Li XW, Sheng J, Wen ZJ et al. Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing. Opto-Electron Adv 8, 240091 (2025). doi: 10.29026/oea.2025.240091
Citation: Li XW, Sheng J, Wen ZJ et al. Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing. Opto-Electron Adv 8, 240091 (2025). doi: 10.29026/oea.2025.240091

Article Open Access

Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing

More Information
  • Phase singularities (PSs) in topological darkness-based sensors have received significant attention in optical sensing due to their rapid, ultra-sensitive, and label-free detection capabilities. Here, we present both experimental and theoretical investigations of an ultrasensitive and multiplexed phase-sensitive sensor utilizing dual topological PSs in the visible and near-infrared regions. This sensor uses a simple structure, which consists of an ultra-thin highly absorbing film deposited on a metal substrate. We demonstrate the achievement of dual-polarization darkness points for s- and p-polarizations at different incident angles. Furthermore, we theoretically explain the double topological PSs accompanied by a perfect ±π-jump near a zero-reflection point, based on the temporal coupled-mode formalism. To validate its multifunctional capabilities, humidity sensing tests were carried out. The results demonstrate that the sensor has a detection limit reaching the level of 0.12 ‰. These findings go beyond the scope of conventional interference optical coatings and highlight the potential applications of this technology in gas sensing and biosensing domains.
  • 加载中
  • [1] Ma GT, Shen WF, Sanchez DS et al. Excitons enabled topological phase singularity in a single atomic layer. ACS Nano 17, 17751–17760 (2023). doi: 10.1021/acsnano.3c02478

    CrossRef Google Scholar

    [2] Sreekanth KV, Elkabbash M, Medwal R et al. Generalized brewster angle effect in thin-film optical absorbers and its application for graphene hydrogen sensing. ACS Photonics 6, 1610–1617 (2019). doi: 10.1021/acsphotonics.9b00564

    CrossRef Google Scholar

    [3] Samdani S, Kala A, Kaurav R et al. Reusable biosensor based on differential phase detection at the point of darkness. Adv Photonics Res 2, 2000147 (2021). doi: 10.1002/adpr.202000147

    CrossRef Google Scholar

    [4] Sreekanth KV, Han S, Singh R. Ge2Sb2Te5-based tunable perfect absorber cavity with phase singularity at visible frequencies. Adv Mater 30, 1706696 (2018). doi: 10.1002/adma.201706696

    CrossRef Google Scholar

    [5] Rao AR, Sreekanth KV, Sreejith S et al. Ultrasensitive detection of heavy metal ions with scalable singular phase thin film optical coatings. Adv Opt Mater 10, 2102623 (2022). doi: 10.1002/adom.202102623

    CrossRef Google Scholar

    [6] Sreekanth KV, Mahalakshmi P, Han S et al. Brewster mode-enhanced sensing with hyperbolic metamaterial. Adv Opt Mater 7, 1900608 (2019).

    Google Scholar

    [7] Sreekanth KV, Sreejith S, Han S et al. Biosensing with the singular phase of an ultrathin metal-dielectric nanophotonic cavity. Nat Commun 9, 369 (2018). doi: 10.1038/s41467-018-02860-6

    CrossRef Google Scholar

    [8] Berkhout A, Koenderink AF. Perfect absorption and phase singularities in plasmon antenna array etalons. ACS Photonics 6, 2917–2925 (2019). doi: 10.1021/acsphotonics.9b01019

    CrossRef Google Scholar

    [9] Tan TCW, Plum E, Singh R. Lattice-enhanced fano resonances from bound states in the continuum metasurfaces. Adv Opt Mater 8, 1901572 (2020). doi: 10.1002/adom.201901572

    CrossRef Google Scholar

    [10] Lim WX, Manjappa M, Pitchappa P et al. Shaping high-Q planar fano resonant metamaterials toward futuristic technologies. Adv Opt Mater 6, 1800502 (2018). doi: 10.1002/adom.201800502

    CrossRef Google Scholar

    [11] Wang WH, Srivastava YK, Tan TCW et al. Brillouin zone folding driven bound states in the continuum. Nat Commun 14, 2811 (2023). doi: 10.1038/s41467-023-38367-y

    CrossRef Google Scholar

    [12] Cong LQ, Singh R. Spatiotemporal dielectric metasurfaces for unidirectional propagation and reconfigurable steering of terahertz beams. Adv Mater 32, 2001418 (2020). doi: 10.1002/adma.202001418

    CrossRef Google Scholar

    [13] Gupta M, Singh R. Terahertz sensing with optimized Q/Veff metasurface cavities. Adv Opt Mater 8, 1902025 (2020). doi: 10.1002/adom.201902025

    CrossRef Google Scholar

    [14] Tian Z, Singh R, Han JG et al. Terahertz superconducting plasmonic hole array. Opt Lett 35, 3586–3588 (2010). doi: 10.1364/OL.35.003586

    CrossRef Google Scholar

    [15] Liu MQ, Chen WJ, Hu GW et al. Spectral phase singularity and topological behavior in perfect absorption. Phys Rev B 107, L241403 (2023). doi: 10.1103/PhysRevB.107.L241403

    CrossRef Google Scholar

    [16] Grigorenko AN, Nikitin PI, Kabashin AV. Phase jumps and interferometric surface plasmon resonance imaging. Appl Phys Lett 75, 3917–3919 (1999). doi: 10.1063/1.125493

    CrossRef Google Scholar

    [17] Hu JY, Wang Y, Niu JB et al. Observation of dual-polarization topological photonic states at optical frequencies. Laser Photonics Rev 17, 2300515 (2023). doi: 10.1002/lpor.202300515

    CrossRef Google Scholar

    [18] Tselikov GI, Danilov A, Shipunova VO et al. Topological darkness: how to design a metamaterial for optical biosensing with ultrahigh sensitivity. ACS Nano 17, 19338–19348 (2023). doi: 10.1021/acsnano.3c06655

    CrossRef Google Scholar

    [19] Song HM, Zhang N, Duan J et al. Dispersion topological darkness at multiple wavelengths and polarization states. Adv Opt Mater 5, 1700166 (2017). doi: 10.1002/adom.201700166

    CrossRef Google Scholar

    [20] Malassis L, Massé P, Tréguer-Delapierre M et al. Topological darkness in self-assembled plasmonic metamaterials. Adv Mater 26, 324–330 (2014). doi: 10.1002/adma.201303426

    CrossRef Google Scholar

    [21] Kravets VG, Schedin F, Jalil R et al. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. Nat Mater 12, 304–309 (2013). doi: 10.1038/nmat3537

    CrossRef Google Scholar

    [22] Ermolaev G, Voronin K, Baranov DG et al. Topological phase singularities in atomically thin high-refractive-index materials. Nat Commun 13, 2049 (2022). doi: 10.1038/s41467-022-29716-4

    CrossRef Google Scholar

    [23] Ni JC, Huang C, Zhou LM et al. Multidimensional phase singularities in nanophotonics. Science 374, 418 (2021).

    Google Scholar

    [24] Yue XZ, Wang T, Yan RQ et al. High-sensitivity refractive index sensing with the singular phase in normal incidence of an asymmetric Fabry–Perot cavity modulated by grating. Opt Laser Technol 157, 108697 (2023). doi: 10.1016/j.optlastec.2022.108697

    CrossRef Google Scholar

    [25] Cusworth E, Kravets VG, Grigorenko AN. Topological darkness in optical heterostructures: prediction and confirmation. ACS Photonics 10, 3715–3722 (2023). doi: 10.1021/acsphotonics.3c00879

    CrossRef Google Scholar

    [26] Toksumakov AN, Ermolaev GA, Tatmyshevskiy MK et al. Anomalous optical response of graphene on hexagonal boron nitride substrates. Commun Phys 6, 13 (2023). doi: 10.1038/s42005-023-01129-9

    CrossRef Google Scholar

    [27] Fonollosa J, Carmona M, Santander J et al. Limits to the integration of filters and lenses on thermoelectric IR detectors by flip-chip techniques. Sens Actuators A Phys 149, 65–73 (2009). doi: 10.1016/j.sna.2008.10.008

    CrossRef Google Scholar

    [28] Dong M, Zheng CT, Miao SZ et al. Development and measurements of a mid-infrared multi-gas sensor system for CO, CO2 and CH4 detection. Sensors 17, 2221 (2017). doi: 10.3390/s17102221

    CrossRef Google Scholar

    [29] Anker JN, Hall WP, Lyandres O et al. Biosensing with plasmonic nanosensors. Nat Mater 7, 442–453 (2008). doi: 10.1038/nmat2162

    CrossRef Google Scholar

    [30] Tan XC, Zhang H, Li JY et al. Non-dispersive infrared multi-gas sensing via nanoantenna integrated narrowband detectors. Nat Commun 11, 5245 (2020). doi: 10.1038/s41467-020-19085-1

    CrossRef Google Scholar

    [31] Shi X, Ge LX, Liu BY et al. Optical metasurface composed of multiple antennas with anti-Hermitian coupling in a single layer. Opt Lett 46, 2252–2255 (2021). doi: 10.1364/OL.421555

    CrossRef Google Scholar

    [32] Shi X, Ge LX, Wen XW et al. Broadband light absorption in graphene ribbons by canceling strong coupling at subwavelength scale. Opt Express 24, 26357–26362 (2016). doi: 10.1364/OE.24.026357

    CrossRef Google Scholar

    [33] Li XW, Wen ZJ, Zhou DJ et al. Inverse design of refractory mid-wave infrared narrowband thermal emitters for optical gas sensing. Cell Rep Phys Sci 4, 101687 (2023). doi: 10.1016/j.xcrp.2023.101687

    CrossRef Google Scholar

    [34] Lv QH, Jin C, Zhang BC et al. Ultrawide-angle ultralow-reflection phenomenon for transverse electric mode in anisotropic metasurface. Adv Opt Mater 10, 2102400 (2022). doi: 10.1002/adom.202102400

    CrossRef Google Scholar

    [35] Lavigne G, Caloz C. Generalized brewster effect using bianisotropic metasurfaces. Opt Express 29, 11361–11370 (2021). doi: 10.1364/OE.423078

    CrossRef Google Scholar

    [36] Zhang Z, Che ZY, Liang XY et al. Realizing generalized brewster effect by generalized kerker effect. Phys Rev Appl 16, 054017 (2021). doi: 10.1103/PhysRevApplied.16.054017

    CrossRef Google Scholar

    [37] Tamayama Y, Nakanishi T, Sugiyama K et al. Observation of brewster’s effect for transverse-electric electromagnetic waves in metamaterials: experiment and theory. Phys Rev B 73, 193104 (2006). doi: 10.1103/PhysRevB.73.193104

    CrossRef Google Scholar

    [38] Watanabe R, Iwanaga M, Ishihara T. S-polarization brewster’s angle of stratified metal-dielectric metamaterial in optical regime. Phys Status Solidi Res 245, 2696–2701 (2008). doi: 10.1002/pssb.200879899

    CrossRef Google Scholar

    [39] Kats MA, Blanchard R, Genevet P et al. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat Mater 12, 20–24 (2013). doi: 10.1038/nmat3443

    CrossRef Google Scholar

    [40] Pan H, Wen ZJ, Tang ZH et al. Wide gamut, angle-insensitive structural colors based on deep-subwavelength bilayer media. Nanophotonics 9, 3385–3392 (2020). doi: 10.1515/nanoph-2020-0106

    CrossRef Google Scholar

    [41] Tompkins HG, Hilfiker JN. Spectroscopic Ellipsometry: Practical Application to Thin Film Characterization (Momentum Press, New York, 2016).

    Google Scholar

    [42] Fan SH, Suh W, Joannopoulos JD. Temporal coupled-mode theory for the fano resonance in optical resonators. J Opt Soc Am A Opt Image Sci Vis 20, 569–572 (2003). doi: 10.1364/JOSAA.20.000569

    CrossRef Google Scholar

    [43] Suh W, Wang Z, Fan SH. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J Quantum Electron 40, 1511–1518 (2004). doi: 10.1109/JQE.2004.834773

    CrossRef Google Scholar

    [44] Wang B, Liu WZ, Zhao MX et al. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nat Photonics 14, 623–628 (2020). doi: 10.1038/s41566-020-0658-1

    CrossRef Google Scholar

    [45] Wang ZJ, Dai CJ, Zhang J et al. Real-time tunable nanoprinting-multiplexing with simultaneous meta-holography displays by stepwise nanocavities. Adv Funct Mater 32, 2110022 (2022). doi: 10.1002/adfm.202110022

    CrossRef Google Scholar

    [46] Zhang J, Huang C, Chen YX et al. Polyvinyl alcohol: a high-resolution hydrogel resist for humidity-sensitive micro-/nanostructure. Nanotechnology 31, 425303 (2020). doi: 10.1088/1361-6528/ab9da7

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint