Citation: | Liu ML, Wei ZQ, Zhu HT et al. Soliton microcombs in optical microresonators with perfect spectral envelopes. Opto-Electron Adv 8, 240257 (2025). doi: 10.29026/oea.2025.240257 |
[1] | Sun Y, Wu JY, Tan MX et al. Applications of optical microcombs. Adv Opt Photonics 15, 86–175 (2023). doi: 10.1364/AOP.470264 |
[2] | Diddams SA, Vahala K, Udem T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020). doi: 10.1126/science.aay3676 |
[3] | Drake TE, Briles TC, Stone JR et al. Terahertz-rate Kerr-microresonator optical clockwork. Phys Rev X 9, 031023 (2019). |
[4] | Geng Y, Zhou H, Han XJ et al. Coherent optical communications using coherence-cloned Kerr soliton microcombs. Nat Commun 13, 1070 (2022). doi: 10.1038/s41467-022-28712-y |
[5] | Stern L, Stone JR, Kang SB et al. Direct Kerr frequency comb atomic spectroscopy and stabilization. Sci Adv 6, eaax6230 (2020). doi: 10.1126/sciadv.aax6230 |
[6] | Bao CY, Yuan ZQ, Wu L et al. Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy. Nat Commun 12, 6573 (2021). doi: 10.1038/s41467-021-26958-6 |
[7] | Dang LY, Huang LG, Shi LL et al. Ultra-high spectral purity laser derived from weak external distributed perturbation. Opto-Electron Adv 6, 210149 (2023). doi: 10.29026/oea.2023.210149 |
[8] | Trocha P, Karpov M, Ganin D et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018). doi: 10.1126/science.aao3924 |
[9] | Wang JD, Lu ZZ, Wang WQ et al. Long-distance ranging with high precision using a soliton microcomb. Photonics Res 8, 1964–1972 (2020). doi: 10.1364/PRJ.408923 |
[10] | Camenzind SL, Fricke JF, Kellner J et al. Dynamic and precise long-distance ranging using a free-running dual-comb laser. Opt Express 30, 37245–37260 (2022). doi: 10.1364/OE.469415 |
[11] | Guidry MA, Lukin DM, Yang KY et al. Quantum optics of soliton microcombs. Nat Photonics 16, 52–58 (2022). doi: 10.1038/s41566-021-00901-z |
[12] | Chen LW, Zhou Y, Li Y et al. Microsphere enhanced optical imaging and patterning: from physics to applications. Appl Phys Rev 6, 021304 (2019). doi: 10.1063/1.5082215 |
[13] | Bao CY, Xuan Y, Leaird DE et al. Spatial mode-interaction induced single soliton generation in microresonators. Optica 4, 1011–1015 (2017). doi: 10.1364/OPTICA.4.001011 |
[14] | Zhai YR, Liu JC, Jia LH et al. Dissipative Kerr soliton formation in dual-mode interaction Si3N4 microresonators. APL Photonics 9, 101304 (2024). doi: 10.1063/5.0235026 |
[15] | Liu KW, Yao SY, Yang CX. Raman pure quartic solitons in Kerr microresonators. Opt Lett 46, 993–996 (2021). doi: 10.1364/OL.415434 |
[16] | Xiang C, Liu JQ, Guo J et al. Laser soliton microcombs heterogeneously integrated on silicon. Science 373, 99–103 (2021). doi: 10.1126/science.abh2076 |
[17] | Ma JY, Xiao LF, Gu JX et al. Visible Kerr comb generation in a high-Q silica microdisk resonator with a large wedge angle. Photonics Res 7, 573–578 (2019). doi: 10.1364/PRJ.7.000573 |
[18] | Shu FJ, Zhang PJ, Qian YJ et al. A mechanically tuned Kerr comb in a dispersion-engineered silica microbubble resonator. Sci China Phys Mech Astron 63, 254211 (2020). doi: 10.1007/s11433-019-1464-8 |
[19] | Chen DY, Kovach A, Shen XQ et al. On-chip ultra-high-Q silicon oxynitride optical resonators. ACS Photonics 4, 2376–2381 (2017). doi: 10.1021/acsphotonics.7b00752 |
[20] | Qu MF, Li CH, Liu KQ et al. Dynamic process of soliton generation in CaF2 crystalline whispering gallery mode resonators with negative TO effects. Opt Express 32, 42846–42855 (2024). doi: 10.1364/OE.537846 |
[21] | Wang H, Duan B, Wang K et al. Direct tuning of soliton detuning in an ultrahigh-Q MgF2 crystalline resonator. Nanophotonics 12, 3757–3765 (2023). doi: 10.1515/nanoph-2023-0325 |
[22] | Liu XW, Sun CZ, Xiong B et al. Integrated high-Q crystalline ALN microresonators for broadband Kerr and Raman frequency combs. ACS Photonics 5, 1943–1950 (2018). doi: 10.1021/acsphotonics.7b01254 |
[23] | Yao SY, Liu KW, Yang CX. Pure quartic solitons in dispersion-engineered aluminum nitride micro-cavities. Opt Express 29, 8312–8322 (2021). doi: 10.1364/OE.418538 |
[24] | Chang L, Xie WQ, Shu HW et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat Commun 11, 1331 (2020). doi: 10.1038/s41467-020-15005-5 |
[25] | Melchert O, Kinnewig S, Dencker F et al. Soliton compression and supercontinuum spectra in nonlinear diamond photonics. Diam Relat Mater 136, 109939 (2023). doi: 10.1016/j.diamond.2023.109939 |
[26] | Miao RL, Zhang CX, Zheng X et al. Repetition rate locked single-soliton microcomb generation via rapid frequency sweep and sideband thermal compensation. Photonics Res 10, 1859–1867 (2022). doi: 10.1364/PRJ.458472 |
[27] | Guo HR, Karpov M, Lucas E et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat Phys 13, 94–102 (2017). doi: 10.1038/nphys3893 |
[28] | Brasch V, Geiselmann M, Pfeiffer MHP et al. Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. Opt Express 24, 29312–29320 (2016). doi: 10.1364/OE.24.029312 |
[29] | Li J, Wan S, Peng JL et al. Thermal tuning of mode crossing and the perfect soliton crystal in a Si3N4 microresonator. Opt Express 30, 13690–13698 (2022). doi: 10.1364/OE.450100 |
[30] | Ji XR, Liu JQ, He JJ et al. Compact, spatial-mode-interaction-free, ultralow-loss, nonlinear photonic integrated circuits. Commun Phys 5, 84 (2022). doi: 10.1038/s42005-022-00851-0 |
[31] | Zhou H, Geng Y, Cui WW et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci Appl 8, 50 (2019). doi: 10.1038/s41377-019-0161-y |
[32] | Wang XY, Qiu XK, Liu ML et al. Flat soliton microcomb source. Opto-Electron Sci 2, 230024 (2023). doi: 10.29026/oes.2023.230024 |
[33] | Herr T, Brasch V, Jost JD et al. Temporal solitons in optical microresonators. Nat Photonics 8, 145–152 (2014). doi: 10.1038/nphoton.2013.343 |
[34] | Jiang SS, Guo CL, Fu HY et al. Mid-infrared Raman lasers and Kerr-frequency combs from an all-silica narrow-linewidth microresonator/fiber laser system. Opt Express 28, 38304–38316 (2020). doi: 10.1364/OE.412157 |
[35] | Yu MJ, Okawachi Y, Cheng R et al. Raman lasing and soliton mode-locking in lithium niobate microresonators. Light Sci Appl 9, 9 (2020). doi: 10.1038/s41377-020-0246-7 |
[36] | Brasch V, Geiselmann M, Herr T et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016). doi: 10.1126/science.aad4811 |
[37] | Gong Z, Liu XW, Xu YT et al. Near-octave lithium niobate soliton microcomb. Optica 7, 1275–1278 (2020). doi: 10.1364/OPTICA.400994 |
[38] | Wang CL, Li J, Yi AL et al. Soliton formation and spectral translation into visible on CMOS-compatible 4H-silicon-carbide-on-insulator platform. Light Sci Appl 11, 341 (2022). doi: 10.1038/s41377-022-01042-w |
[39] | Wu W, Sun QB, Wang Y et al. Mid-infrared broadband optical frequency comb generated in MgF2 resonators. Photonics Res 10, 1931–1936 (2022). doi: 10.1364/PRJ.459478 |
[40] | Wang FX, Wang WQ, Niu R et al. Quantum key distribution with on-chip dissipative Kerr soliton. Laser Photon Rev 14, 1900190 (2020). doi: 10.1002/lpor.201900190 |
[41] | Riemensberger J, Lukashchuk A, Karpov M et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020). doi: 10.1038/s41586-020-2239-3 |
[42] | Stone JR, Briles TC, Drake TE et al. Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs. Phys Rev Lett 121, 063902 (2018). doi: 10.1103/PhysRevLett.121.063902 |
[43] | Zheng HM, Sun W, Ding XX et al. Programmable access to microresonator solitons with modulational sideband heating. APL Photonics 8, 126110 (2023). doi: 10.1063/5.0173243 |
[44] | Moille G, Chang L, Xie WQ et al. Dissipative Kerr solitons in a III-V microresonator. Laser Photon Rev 14, 2000022 (2020). doi: 10.1002/lpor.202000022 |
[45] | Zhao BL, Wang LR, Sun QB et al. Repetition-rate multiplicable soliton microcomb generation and stabilization via phase-modulated pumping scheme. Appl Phys Express 13, 032009 (2020). doi: 10.35848/1882-0786/ab7481 |
[46] | Fan WC, Lu ZZ, Li W et al. Low-threshold 4/5 octave-spanning mid-infrared frequency comb in a LiNbO3 microresonator. IEEE Photonics J 11, 6603407 (2019). |
[47] | Karpov M, Pfeiffer MHP, Guo HR et al. Dynamics of soliton crystals in optical microresonators. Nat Phys 15, 1071–1077 (2019). doi: 10.1038/s41567-019-0635-0 |
[48] | He Y, Ling JW, Li MX et al. Perfect soliton crystals on demand. Laser Photon Rev 14, 1900339 (2020). doi: 10.1002/lpor.201900339 |
[49] | Suh MG, Yi X, Lai YH et al. Searching for exoplanets using a microresonator astrocomb. Nat Photonics 13, 25–30 (2019). doi: 10.1038/s41566-018-0312-3 |
[50] | Kim C, Ye CC, Zheng Y et al. Design and fabrication of AlGaAs-on-insulator microring resonators for nonlinear photonics. IEEE J Sel Top Quantum Electron 29, 5900214 (2023). |
[51] | Liu H, Wang WT, Yang JH et al. Observation of deterministic double dissipative-Kerr-soliton generation with avoided mode crossing. Phys Rev Res 5, 013172 (2023). doi: 10.1103/PhysRevResearch.5.013172 |
[52] | Bao CY, Xuan Y, Jaramillo-Villegas JA et al. Direct soliton generation in microresonators. Opt Lett 42, 2519–2522 (2017). doi: 10.1364/OL.42.002519 |
[53] | Lu ZZ, Wang WQ, Zhang WF et al. Raman self-frequency-shift of soliton crystal in a high index doped silica micro-ring resonator [Invited]. Opt Mater Express 8, 2662–2669 (2018). doi: 10.1364/OME.8.002662 |
[54] | Coddington I, Newbury N, Swann W. Dual-comb spectroscopy. Optica 3, 414–426 (2016). doi: 10.1364/OPTICA.3.000414 |
[55] | Piccoli G, Sanna M, Borghi M et al. Silicon oxynitride platform for linear and nonlinear photonics at NIR wavelengths. Opt Mater Express 12, 3551–3562 (2022). doi: 10.1364/OME.463940 |
[56] | Lu ZZ, Wang WQ, Zhang WF et al. Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator. AIP Adv 9, 025314 (2019). doi: 10.1063/1.5080128 |
[57] | Wang WQ, Zhang WF, Chu ST et al. Repetition rate multiplication pulsed laser source based on a microring resonator. ACS Photonics 4, 1677–1683 (2017). doi: 10.1021/acsphotonics.7b00129 |
[58] | Chen LK, Xiao YF. On-chip lithium niobate microresonators for photonics applications. Sci China Phys Mech Astron 63, 224231 (2020). doi: 10.1007/s11433-019-9453-3 |
[59] | Zhang M, Buscaino B, Wang C et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373–377 (2019). doi: 10.1038/s41586-019-1008-7 |
[60] | Wang WQ, Lu ZZ, Zhang WF et al. Robust soliton crystals in a thermally controlled microresonator. Opt Lett 43, 2002–2005 (2018). doi: 10.1364/OL.43.002002 |
[61] | Li ZD, Xu YQ, Shamailov S et al. Ultrashort dissipative Raman solitons in Kerr resonators driven with phase-coherent optical pulses. Nat Photonics 18, 46–53 (2024). doi: 10.1038/s41566-023-01303-z |
The influences of thermal effects on soliton formation and auxiliary laser assisted tuning method. (a) For strong thermal effects of ζ = −1 × 104 (Ws)−1, intracavity energy evolution reflects soliton annihilation or in chaotic regime. Different color represents distinct microcomb routes and determined by intracavity energy instability. (b) For weak thermal effect of ζ = −5 × 103 (Ws)−1 solitons can always survive in all 20 scans. Calculated temporal profile (c-i) and spectral profile (c-ii) of chaotic state with only one pump. (c-iii) Schematic diagram of chaotic state with only one pump. Calculated temporal profile (d-i) and spectral profile (d-ii) of two solitons state with heat balance scheme. (d-iii) Schematic diagram of two solitons state with heat balance scheme.
Experimental setup and single perfect soliton. (a) Physical drawing of a microresonator. (b) Scanning electron microscope image of the microresonator. (c) Experimental setup for perfect soliton generation. ECDL, external cavity diode laser; EDFA, erbium-doped fiber amplifier; FPC, fiber polarization controller; Cir, circulator; TEC, thermoelectric controller; OSA, optical spectrum analyzer. The zoom in of the chip shows a scanning-electron micrograph of the waveguide cross-section. (d) Low-noise single soliton state (blue curve) with a sech2 fitting spectral profile (red dashed curve). (e) Microwave beat note of the photo-detected soliton.
(a–c) Experimentally measured spectra for 1-, 2- and 4-solion states, respectively. (d–f) Calculated different soliton states. Insets shows the corresponding temporal profile where oscillation is avoided.
(a–d) Experimentally measured spectra of different two solions states.
(a–d) Calculated spectra of different two-solion states. Insets show corresponding temporal profile.