structured random light. PhotoniX 2, 6 (2021). doi: 10.1186/s43074-021-00027-z

    CrossRef Google Scholar

    [46] Zhang Z, Liu ZZ, Liu X et al. Measuring the orbital angular momentum of a vortex beam under extremely low coherence. Appl Phys Lett 122, 011101 (2023). doi: 10.1063/5.0127582

    CrossRef Google Scholar

    [47] Liu X, Chen Q, Zeng J et al. Measurement of optical coherence structures of random optical fields using generalized Arago spot experiment. Opto-Electron Sci 2, 220024 (2023). doi: 10.29026/oes.2023.220024

    CrossRef Google Scholar

    [48] Wang F, Cai YJ. Experimental observation of fractional Fourier transform for a partially coherent optical beam with Gaussian statistics. J Opt Soc Am A 24, 1937–1944 (2007). doi: 10.1364/JOSAA.24.001937

    CrossRef Google Scholar

    [49] Vallone G, D’Ambrosio V, Sponselli A et al. Free-space quantum key distribution by rotation-invariant twisted photons. Phys Rev Lett 113, 060503 (2014). doi: 10.1103/PhysRevLett.113.060503

    CrossRef Google Scholar

  • Supplementary information for Robust measurement of orbital angular momentum of a partially coherent vortex beam under amplitude and phase perturbations
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint