Gu NT, Chen H, Tang A et al. Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations. Opto-Electron Adv 8, 250025 (2025). doi: 10.29026/oea.2025.250025
Citation: Gu NT, Chen H, Tang A et al. Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations. Opto-Electron Adv 8, 250025 (2025). doi: 10.29026/oea.2025.250025

Article Open Access

Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations

More Information
  • Adaptive optics (AO) has significantly advanced high-resolution solar observations by mitigating atmospheric turbulence. However, traditional post-focal AO systems suffer from external configurations that introduce excessive optical surfaces, reduced light throughput, and instrumental polarization. To address these limitations, we propose an embedded solar adaptive optics telescope (ESAOT) that intrinsically incorporates the solar AO (SAO) subsystem within the telescope's optical train, featuring a co-designed correction chain with a single Hartmann-shack full-wavefront sensor (HS f-WFS) and a deformable secondary mirror (DSM). The HS f-WFS uses temporal-spatial hybrid sampling technique to simultaneously resolve tip-tilt and high-order aberrations, while the DSM performs real-time compensation through adaptive modal optimization. This unified architecture achieves symmetrical polarization suppression and high system throughput by minimizing optical surfaces. A 600 mm ESAOT prototype incorporating a 12×12 micro-lens array HS f-WFS and 61-actuator piezoelectric DSM has been developed and successfully conducted on-sky photospheric observations. Validations including turbulence simulations, optical bench testing, and practical observations at the Lijiang observatory collectively confirm the system's capability to maintain about λ/10 wavefront error during active region tracking. This architectural breakthrough of the ESAOT addresses long-standing SAO integration challenges in solar astronomy and provides scalability analyses confirming direct applicability to the existing and future large solar observation facilities.
  • 加载中
  • [1] Rimmele T, Keil S, Dooling D. Building the world’s largest optical solar telescope. SPIE (2007).

    Google Scholar

    [2] MacTaggart D, Prior C, Raphaldini B et al. Direct evidence that twisted flux tube emergence creates solar active regions. Nat Commun 12, 6621 (2021). doi: 10.1038/s41467-021-26981-7

    CrossRef Google Scholar

    [3] Stangalini M, Verth G, Fedun V et al. Large scale coherent magnetohydrodynamic oscillations in a sunspot. Nat Commun 13, 479 (2022). doi: 10.1038/s41467-022-28136-8

    CrossRef Google Scholar

    [4] Yuan D, Fu LB, Cao WD et al. Transverse oscillations and an energy source in a strongly magnetized sunspot. Nat Astron 7, 856–866 (2023). doi: 10.1038/s41550-023-01973-3

    CrossRef Google Scholar

    [5] Stangalini M. Wave energy in the solar atmosphere. Nat Astron 7, 761–762 (2023). doi: 10.1038/s41550-023-01955-5

    CrossRef Google Scholar

    [6] Clery D. ‘Campfires’ may drive heating of solar atmosphere. Science 372, 557–558 (2021). doi: 10.1126/science.372.6542.557

    CrossRef Google Scholar

    [7] Yan XL, Xue ZK, Jiang CW et al. Fast plasmoid-mediated reconnection in a solar flare. Nat Commun 13, 640 (2022). doi: 10.1038/s41467-022-28269-w

    CrossRef Google Scholar

    [8] Ishikawa R, Bueno JT, Del Pino Alemán T et al. Mapping solar magnetic fields from the photosphere to the base of the corona. Sci Adv 7, eabe8406 (2021). doi: 10.1126/sciadv.abe8406

    CrossRef Google Scholar

    [9] Jenkins JM, Keppens R. Resolving the solar prominence/filament paradox using the magnetic Rayleigh-Taylor instability. Nat Astron 6, 942–950 (2022). doi: 10.1038/s41550-022-01705-z

    CrossRef Google Scholar

    [10] Hotta H, Kusano K. Solar differential rotation reproduced with high-resolution simulation. Nat Astron 5, 1100–1102 (2021). doi: 10.1038/s41550-021-01459-0

    CrossRef Google Scholar

    [11] Dong CF, Wang L, Huang YM et al. Reconnection-driven energy cascade in magnetohydrodynamic turbulence. Sci Adv 8, eabn7627 (2022). doi: 10.1126/sciadv.abn7627

