Jiang QL, Chen L, Liu JK, Zhang YC, Zhang SA et al. Periodic transparent nanowires in ITO film fabricated via femtosecond laser direct writing. Opto-Electron Sci 2, 220002 (2023). doi: 10.29026/oes.2023.220002
Citation: Jiang QL, Chen L, Liu JK, Zhang YC, Zhang SA et al. Periodic transparent nanowires in ITO film fabricated via femtosecond laser direct writing. Opto-Electron Sci 2, 220002 (2023). doi: 10.29026/oes.2023.220002

Article Open Access

Periodic transparent nanowires in ITO film fabricated via femtosecond laser direct writing

More Information
  • This paper reports the fabrication of regular large-area laser-induced periodic surface structures (LIPSSs) in indium tin oxide (ITO) films via femtosecond laser direct writing focused by a cylindrical lens. The regular LIPSSs exhibited good properties as nanowires, with a resistivity almost equal to that of the initial ITO film. By changing the laser fluence, the nanowire resistances could be tuned from 15 to 73 kΩ/mm with a consistency of ±10%. Furthermore, the average transmittance of the ITO films with regular LIPSSs in the range of 1200–2000 nm was improved from 21% to 60%. The regular LIPSS is promising for transparent electrodes of nano-optoelectronic devices—particularly in the near-infrared band.
  • 加载中
  • [1] Liu HY, Avrutin V, Izyumskaya N, Özgür Ü, Morkoç H. Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattice Microst 48, 458–484 (2010). doi: 10.1016/j.spmi.2010.08.011

    CrossRef Google Scholar

    [2] Exarhos GJ, Zhou XD. Discovery-based design of transparent conducting oxide films. Thin Solid Films 515, 7025–7052 (2007). doi: 10.1016/j.tsf.2007.03.014

    CrossRef Google Scholar

    [3] Ma ZZ, Li ZR, Liu K, Ye CR, Sorger VJ. Indium-tin-oxide for high-performance electro-optic modulation. Nanophotonics 4, 198–213 (2015). doi: 10.1515/nanoph-2015-0006

    CrossRef Google Scholar

    [4] Kim H, Gilmore CM, Piqué A, Horwitz JS, Mattoussi H et al. Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices. J Appl Phys 86, 6451–6461 (1999). doi: 10.1063/1.371708

    CrossRef Google Scholar

    [5] Tahar RBH, Ban T, Ohya Y, Takahashi Y. Tin doped indium oxide thin films: electrical properties. J Appl Phys 83, 2631–2645 (1998). doi: 10.1063/1.367025

    CrossRef Google Scholar

    [6] Parra-Barranco J, García-García FJ, Rico V, Borrás A, López-Santos C et al. Anisotropic in-plane conductivity and dichroic gold plasmon resonance in plasma-assisted ITO thin films e-beam-evaporated at oblique angles. ACS Appl Mater Interfaces 7, 10993–11001 (2015). doi: 10.1021/acsami.5b02197

    CrossRef Google Scholar

    [7] Bonse J, Höhm S, Kirner SV, Rosenfeld A, Krüger J. Laser-induced periodic surface structures — a scientific evergreen. IEEE J Sel Top Quant Electron 23, 9000615 (2017).

    Google Scholar

    [8] Shimotsuma Y, Kazansky PG, Qiu JR, Hirao K. Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys Rev Lett 91, 247405 (2003). doi: 10.1103/PhysRevLett.91.247405

    CrossRef Google Scholar

    [9] Jia TQ, Chen H, Zhang YM. Photon absorption of conduction-band electrons and their effects on laser-induced damage to optical materials. Phys Rev B 61, 16522–16529 (2000). doi: 10.1103/PhysRevB.61.16522

    CrossRef Google Scholar

    [10] Zhang B, Tan DZ, Wang Z, Liu XF, Xu BB et al. Self-organized phase-transition lithography for all-inorganic photonic textures. Light Sci Appl 10, 93 (2021). doi: 10.1038/s41377-021-00534-5

    CrossRef Google Scholar

    [11] Lin ZY, Liu HG, Ji LF, Lin WX, Hong MH. Realization of ~10 nm features on semiconductor surfaces via femtosecond laser direct patterning in far field and in ambient air. Nano Lett 20, 4947–4952 (2020). doi: 10.1021/acs.nanolett.0c01013

    CrossRef Google Scholar

    [12] Zhang DS, Sugioka K. Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids. Opto-Electron Adv 2, 190002 (2019).

    Google Scholar

    [13] Zhang DS, Wu LC, Ueki M, Ito Y, Sugioka K. Femtosecond laser shockwave peening ablation in liquids for hierarchical micro/nanostructuring of brittle silicon and its biological application. Int J Extrem Manuf 2, 045001 (2020). doi: 10.1088/2631-7990/abb5f3

    CrossRef Google Scholar

    [14] Zhao B, Zheng X, Lei YH, Xie HB, Zou TT et al. High-efficiency-and-quality nanostructuring of molybdenum surfaces by orthogonally polarized blue femtosecond lasers. Appl Surf Sci 572, 151371 (2022). doi: 10.1016/j.apsusc.2021.151371

    CrossRef Google Scholar

    [15] Chen L, Cao KQ, Li YL, Liu JK, Zhang SA et al. Large-area straight, regular periodic surface structures produced on fused silica by the interference of two femtosecond laser beams through cylindrical lens. Opto-Electron Adv 4, 200036 (2021). doi: 10.29026/oea.2021.200036

    CrossRef Google Scholar

    [16] Zhang YC, Jiang QL, Cao KQ, Chen TQ, Cheng K et al. Extremely regular periodic surface structures in a large area efficiently induced on silicon by temporally shaped femtosecond laser. Photonics Res 9, 839–847 (2021). doi: 10.1364/PRJ.418937

    CrossRef Google Scholar

    [17] Zhou R, Huang TT, Lu YY, Hong MH. Tunable coloring via post-thermal annealing of laser-processed metal surface. Appl Sci 8, 1716 (2018). doi: 10.3390/app8101716

    CrossRef Google Scholar

    [18] Liu HG, Lin WX, Hong MH. Surface coloring by laser irradiation of solid substrates. APL Photonics 4, 051101 (2019). doi: 10.1063/1.5089778

    CrossRef Google Scholar

    [19] Chen L, Cao KQ, Liu JK, Jia TQ, Li YL et al. Surface birefringence of regular periodic surface structures produced on glass coated with an indium tin oxide film using a low-fluence femtosecond laser through a cylindrical lens. Opt Express 28, 30094–30106 (2020). doi: 10.1364/OE.402037

    CrossRef Google Scholar

    [20] Zou TT, Zhao B, Xin W, Wang FY, Xie HB et al. Birefringent response of graphene oxide film structurized via femtosecond laser. Nano Res 15, 4490–4499 (2022). doi: 10.1007/s12274-021-3505-x

    CrossRef Google Scholar

    [21] Cunha A, Serro AP, Oliveira V, Almeida A, Vilar R et al. Wetting behaviour of femtosecond laser textured Ti–6Al–4V surfaces. Appl Surf Sci 265, 688–696 (2013). doi: 10.1016/j.apsusc.2012.11.085

    CrossRef Google Scholar

    [22] Zhao YZ, Su YL, Hou XY, Hong MH. Directional sliding of water: biomimetic snake scale surfaces. Opto-Electron Adv 4, 210008 (2021). doi: 10.29026/oea.2021.210008

    CrossRef Google Scholar

    [23] Su YL, Zhao YZ, Jiang SY, Hou XY, Hong MH. Anisotropic superhydrophobic properties of bioinspired surfaces by laser ablation of metal substrate inside water. Adv Mater Interfaces 8, 2100555 (2021). doi: 10.1002/admi.202100555

    CrossRef Google Scholar

    [24] Reinhardt HM, Maier P, Kim HC, Rhinow D, Hampp N. Nanostructured transparent conductive electrodes for applications in harsh environments fabricated via nanosecond laser‐induced periodic surface structures (LIPSS) in indium–tin oxide films on glass. Adv Mater Interfaces 6, 1900401 (2019).

    Google Scholar

    [25] Pan AF, Wang WJ, Liu B, Mei XS, Yang HZ et al. Formation of high-spatial-frequency periodic surface structures on indium-tin-oxide films using picosecond laser pulses. Mater Des 121, 126–135 (2017). doi: 10.1016/j.matdes.2017.02.055

    CrossRef Google Scholar

    [26] Liu P, Wang WJ, Pan AF, Xiang Y, Wang DP. Periodic surface structures on the surface of indium tin oxide film obtained using picosecond laser. Opt Laser Technol 106, 259–264 (2018). doi: 10.1016/j.optlastec.2018.04.019

    CrossRef Google Scholar

    [27] Solodar A, Cerkauskaite A, Drevinskas R, Kazansky PG, Abdulhalim I. Ultrafast laser induced nanostructured ITO for liquid crystal alignment and higher transparency electrodes. Appl Phys Lett 113, 081603 (2018). doi: 10.1063/1.5040692

    CrossRef Google Scholar

    [28] Cerkauskaite A, Drevinskas R, Solodar A, Abdulhalim I, Kazansky PG. Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring. ACS Photonics 4, 2944–2951 (2017). doi: 10.1021/acsphotonics.7b01082

