Citation: | Tian YX, Dong BY, Li YX et al. Photonics-assisted THz wireless communication enabled by wide-bandwidth packaged back-illuminated modified uni-traveling-carrier photodiode. Opto-Electron Sci 3, 230051 (2024). doi: 10.29026/oes.2024.230051 |
[1] | Yang P, Xiao Y, Xiao M et al. 6G wireless communications: Vision and potential techniques. IEEE Netw 33, 70–75 (2019). |
[2] | You X H, Wang CX, Huang J et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts. Sci China Inf Sci 64, 110301 (2021). doi: 10.1007/s11432-020-2955-6 |
[3] | Tonouchi M. Cutting-edge terahertz technology. Nat Photonics 1, 97–105 (2007). doi: 10.1038/nphoton.2007.3 |
[4] | Song HJ, Nagatsuma T. Present and future of terahertz communications. IEEE Trans Terahertz Sci Technol 1, 256–263 (2011). doi: 10.1109/TTHZ.2011.2159552 |
[5] | Choi Y, Choi JW, Cioffi JM. A geometric-statistic channel model for THz indoor communications. J Infrared, Milli, Terahertz Waves 34, 456–467 (2013). doi: 10.1007/s10762-013-9975-5 |
[6] | Mittleman DM. Frontiers in terahertz sources and plasmonics. Nat Photonics 7, 666–669 (2013). doi: 10.1038/nphoton.2013.235 |
[7] | Kawanishi T. THz and photonic seamless communications. J Lightwave Technol 37, 1671–1679 (2019). doi: 10.1109/JLT.2019.2897042 |
[8] | Akyildiz IF, Kak A, Nie S. 6G and beyond: The future of wireless communications systems. IEEE Access 8, 133995–134030 (2020). doi: 10.1109/ACCESS.2020.3010896 |
[9] | Kumar A, Gupta M, Pitchappa P et al. Terahertz topological photonic integrated circuits for 6G and beyond: A Perspective. J. Appl. Phys 132, 140901 (2022). doi: 10.1063/5.0099423 |
[10] | Kumar A, Gupta M, Pitchappa P et al. Phototunable chip-scale topological photonics: 160 Gbps waveguide and demultiplexer for THz 6G communication. Nat Commun 13, 5404 (2022). doi: 10.1038/s41467-022-32909-6 |
[11] | Tan YJ, Zhu CY, Tan TC et al. Self-adaptive deep reinforcement learning for THz beamforming with silicon metasurfaces in 6G communications. Opt Express 30, 27763–27779 (2022). doi: 10.1364/OE.458823 |
[12] | Jia RD, Kumar S, Tan TC et al. Valley-conserved topological integrated antenna for 100-Gbps THz 6G wireless. Sci Adv 9, eadi8500 (2023). doi: 10.1126/sciadv.adi8500 |
[13] | Kumar A, Gupta M, Singh R. Topological integrated circuits for 5G and 6G. Nat Electron 5, 261–262 (2022). doi: 10.1038/s41928-022-00775-1 |
[14] | Yang YH, Yamagami Y, Yu XB et al. Terahertz topological photonics for on-chip communication. Nat Photonics 14, 446–451 (2020). doi: 10.1038/s41566-020-0618-9 |
[15] | Jia S, Pang XD, Ozolins O et al. 0.4 THz photonic-wireless link with 106 Gb/s single channel bitrate. J Lightwave Technol 36, 610–616 (2018). doi: 10.1109/JLT.2017.2776320 |
[16] | Yu X, Jia S, Hu H et al. 160 Gbit/s photonics wireless transmission in the 300-500 GHz band. APL Photonics 1, 081301 (2016). doi: 10.1063/1.4960136 |
[17] | Li X Y, Yu J J, Xiao J N et al. Photonics-aided over 100-Gbaud all-band (D-, W-and V-band) wireless delivery. In 42nd European Conference on Optical Communication 1–3 (VDE, 2016).https://ieeexplore.ieee.org/document/7767627 |
[18] | Jia S, Yu XB, Hu H et al. THz photonic wireless links with 16-QAM modulation in the 375-450 GHz band. Opt Express 24, 23777–23783 (2016). doi: 10.1364/OE.24.023777 |
[19] | Ishibashi T, Kodama S, Shimizu N et al. High-speed response of uni-traveling-carrier photodiodes. Jpn. J. Appl. Phys 36, 6263–6268 (1997). doi: 10.1143/JJAP.36.6263 |
[20] | Li QL, Li KJ, Fu Y et al. High-power flip-chip bonded photodiode with 110 GHz bandwidth. J Lightwave Technol 34, 2139–2144 (2016). doi: 10.1109/JLT.2016.2520826 |
[21] | Morgan JS, Sun KY, Li QL et al. High-power flip-chip bonded modified uni-traveling carrier photodiodes with −2.6 dBm RF output power at 160 GHz. In 2018 IEEE Photonics Conference (IPC) 1–2 (IEEE, 2018);http://doi.org/10.1109/IPCon.2018.8527260. |
[22] | Steffan AG, Margraf M, Rouvalis E et al. High-power InP photodetectors. In 2019 Asia Communications and Photonics Conference (ACP) 1–3 (IEEE, 2019).https://api.semanticscholar.org/CorpusID:211119960 |
[23] | Estrella S, Hay K, Campbell J et al. High-power InGaAs/InP MUTC photodetector modules for RF photonics links and ROF. In Proceedings of the SPIE 10128, Broadband Access Communication Technologies XI 101280M (SPIE, 2017). |
[24] | Jiang CH, Krozer V, Bach HG et ak. Broadband packaging of photodetectors for 100 Gb/s ethernet applications. IEEE Trans Compon, Packag Manuf Technol 3, 422–429 (2013). doi: 10.1109/TCPMT.2012.2236149 |
[25] | Runge P, Ganzer F, Gläsel J et al. Broadband 145GHz photodetector module targeting 200GBaud applications. In 2020 Optical Fiber Communications Conference and Exhibition (OFC) 1–3 (IEEE, 2020).https://ieeexplore.ieee.org/document/9083424 |
[26] | Shi JW, Huang CB, Pan CL. Millimeter-wave photonic wireless links for very high data rate communication. NPG Asia Mater 3, 41–48 (2011). doi: 10.1038/asiamat.2010.193 |
[27] | Ito H, Furuta T, Muramoto Y et al. Photonic millimetre- and sub-millimetre-wave generation using J-band rectangular-waveguide-output uni-travelling-carrier photodiode module. Electron Lett 42, 1424–1425 (2006). doi: 10.1049/el:20063033 |
[28] | Shams H, Fice MJ, Balakier K et al. Photonic generation for multichannel THz wireless communication. Opt Express 22, 23465–23472 (2014). doi: 10.1364/OE.22.023465 |
[29] | Koenig S, Lopez-Diaz D, Antes J et al. Wireless sub-THz communication system with high data rate. Nat Photonics 7, 977–981 (2013). doi: 10.1038/nphoton.2013.275 |
[30] | Lu HH, Tsai WS, Huang XH et al. Transmission of sub-terahertz signals over a fiber-FSO-5 G NR hybrid system with an aggregate net bit rate of 227.912 Gb/s. Opt Express 31, 33320–33332 (2023). doi: 10.1364/OE.501976 |
[31] | Tian YX, Xiong B, Sun CZ et al. Ultrafast MUTC photodiodes over 200 GHz with high saturation power. Opt Express 31, 23790–23800 (2023). doi: 10.1364/OE.491552 |
[32] | Dong YF, de Jesus Fernandez Olvera A, Morales A et al. System integration and packaging of a terahertz photodetector at W-band. IEEE Trans Compon, Packag Manuf Technol 9, 1486–1494 (2019). doi: 10.1109/TCPMT.2019.2928053 |
[33] | Khani B, Rymanov V, Steeg M et al. Compact E-band (71-86 GHz) bias-tee module for external biasing of millimeter wave photodiodes. In 2015 International Topical Meeting on Microwave Photonics (MWP) 1–4 (IEEE, 2015);http://doi.org/10.1109/MWP.2015.7356673. |
[34] | Khani B, Rymanov V, Flammia I et al. Planar bias-tee circuit using single coupled-line approach for 71–76 GHz photonic transmitters. In 2015 German Microwave Conference 276–279 (IEEE, 2015); http://doi.org/10.1109/GEMIC.2015.7107807. |
[35] | Sharma AK, Wang H. Experimental models of series and shunt elements in coplanar MMICs. In 1992 IEEE MTT-S Microwave Symposium Digest 1349–1352 (IEEE, 1992);http://doi.org/10.1109/MWSYM.1992.188254. |
[36] | Mongia R, Bahl I, Bhartia P. RF and microwave coupled-line circuits. Microwave J 44, 390 (2001). |
[37] | Dong YF, Zhurbenko V, Hanberg PJ et al. A D-band rectangular waveguide-to-coplanar waveguide transition using wire bonding probe. J Infrared, Milli, Terahertz Waves 40, 63–79 (2019). doi: 10.1007/s10762-018-0551-x |
[38] | Dong YF, Zhurbenko V, Hanberg PJ et al. A D-band rectangular waveguide-to-coplanar waveguide transition using metal ridge. In 2019 IEEE MTT-S International Microwave Symposium (IMS) 1050–1053 (IEEE, 2019);http://doi.org/10.1109/MWSYM.2019.8701099. |
[39] | Li ZY, Dong BY, Li GQ et al. Attention-assisted autoencoder neural network for end-to-end optimization of multi-access fiber-terahertz communication systems. J Opt Commun Networking 15, 711–725 (2023). doi: 10.1364/JOCN.492770 |
[40] | Li X, Chen LW, Li Y et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2, e1601102 (2016). doi: 10.1126/sciadv.1601102 |
[41] | Li Y, Li X, Chen LW et al. Orbital angular momentum multiplexing and demultiplexing by a single metasurface. Adv Opt Mater 5, 1600502 (2017). doi: 10.1002/adom.201600502 |
[42] | Guo YH, Zhang SC, Pu MB et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci Appl 10, 63 (2021). doi: 10.1038/s41377-021-00497-7 |
[43] | Li XY, Chen C, Guo YH et al. Monolithic spiral metalens for ultrahigh-capacity and single-shot sorting of full angular momentum state. Adv Funct Mater 34, 2311286 (2024). doi: 10.1002/adfm.202311286 |
[44] | Ito H, Furuta T, Ito T et al. W-band uni-travelling-carrier photodiode module for high-power photonic millimetre-wave generation. Electron Lett 38, 1376–1377 (2002). doi: 10.1049/el:20020951 |
(a) Epitaxy structure of the proposed MUTC-PD. (b) Influence of high-impedance CPW inductance on frequency response of the 4-μm-diameter PD. (c) 3D schematic view of the PD. (d) SEM image of the fabricated device. (e) Frequency responses under various photocurrents of the 4-μm-diameter PD under 2 V bias voltage.
(a) Top view of passive circuits consist of interdigital inductor-based RF-choke, interdigital capacitor-based DC-block and E-plane probe. Measurement and simulation results of the back-to-back (b) bias-tee and (c) probe package.
(a) Schematic of the WR-5 packaged PD module. ESD: electro static discharge. (b) Wire-bonding interconnection of the passive circuits. (c) Microscope photo of the flip-chip bonded PD chip. (d) I-V characteristics before and after flip-chip bonding.
(a) The packaged WR-5 MUTC-PD module. (b) Frequency response under various photocurrents and (c) frequency-dependent saturation characteristics at 2 V bias voltage of WR-5 PD module.
Comparison of saturation output power against operation frequency for packaged UTC-PD modules. Open marks are for coaxial output modules, and closed ones for waveguide output modules. The rectangular mark indicates module with resonant matching circuit.
Experimental setup of THz wireless communication with the proposed MUTC-PD. AWG: arbitrary waveform generator, ECL: external cavity laser, IQ Mod: IQ modulator, OC: optical coupler, SG: signal generator, LNA: low noise amplifier, EA: electrical amplifier, OSC: oscilloscope, SG: signal generator. (a) Spectrum of the transmitting signal with 25 G Baud. (b) Optical spectrum of the OC at a frequency difference of 150.5 GHz between two lasers. (c) Optical spectrum of the OC at a frequency difference of 210.5 GHz between two lasers.
EVM performance at different baud rates: (a) 150.5-GHz and (b) 210.5-GHz.