    CrossRef Google Scholar

    [12] Boucheron LE, Vincent T, Grajeda JA et al. Solar active region magnetogram image dataset for studies of space weather. Sci Data 10, 825 (2023). doi: 10.1038/s41597-023-02628-8

    CrossRef Google Scholar

    [13] Wheatland MS. Real-time solar coronal modelling. Nat Astron 7, 1150–1151 (2023). doi: 10.1038/s41550-023-02085-8

    CrossRef Google Scholar

    [14] Li KF, Tung KK. Solar cycle as a distinct line of evidence constraining earth’s transient climate response. Nat Commun 14, 8430 (2023). doi: 10.1038/s41467-023-43583-7

    CrossRef Google Scholar

    [15] von der Lühe O, Schmidt W, Soltau D et al. GREGOR: a 1.5m telescope for solar research. Astron Nachr 322, 353–360 (2001). doi: 10.1002/1521-3994(200112)322:5/6<353::AID-ASNA353>3.0.CO;2-Z

    CrossRef Google Scholar

    [16] Jiang P, Gan HQ, Yao R et al. FAST: the five-hundred-meter aperture spherical radio telescope. Engineering 28, 21–25 (2023). doi: 10.1016/j.eng.2023.04.001

    CrossRef Google Scholar

    [17] Leslie M. Webb space telescope hits its stride, dazzling astronomers. Engineering 22, 3–6 (2023). doi: 10.1016/j.eng.2023.01.003

    CrossRef Google Scholar

    [18] Tritschler A, Rimmele TR, Berukoff S et al. Daniel K. Inouye solar telescope: high-resolution observing of the dynamic sun. Astron Nachr 337, 1064–1069 (2016). doi: 10.1002/asna.201612434

    CrossRef Google Scholar

    [19] Wang HM, Cao WD, Liu C et al. Witnessing magnetic twist with high-resolution observation from the 1.6-m new solar telescope. Nat Commun 6, 7008 (2015). doi: 10.1038/ncomms8008

    CrossRef Google Scholar

    [20] Yurchyshyn V, Cao WD, Abramenko V et al. Rapid evolution of type II spicules observed in Goode solar telescope on-disk Hα images. Astrophys J Lett 891, L21 (2020). doi: 10.3847/2041-8213/ab7931

    CrossRef Google Scholar

    [21] Tagle CD, Collados M, Lopez R et al. First light of the integral field unit of GRIS on the GREGOR solar telescope. J Astron Instrum 11, 2250014 (2022). doi: 10.1142/S2251171722500143

    CrossRef Google Scholar

    [22] Rao CH, Gu NT, Rao XJ et al. First light of the 1.8-m solar telescope-CLST. Sci China Phys Mech Astron 63, 109631 (2020). doi: 10.1007/s11433-019-1557-3

    CrossRef Google Scholar

    [23] Gu NT, Li C, Cheng YT et al. Thermal control for light-weighted primary mirrors of large ground-based solar telescopes. J Astron Telesc Instrum Syst 5, 014005 (2019).

    Google Scholar

    [24] Cai YF, Yang X, Xiang YY et al. The co-alignment of winged Hα data observed by the new vacuum solar telescope. Res Astron Astrophys 22, 065010 (2022). doi: 10.1088/1674-4527/ac69b9

    CrossRef Google Scholar

    [25] Matthews SA, Collados M, Mathioudakis M et al. The European solar telescope (EST). Proc SPIE 9908, 990809 (2016).

    Google Scholar

    [26] Liu Z, Deng YY, Jin ZY et al. Introduction to the Chinese giant solar telescope. Proc SPIE 8444, 844405 (2012). doi: 10.1117/12.926033

    CrossRef Google Scholar

    [27] Fu Y, Yuan S, Jin ZY et al. Polarization optical design of 8-meter Chinese giant solar telescope. Acta Astron Sin 64, 8 (2023).

    Google Scholar

    [28] Fang C, Gu BZ, Yuan XY et al. 2.5m wide-field and high-resolution telescope. Sci China Phys Mech Astron 49, 059603 (2019). doi: 10.1360/SSPMA2018-00313

    CrossRef Google Scholar

    [29] Hasan SS, Soltau D, Kärcher H et al. NLST: India’s national large solar telescope. Astron Nachr 331, 628–635 (2010). doi: 10.1002/asna.201011389

    CrossRef Google Scholar

    [30] Rao CH, Zhu L, Zhang LQ et al. Development of solar adaptive optics. Opto-Electron Eng 45, 170733 (2018).

    Google Scholar

    [31] Berkefeld T, Schmidt D, Soltau D et al. The GREGOR adaptive optics system. Astron Nachr 333, 863–871 (2012). doi: 10.1002/asna.201211739

    CrossRef Google Scholar

    [32] Femenía-Castella B, Cagigal MN, Cabrera MB et al. Adaptive optics at the European solar telescope: status and future developments. Proc SPIE 12185, 121851Z (2022).

    Google Scholar

    [33] Rimmele TR, Radick RR. Solar adaptive optics at the national solar observatory. Proc SPIE 3353, 72–81 (1998). doi: 10.1117/12.321734

    CrossRef Google Scholar

    [34] Shumko S, Gorceix N, Choi S et al. AO-308: the high-order adaptive optics system at big bear solar observatory. Proc SPIE 9148, 914835 (2014).

    Google Scholar

    [35] Rao CH, Zhu L, Rao XJ et al. First generation solar adaptive optics system for 1-m new vacuum solar telescope at Fuxian solar observatory. Res Astron Astrophys 16, 023 (2016).

    Google Scholar

    [36] Rao CH, Zhu L, Rao XJ et al. Instrument description and performance evaluation of a high-order adaptive optics system for the 1m new vacuum solar telescope at Fuxian solar observatory. Astrophys J 833, 210 (2016). doi: 10.3847/1538-4357/833/2/210

    CrossRef Google Scholar

    [37] Rao CH, Zhu L, Gu NT et al. A high-resolution multi-wavelength simultaneous imaging system with solar adaptive optics. Astron J 154, 143 (2017). doi: 10.3847/1538-3881/aa84b4

    CrossRef Google Scholar

    [38] Rimmele TR, Warner M, Keil SL et al. The Daniel K. Inouye solar telescope-observatory overview. Sol Phys 295, 172 (2020). doi: 10.1007/s11207-020-01736-7

    CrossRef Google Scholar

    [39] Das S, Rao N, Phanindra DVS et al. SolarAccel: FPGA accelerated 2D cross-correlation of digital images: application to solar adaptive optics. J Astrophys Astron 45, 16 (2024). doi: 10.1007/s12036-024-10003-1

    CrossRef Google Scholar

    [40] Zhu L, Gu NT, Chen SQ et al. Real time controller for 37-element low-order solar adaptive optics system at 1m new vacuum solar telescope. Proc SPIE 8415, 84150V (2012). doi: 10.1117/12.977864

    CrossRef Google Scholar

    [41] Martin Y, Rodriguez-Ramos LF, García J et al. FPGA-based real time processing of the plenoptic wavefront sensor for the European solar telescope (EST). In 2010 VI Southern Programmable Logic Conference (SPL) 87–92 (IEEE, 2010). http://doi.org/10.1109/SPL.2010.5483032.

    Google Scholar

    [42] Brusa G, Riccardi A, Wildi FP et al. MMT adaptive secondary: first AO closed-loop results. Proc SPIE 5169, 26–36 (2003).

    Google Scholar

    [43] Salinari P, Sandler DG. High-order adaptive secondary mirrors: where are we. Proc SPIE 3353, 742–753 (1998). doi: 10.1117/12.321691

    CrossRef Google Scholar

    [44] Johnson JA, Vaz A, Montoya M et al. Tuning the MAPS adaptive secondary mirror: actuator control, PID tuning, power spectra, and failure diagnosis. Proc SPIE 13149, 131490H (2024).

    Google Scholar

    [45] Esposito S, Tozzi A, Ferruzzi D et al. First-light adaptive optics system for large binocular telescope. Proc SPIE 4839, 164–173 (2003). doi: 10.1117/12.458866

    CrossRef Google Scholar

    [46] Esposito S, Tozzi A, Puglisi A et al. First light AO system for LBT: toward on-sky operation. Proc SPIE 6272, 62720A (2006).