    CrossRef Google Scholar

    [29] Miccoli I, Edler F, Pfnür H, Tegenkamp C. The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems. J Phys Condens Matter 27, 223201 (2015). doi: 10.1088/0953-8984/27/22/223201

    CrossRef Google Scholar

    [30] Hong S, Lee H, Yeo J, Ko SH. Digital selective laser methods for nanomaterials: from synthesis to processing. Nano Today 11, 547–564 (2016). doi: 10.1016/j.nantod.2016.08.007

    CrossRef Google Scholar

    [31] Zhang FZ, Chen L, Zhang YC, Jiang QL, Feng DH et al. High-performance birefringence of periodic nanostructures in FTO thin film fabricated by IR-UV femtosecond laser. Front Phys 10, 861389 (2022). doi: 10.3389/fphy.2022.861389

    CrossRef Google Scholar

    [32] Cao KQ, Chen L, Wu HC, Liu JK, Cheng K et al. Large-area commercial-grating-quality subwavelength periodic ripples on silicon efficiently fabricated by gentle ablation with femtosecond laser interference via two cylindrical lenses. Opt Laser Technol 131, 106441 (2020). doi: 10.1016/j.optlastec.2020.106441

    CrossRef Google Scholar

    [33] Cheng K, Liu JK, Cao KQ, Chen L, Zhang YC et al. Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film. Phys Rev B 98, 184106 (2018). doi: 10.1103/PhysRevB.98.184106

    CrossRef Google Scholar

    [34] Zhou K, Jia X, Jia TQ, Cheng K, Cao KQ et al. The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging. J Appl Phys 121, 104301 (2017). doi: 10.1063/1.4978375

    CrossRef Google Scholar

    [35] Bian QM, Yu XM, Zhao BZ, Chang ZH, Lei ST. Femtosecond laser ablation of indium tin-oxide narrow grooves for thin film solar cells. Opt Laser Technol 45, 395–401 (2013). doi: 10.1016/j.optlastec.2012.06.018

    CrossRef Google Scholar

    [36] Fernandes SA, Schoeps B, Kowalick K, Nett R, Esen C et al. Femtosecond laser ablation of ITO/ZnO for thin film solar cells. Phys Procedia 41, 802–809 (2013). doi: 10.1016/j.phpro.2013.03.151

    CrossRef Google Scholar

    [37] Cheng CW, Lee IM, Chen JS. Femtosecond laser processing of indium-tin-oxide thin films. Opt Lasers Eng 69, 1–6 (2015).

    Google Scholar

    [38] Hertwig A, Martin S, Krüger J, Kautek W. Interaction area dependence of the ablation threshold of ion-doped glass. Thin Solid Films 453–454, 527–530 (2004).

    Google Scholar

    [39] Jia TQ, Baba M, Suzuki M, Ganeev RA, Kuroda H et al. Fabrication of two-dimensional periodic nanostructures by two-beam interference of femtosecond pulses. Opt Express 16, 1874–1878 (2008). doi: 10.1364/OE.16.001874

    CrossRef Google Scholar

    [40] Kim H, Piqué A, Horwitz JS, Mattoussi H, Murata H et al. Indium tin oxide thin films for organic light-emitting devices. App Phys Lett 74, 3444–3446 (1999). doi: 10.1063/1.124122

    CrossRef Google Scholar

    [41] Zhao J, Ding XH, Miao JH, Hu JF, Wan H et al. Improvement in light output of ultraviolet light-emitting diodes with patterned double-layer ITO by laser direct writing. Nanomaterials 9, 203 (2019). doi: 10.3390/nano9020203

    CrossRef Google Scholar

    [42] Shigesato Y, Hayashi Y, Haranoh T. Doping mechanisms of tin‐doped indium oxide films. Appl Phys Lett 61, 73–75 (1992). doi: 10.1063/1.107673

    CrossRef Google Scholar

    [43] Jia JJ, Takaya A, Yonezawa T, Yamasaki K, Nakazawa H et al. Carrier densities of Sn-doped In2O3 nanoparticles and their effect on X-ray photoelectron emission. J Appl Phys 125, 245303 (2019). doi: 10.1063/1.5096364

    CrossRef Google Scholar

    [44] Petukhov IA, Shatokhin AN, Putilin FN, Rumyantseva MN, Kozlovskii VF et al. Pulsed laser deposition of conductive indium tin oxide thin films. Inorg Mater 48, 1020–1025 (2012). doi: 10.1134/S0020168512100068

    CrossRef Google Scholar

  • Supplementary information Periodic transparent nanowires in ITO film fabricated via femtosecond laser direct writing
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Article Metrics

Article views(7157) PDF downloads(632) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint