Citation: | Li QY, Liang MG, Liu SQ et al. Phase reconstruction via metasurface-integrated quantum analog operation. Opto-Electron Adv 8, 240239 (2025). doi: 10.29026/oea.2025.240239 |
[1] | Lemos GB, Borish V, Cole GD et al. Quantum imaging with undetected photons. Nature 512, 409–412 (2014). doi: 10.1038/nature13586 |
[2] | Park Y, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine. Nat Photonics 12, 578–589 (2018). doi: 10.1038/s41566-018-0253-x |
[3] | Kwon H, Arbabi E, Kamali SM et al. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nat Photonics 14, 109–114 (2020). doi: 10.1038/s41566-019-0536-x |
[4] | Wang B, Rong KX, Maguid E et al. Probing nanoscale fluctuation of ferromagnetic meta-atoms with a stochastic photonic spin Hall effect. Nat Nanotechnol 15, 450–456 (2020). doi: 10.1038/s41565-020-0670-0 |
[5] | Chen ZP, Zhang B, Pan YM et al. Quantum wave function reconstruction by free-electron spectral shearing interferometry. Sci Adv 9, eadg8516 (2023). doi: 10.1126/sciadv.adg8516 |
[6] | Wang XW, Hao HJ, He XY et al. Advances in information processing and biological imaging using flat optics. Nat Rev Electr Eng 1, 391–411 (2024). doi: 10.1038/s44287-024-00057-2 |
[7] | Shaked NT, Boppart SA, Wang LV et al. Label-free biomedical optical imaging. Nat Photonics 17, 1031–1041 (2023). doi: 10.1038/s41566-023-01299-6 |
[8] | Hu CF, Field JJ, Kelkar V et al. Harmonic optical tomography of nonlinear structures. Nat Photonics 14, 564–569 (2020). doi: 10.1038/s41566-020-0638-5 |
[9] | Liu YF, Yu PP, Wu YJ et al. Optical single-pixel volumetric imaging by three-dimensional light-field illumination. Proc Natl Acad Sci USA 120, e2304755120 (2023). doi: 10.1073/pnas.2304755120 |
[10] | Bauer T, Orlov S, Peschel U et al. Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams. Nat Photonics 8, 23–27 (2014). doi: 10.1038/nphoton.2013.289 |
[11] | Bai BJ, Yang XL, Li YZ et al. Deep learning-enabled virtual histological staining of biological samples. Light Sci Appl 12, 57 (2023). doi: 10.1038/s41377-023-01104-7 |
[12] | Zernike F. How I discovered phase contrast. Science 121, 345–349 (1955). doi: 10.1126/science.121.3141.345 |
[13] | Allen RD, David GB, Nomarski G. The Zeiss-Nomarski differential interference equipment for transmitted-light microscopy. Z Wiss Mikrosk 69, 193–221 (1969). |
[14] | Huang ZZ, Cao LC. Quantitative phase imaging based on holography: trends and new perspectives. Light Sci Appl 13, 145 (2024). doi: 10.1038/s41377-024-01453-x |
[15] | Chaumet PC, Bon P, Maire G et al. Quantitative phase microscopies: accuracy comparison. Light Sci Appl 13, 288 (2024). doi: 10.1038/s41377-024-01619-7 |
[16] | Stav T, Faerman A, Maguid E et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 361, 1101–1104 (2018). doi: 10.1126/science.aat9042 |
[17] | Wang K, Titchener JG, Kruk SS et al. Quantum metasurface for multiphoton interference and state reconstruction. Science 361, 1104–1108 (2018). doi: 10.1126/science.aat8196 |
[18] | Georgi P, Massaro M, Luo KH et al. Metasurface interferometry toward quantum sensors. Light Sci Appl 8, 70 (2019). doi: 10.1038/s41377-019-0182-6 |
[19] | Solntsev AS, Agarwal GS, Kivshar YS. Metasurfaces for quantum photonics. Nat Photonics 15, 327–336 (2021). doi: 10.1038/s41566-021-00793-z |
[20] | Li M, Hu GW, Chen X et al. Topologically reconfigurable magnetic polaritons. Sci Adv 8, eadd6660 (2022). doi: 10.1126/sciadv.add6660 |
[21] | Wang XW, Wang H, Wang JL et al. Single-shot isotropic differential interference contrast microscopy. Nat Commun 14, 2063 (2023). doi: 10.1038/s41467-023-37606-6 |
[22] | Ma QC, Li GX. Miniature meta-device for dynamic control of Airy beam. Opto-Electron Adv 7, 240166 (2024). doi: 10.29026/oea.2024.240166 |
[23] | Luo XG. Principles of electromagnetic waves in metasurfaces. Sci China Phys Mech Astron 58, 594201 (2015). doi: 10.1007/s11433-015-5688-1 |
[24] | Zhang JH, ElKabbash M, Wei R et al. Plasmonic metasurfaces with 42.3% transmission efficiency in the visible. Light Sci Appl 8, 53 (2019). doi: 10.1038/s41377-019-0164-8 |
[25] | Fan QB, Liu MZ, Zhang C et al. Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces. Phys Rev Lett 125, 267402 (2020). doi: 10.1103/PhysRevLett.125.267402 |
[26] | Xie X, Pu MB, Jin JJ et al. Generalized pancharatnam-berry phase in rotationally symmetric meta-atoms. Phys Rev Lett 126, 183902 (2021). doi: 10.1103/PhysRevLett.126.183902 |
[27] | Kort-Kamp WJM, Azad AK, Dalvit DAR. Space-time quantum metasurfaces. Phys Rev Lett 127, 043603 (2021). doi: 10.1103/PhysRevLett.127.043603 |
[28] | Guo YH, Zhang SC, Pu MB et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci Appl 10, 63 (2021). doi: 10.1038/s41377-021-00497-7 |
[29] | Xu DY, Xu WH, Yang Q et al. All-optical object identification and three-dimensional reconstruction based on optical computing metasurface. Opto-Electron Adv 6, 230120 (2023). doi: 10.29026/oea.2023.230120 |
[30] | Silva A, Monticone F, Castaldi G et al. Performing mathematical operations with metamaterials. Science 343, 160–163 (2014). doi: 10.1126/science.1242818 |
[31] | Solli D, Jalali B. Analog optical computing. Nat Photonics 9, 704–706 (2015). doi: 10.1038/nphoton.2015.208 |
[32] | Zhou Y, Zheng HY, Kravchenko II et al. Flat optics for image differentiation. Nat Photonics 14, 316–323 (2020). doi: 10.1038/s41566-020-0591-3 |
[33] | Gao YJ, Wang Z, Jiang Y et al. Multichannel distribution and transformation of entangled photons with dielectric metasurfaces. Phys Rev Lett 129, 023601 (2022). doi: 10.1103/PhysRevLett.129.023601 |
[34] | Liu SQ, Chen SZ, Wen SC et al. Photonic spin Hall effect: fundamentals and emergent applications. Opto-Electron Sci 1, 220007 (2022). doi: 10.29026/oes.2022.220007 |
[35] | Zhang XD, Liu YL, Han JC et al. Chiral emission from resonant metasurfaces. Science 377, 1215–1218 (2022). doi: 10.1126/science.abq7870 |
[36] | Li L, Wang S, Zhao F et al. Single-shot deterministic complex amplitude imaging with a single-layer metalens. Sci Adv 10, eadl0501 (2024). doi: 10.1126/sciadv.adl0501 |
[37] | Yao J, Hsu WL, Liang Y et al. Nonlocal metasurface for dark-field edge emission. Sci Adv 10, eadn2752 (2024). doi: 10.1126/sciadv.adn2752 |
[38] | Ni XJ, Kildishev AV, Shalaev VM. Metasurface holograms for visible light. Nat Commun 4, 2807 (2013). doi: 10.1038/ncomms3807 |
[39] | Zheng GX, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 10, 308–312 (2015). doi: 10.1038/nnano.2015.2 |
[40] | Colburn S, Zhan AL, Majumdar A. Metasurface optics for full-color computational imaging. Sci Adv 4, eaar2114 (2018). doi: 10.1126/sciadv.aar2114 |
[41] | Liu Y, Huang MC, Chen QK et al. Single planar photonic chip with tailored angular transmission for multiple-order analog spatial differentiator. Nat Commun 13, 7944 (2022). doi: 10.1038/s41467-022-35588-5 |
[42] | Cotrufo M, Sulejman SB, Wesemann L et al. Reconfigurable image processing metasurfaces with phase-change materials. Nat Commun 15, 4483 (2024). doi: 10.1038/s41467-024-48783-3 |
[43] | Ji AQ, Song JH, Li QT et al. Quantitative phase contrast imaging with a nonlocal angle-selective metasurface. Nat Commun 13, 7848 (2022). doi: 10.1038/s41467-022-34197-6 |
[44] | Wu QY, Zhou JX, Chen XY et al. Single-shot quantitative amplitude and phase imaging based on a pair of all-dielectric metasurfaces. Optica 10, 619–625 (2023). doi: 10.1364/OPTICA.483366 |
[45] | Liu JW, Yang Q, Shou YC et al. Metasurface-assisted quantum nonlocal weak-measurement microscopy. Phys Rev Lett 132, 043601 (2024). doi: 10.1103/PhysRevLett.132.043601 |
[46] | Brida G, Genovese M, Berchera IR. Experimental realization of sub-shot-noise quantum imaging. Nat Photonics 4, 227–230 (2010). doi: 10.1038/nphoton.2010.29 |
[47] | Morris PA, Aspden RS, Bell JEC et al. Imaging with a small number of photons. Nat Commun 6, 5913 (2015). doi: 10.1038/ncomms6913 |
[48] | Johnson S, McMillan A, Torre C et al. Single-pixel imaging with heralded single photons. Opt Continuum 1, 826–833 (2022). doi: 10.1364/OPTCON.458248 |
[49] | Ling XH, Zhou XX, Yi XN et al. Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence. Light Sci Appl 4, e290 (2015). doi: 10.1038/lsa.2015.63 |
[50] | Zhou JX, Qian HL, Zhao JX et al. Two-dimensional optical spatial differentiation and high-contrast imaging. Natl Sci Rev 8, nwaa176 (2021). doi: 10.1093/nsr/nwaa176 |
[51] | Kwiat PG, Waks E, White AG et al. Ultrabright source of polarization-entangled photons. Phys Rev A 60, R773–R776 (1999). doi: 10.1103/PhysRevA.60.R773 |
[52] | Kong LJ, Sun YF, Zhang FR et al. High-dimensional entanglement-enabled holography. Phys Rev Lett 130, 053602 (2023). doi: 10.1103/PhysRevLett.130.053602 |
[53] | Clauser JF, Shimony A. Bell’s theorem. Experimental tests and implications. Rep Prog Phys 41, 1881–1927 (1978). doi: 10.1088/0034-4885/41/12/002 |
[54] | Horodecki R, Horodecki P, Horodecki M et al. Quantum entanglement. Rev Mod Phys 81, 865–942 (2009). doi: 10.1103/RevModPhys.81.865 |
[55] | He Z, Zhang YD, Tong X et al. Quantum microscopy of cells at the Heisenberg limit. Nat Commun 14, 2441 (2023). doi: 10.1038/s41467-023-38191-4 |
Supplementary information for Phase reconstruction via metasurface-integrated quantum analog operation |
![]() |
Phase reconstruction via metasurface-integrated quantum analog operation. (a) Schematic of non-local mode selection by metasurface-integrated quantum analog operation.
Experimental setup. Setup schematic: HWP, half-wave plate; QWP, quarter-wave plate; PBS, polarization beam splitter; M, mirror; QC, quartz crystal; L, Lens; BBOs, β-BaB2O4 crystals; LPF, long-pass filter; FC, fiber coupler; BS, beam splitter; SMF, single mode fiber; SPCM, single photon counting module; ICCD, intensified charge coupled device. Inset, the experimental results of the polarization interference curves.
Experimental results of analog operation. (a–c) Experimental results of quantum analog operation in three modes, respectively. (d) Experimental results of classical analog operation in third mode. (e) Schematic of the detailed local optical axes of the four regions being designed on the metasurface. (f) The SNR in experimental imaging results of classical and quantum analog operation, respectively, under different pump powers.
Process of quantitative phase reconstruction by Fourier integration. (a, b) Experimental measurement results of phase gradient in the x- and y-directions, respectively. (c) Experimental measurement results of 2D phase gradient. (d, e) Results of phase gradient reconstruction in the x- and y-directions, respectively, which is obtained by taking the derivative of the reconstructed normalized phase distribution. in the x- and y-directions, respectively. (f) Results of 2D phase gradient reconstruction. (g) Variation curve of the residual with coefficient K, which shows the process of solving the optimization problem. (h) Schematic diagram of minimum residuals. (i) Normalized results of phase reconstruction. (j) Quantitative results of phase reconstruction. (k) Results of the reconstructed depth corresponding to the white dotted lines.
Quantitative phase reconstruction results. (a, b, e, f) The measured phase gradient results of phase objects- "01" and "Tai Chi", respectively. (c, g) Quantitative phase reconstruction results of "01" and "Tai Chi", respectively. (d, h) Results of the reconstructed phase value corresponding to the white dotted lines of "01" and "Tai Chi", respectively.