    Google Scholar

    [47] Riccardi A, Xompero M, Briguglio R et al. The adaptive secondary mirror for the large binocular telescope: optical acceptance test and preliminary on-sky commissioning results. Proc SPIE 7736, 77362C (2010). doi: 10.1117/12.858229

    CrossRef Google Scholar

    [48] Arsenault R, Biasi R, Gallieni D et al. A deformable secondary mirror for the VLT. Proc SPIE 6272, 62720V (2006). doi: 10.1117/12.672879

    CrossRef Google Scholar

    [49] Hibon P, Duhoux P. Improving the telescope guiding with field stabilization on the very large telescope/unit telescopes. J Astron Telesc Instrum Syst 9, 027002 (2023).

    Google Scholar

    [50] https://giantmagellan.org/adaptive-secondary-optics/.

    Google Scholar

    [51] Hinz PM, Bowens-Rubin R, Baranec C et al. Developing adaptive secondary mirror concepts for the APF and W. M. Keck observatory based on HVR technology. Proc SPIE 11448, 114485U (2020).

    Google Scholar

    [52] Guo YM, Chen KL, Zhou JH et al. High-resolution visible imaging with piezoelectric deformable secondary mirror: experimental results at the 1.8-m adaptive telescope. Opto-Electron Adv 6, 230039 (2023). doi: 10.29026/oea.2023.230039

    CrossRef Google Scholar

    [53] Thomas S, Fusco T, Tokovinin A et al. Comparison of centroid computation algorithms in a Shack-Hartmann sensor. Mon Not R Astron Soc 371, 323–336 (2006). doi: 10.1111/j.1365-2966.2006.10661.x

    CrossRef Google Scholar

    [54] Mocci J, Busato F, Bombieri N et al. Efficient implementation of the Shack–Hartmann centroid extraction for edge computing. J Opt Soc Am A 37, 1548–1556 (2020). doi: 10.1364/JOSAA.401376

    CrossRef Google Scholar

    [55] Zhou ZC, Zhang LQ, Zhu L et al. Comparison of correlation algorithms with correlating Shack–Hartmann wave-front images. Proc SPIE 10026, 100261B (2016).

    Google Scholar

    [56] Ke ZB, Zhang LQ, Yang Y et al. Performance analysis and optimization of solar multiconjugate adaptive optics systems. Mon Not R Astron Soc 530, 307–317 (2024). doi: 10.1093/mnras/stae347

    CrossRef Google Scholar

    [57] Yang Y, Zhang L, Yan N et al. Ground-layer adaptive optics for the 2.5 m wide-field and high-resolution solar telescope. Res Astron Astrophys 24, 035018 (2024). doi: 10.1088/1674-4527/ad21d4

    CrossRef Google Scholar

    [58] Cui ZJ, Qi WF, Liu YX. A fast image template matching algorithm based on normalized cross correlation. J Phys Conf Ser 1693, 012163 (2020). doi: 10.1088/1742-6596/1693/1/012163

    CrossRef Google Scholar

    [59] Liu SH, Zhong H, Li YQ et al. Fast and highly accurate zonal wavefront reconstruction from multi-directional slope and curvature information using subregion cancelation. Appl Sci 14, 3476 (2024). doi: 10.3390/app14083476

    CrossRef Google Scholar

    [60] Mochi I, Goldberg KA. Modal wavefront reconstruction from its gradient. Appl Opt 54, 3780–3785 (2015). doi: 10.1364/AO.54.003780

    CrossRef Google Scholar

    [61] Noel ZA, Bukowski TJ, Gordeyev S et al. Shack-Hartmann wavefront reconstruction by deep learning neural network for adaptive optics. Proc SPIE 12693, 126930G (2023).

    Google Scholar

    [62] Kolmogorov AN. Dissipation of energy in the locally isotropic turbulence. Proc R Soc Lond A Math Phys Sci 434, 15–17 (1991).

    Google Scholar

    [63] Tyson RK. Principles of Adaptive Optics 2nd ed (Academic Press, Boston, 1998).

    Google Scholar

    [64] https://www.saiminprecision.com.

    Google Scholar

    [65] Wöger F, Uitenbroek H, Tritschler A et al. The ATST visible broadband imager: a case study for real-time image reconstruction and optimal data handling. Proc SPIE 7735, 773521 (2010). doi: 10.1117/12.857321

    CrossRef Google Scholar

  • Supplementary information for Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint