Zhou HY, Zhang C, Nong HC et al. Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research. Opto-Electron Adv 8, 240152 (2025). doi: 10.29026/oea.2025.240152
Citation: Zhou HY, Zhang C, Nong HC et al. Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research. Opto-Electron Adv 8, 240152 (2025). doi: 10.29026/oea.2025.240152

Article Open Access

Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research

More Information
  • Attributable to the complex distribution of tactile vesicles under the skin and the ability of the brain to process specific tactile parameters (shape, hardness, and surface texture), human skin can have the capacity for tactile spatial reconstruction and visualization of complex object geometry and surface texture. However, current haptic sensor technologies are predominantly point sensors, which do not have an interlaced distribution structure similar to that of haptic vesicles, limiting their potential in human-computer interaction applications. Here, we report an optical microfiber array skin (OMAS) imitating tactile vesicle interlaced structures for tactile visualization and object reconstruction sensing. This device is characterized by high sensitivity (−0.83 N/V) and fast response time (38 ms). We demonstrate that combining the signals collected by the OMAS with appropriate artificial intelligence algorithms enables the recognition of objects with different hardnesses and shapes with 100% accuracy. It also allows for the classification of fabrics with different surface textures with 98.5% accuracy and Braille patterns with 99% accuracy. As a proof-of-concept, we integrated OMAS into a robot arm to select mahjong among six common objects and successfully recognize its suits by touch, which provides a new solution for tactile sensory processing for human-computer interaction.
  • 加载中
  • [1] Sharma N, Flaherty K, Lezgiyeva K et al. The emergence of transcriptional identity in somatosensory neurons. Nature 577, 392–398 (2020). doi: 10.1038/s41586-019-1900-1

    CrossRef Google Scholar

    [2] Liu FY, Deswal S, Christou A et al. Neuro-inspired electronic skin for robots. Sci Robot 7, eabl7344 (2022). doi: 10.1126/scirobotics.abl7344

    CrossRef Google Scholar

    [3] Kang D, Pikhitsa PV, Choi YW et al. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516, 222–226 (2014). doi: 10.1038/nature14002

    CrossRef Google Scholar

    [4] Wang S, Zhang ZX, Yang B et al. High sensitivity tactile sensors with ultrabroad linear range based on gradient hybrid structure for gesture recognition and precise grasping. Chem Eng J 457, 141136 (2023). doi: 10.1016/j.cej.2022.141136

    CrossRef Google Scholar

    [5] Wei CJ, Zhou HW, Zheng BH et al. Fully flexible and mechanically robust tactile sensors containing core-shell structured fibrous piezoelectric mat as sensitive layer. Chem Eng J 476, 146654 (2023). doi: 10.1016/j.cej.2023.146654

    CrossRef Google Scholar

    [6] Wang SH, Lin L, Wang ZL. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett 12, 6339–6346 (2012). doi: 10.1021/nl303573d

    CrossRef Google Scholar

    [7] Gu GY, Zhang NB, Xu HP et al. A soft neuroprosthetic hand providing simultaneous myoelectric control and tactile feedback. Nat Biomed Eng 7, 589–598 (2023).

    Google Scholar

    [8] Wang Q, Zhang DY, Qian YZ et al. Research on fiber optic surface Plasmon resonance biosensors: a review. Photonic Sens 14, 240201 (2024). doi: 10.1007/s13320-024-0703-7

    CrossRef Google Scholar

    [9] Lu MD, Wang C, Fan RZ et al. Review of fiber-optic localized surface Plasmon resonance sensors: geometries, fabrication technologies, and bio-applications. Photonic Sens 14, 240202 (2024). doi: 10.1007/s13320-024-0709-1

    CrossRef Google Scholar

    [10] Zhang L, Zhen YQ, Tong LM. Optical micro/nanofiber enabled tactile sensors and soft actuators: a review. Opto-Electron Sci 3, 240005 (2024). doi: 10.29026/oes.2024.240005

    CrossRef Google Scholar

    [11] Yao N, Wang XY, Ma SQ et al. Single optical microfiber enabled tactile sensor for simultaneous temperature and pressure measurement. Photonics Res 10, 2040–2046 (2022). doi: 10.1364/PRJ.461182

    CrossRef Google Scholar

    [12] Weng JJ, Yu Y, Zhang JF et al. A biomimetic optical skin for multimodal tactile perception based on optical microfiber coupler neuron. J Lightwave Technol 41, 1874–1883 (2023). doi: 10.1109/JLT.2022.3225068

    CrossRef Google Scholar

    [13] Zhang L, Pan J, Zhang Z et al. Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers. Opto-Electron Adv 3, 190022 (2020).

    Google Scholar

    [14] Li TL, Su YF, Chen FY et al. Bioinspired stretchable fiber-based sensor toward intelligent human-machine interactions. ACS Appl Mater Interfaces 14, 22666–22677 (2022). doi: 10.1021/acsami.2c05823

    CrossRef Google Scholar

    [15] Ahmadi R, Packirisamy M, Dargahi J et al. Discretely loaded beam-type optical fiber tactile sensor for tissue manipulation and palpation in minimally invasive robotic surgery. IEEE Sens J 12, 22–32 (2012). doi: 10.1109/JSEN.2011.2113394

    CrossRef Google Scholar

    [16] Keser S, Hayber Ş. Fiber optic tactile sensor for surface roughness recognition by machine learning algorithms. Sens Actuators A Phys 332, 113071 (2021). doi: 10.1016/j.sna.2021.113071

    CrossRef Google Scholar

    [17] Feng KP, Dang H, Zhou WY et al. A capillary-induced self-assembly method under external constraint for fabrication of high-aspect-ratio and square array of optical fibers. J Manuf Process 85, 645–657 (2023). doi: 10.1016/j.jmapro.2022.11.056

    CrossRef Google Scholar

    [18] Ma SQ, Wang XY, Li P et al. Optical micro/Nano fibers enabled smart textiles for human-machine interface. Adv Fiber Mater 4, 1108–1117 (2022). doi: 10.1007/s42765-022-00163-6

    CrossRef Google Scholar

    [19] Tong LM. Micro/nanofibre optical sensors: challenges and prospects. Sensors 18, 903 (2018). doi: 10.3390/s18030903

    CrossRef Google Scholar

    [20] Tang Y, Yu LT, Pan J et al. Optical nanofiber skins for multifunctional humanoid tactility. Adv Intell Syst 5, 2200203 (2023). doi: 10.1002/aisy.202200203

    CrossRef Google Scholar

    [21] Wang SP, Wang XY, Wang S et al. Optical-nanofiber-enabled gesture-recognition wristband for human-machine interaction with the assistance of machine learning. Adv Intell Syst 5, 2200412 (2023). doi: 10.1002/aisy.202200412

    CrossRef Google Scholar

    [22] Li YP, Tan SJ, Yang LY et al. Optical microfiber neuron for finger motion perception. Adv Fiber Mater 4, 226–234 (2022). doi: 10.1007/s42765-021-00096-6

    CrossRef Google Scholar

    [23] Li LY, Liu YF, Song CY et al. Wearable alignment-free microfiber-based sensor chip for precise vital signs monitoring and cardiovascular assessment. Adv Fiber Mater 4, 475–486 (2022). doi: 10.1007/s42765-021-00121-8

    CrossRef Google Scholar

    [24] Kuang RF, Wang Z, Ma L et al. Smart photonic wristband for pulse wave monitoring. Opto-Electron Sci 3, 240009 (2024). doi: 10.29026/oes.2024.240009

    CrossRef Google Scholar

    [25] Weng JJ, Xiao SY, Yu Y et al. A bio-inspired artificial tactile sensing system based on optical microfiber and enhanced by neural network. Adv Sens Res 3, 2300157 (2024). doi: 10.1002/adsr.202300157

    CrossRef Google Scholar

    [26] Zhou JY, Shao Q, Tang C et al. Conformable and compact multiaxis tactile sensor for human and robotic grasping via anisotropic waveguides. Adv Mater Technol 7, 2200595 (2022). doi: 10.1002/admt.202200595

    CrossRef Google Scholar

    [27] Jiang CP, Zhang Z, Pan J et al. Finger-skin-inspired flexible optical sensor for force sensing and slip detection in robotic grasping. Adv Mater Technol 6, 2100285 (2021). doi: 10.1002/admt.202100285

    CrossRef Google Scholar

    [28] Fan CL, Luo BB, Wu DC et al. Flexible bionic microstructure tactile sensor based on micro-Nano optical fiber. Acta Opt Sin 43, 2106004 (2023). doi: 10.3788/AOS231313

    CrossRef Google Scholar

    [29] Xu F. Optical fibre nanowire devices (University of Southampton, Southampton, 2008).

    Google Scholar

    [30] Brambilla G, Payne DN. The ultimate strength of glass silica nanowires. Nano Lett 9, 831–835 (2009). doi: 10.1021/nl803581r

    CrossRef Google Scholar

    [31] Yu Y. Optical microfiber fabrication and all-optic microfiber modulator (National University of Defense Technology, Changsha, 2014).

    Google Scholar

    [32] Zhang XL, Belal M, Chen GY et al. Compact optical microfiber phase modulator. Opt Lett 37, 320–322 (2012). doi: 10.1364/OL.37.000320

    CrossRef Google Scholar

    [33] Li YJ, Luo BB, Zou X et al. Sensing characteristics of optical vernier of double-helix micro-Nano optical fiber coupler. Chin J Lasers 50, 1406001 (2023). doi: 10.3788/CJL221045

    CrossRef Google Scholar

    [34] Lu JY, Yu Y, Qin SP et al. High-performance temperature and pressure dual-parameter sensor based on a polymer-coated tapered optical fiber. Opt Express 30, 9714–9726 (2022). doi: 10.1364/OE.452355

    CrossRef Google Scholar

    [35] Chun S, Kim JS, Yoo Y et al. An artificial neural tactile sensing system. Nat Electron 4, 429–438 (2021). doi: 10.1038/s41928-021-00585-x

    CrossRef Google Scholar

    [36] Chen W, Khamis H, Birznieks I et al. Tactile sensors for friction estimation and incipient slip detection—Toward dexterous robotic manipulation: a review. IEEE Sens J 18, 9049–9064 (2018). doi: 10.1109/JSEN.2018.2868340

    CrossRef Google Scholar

    [37] Sumetsky M, Dulashko Y, Hale A. Fabrication and study of bent and coiled free silica nanowires: self-coupling microloop optical interferometer. Opt Express 12, 3521–3531 (2004). doi: 10.1364/OPEX.12.003521

    CrossRef Google Scholar

    [38] Yu YS, Zhao YP. Deformation of PDMS membrane and microcantilever by a water droplet: comparison between Mooney-Rivlin and linear elastic constitutive models. J Colloid Interface Sci 332, 467–476 (2009). doi: 10.1016/j.jcis.2008.12.054

    CrossRef Google Scholar

    [39] Wen L, Nie M, Fan JW et al. Tactile recognition of shape and texture on the same substrate. Adv Intell Syst 5, 2300337 (2023). doi: 10.1002/aisy.202300337

    CrossRef Google Scholar

    [40] Qiao HY, Sun ST, Wu PY. Non-equilibrium-growing aesthetic ionic skin for fingertip-like strain-undisturbed tactile sensation and texture recognition. Adv Mater 35, e2300593 (2023). doi: 10.1002/adma.202300593

    CrossRef Google Scholar

    [41] Zhou ZH, Chen K, Li XS et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat Electron 3, 571–578 (2020). doi: 10.1038/s41928-020-0428-6

    CrossRef Google Scholar

    [42] Lee S, Franklin S, Hassani FA et al. Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 370, 966–970 (2020). doi: 10.1126/science.abc9735

    CrossRef Google Scholar

    [43] Amoli V, Kim JS, Jee E et al. A bioinspired hydrogen bond-triggered ultrasensitive ionic mechanoreceptor skin. Nat Commun 10, 4019 (2019). doi: 10.1038/s41467-019-11973-5

    CrossRef Google Scholar

    [44] Park J, Kim M, Lee Y et al. Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci Adv 1, e1500661 (2015). doi: 10.1126/sciadv.1500661

    CrossRef Google Scholar

    [45] Li Y, Cao ZG, Li T et al. Highly selective biomimetic flexible tactile sensor for neuroprosthetics. Research 2020, 8910692 (2020).

    Google Scholar

    [46] Yu LJ, Jia YL, Teng WM. Compilation of Chinese braille standard. Chin J Rehabil Theory Pract 1 , 27–28 (1997).

    Google Scholar

  • Supplementary information for Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
    Supplementary video 1
    Supplementary video 2
    Supplementary video 3
    Supplementary video 4
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint