Gigan S. Data-driven polarimetric approaches fuel computational imaging expansion. Opto-Electron Adv 7, 240158 (2024). doi: 10.29026/oea.2024.240158
Citation: Gigan S. Data-driven polarimetric approaches fuel computational imaging expansion. Opto-Electron Adv 7, 240158 (2024). doi: 10.29026/oea.2024.240158

News & Views Open Access

Data-driven polarimetric approaches fuel computational imaging expansion

More Information
  • Incorporating polarization in computer vision tasks provides new solutions to high-level analytics, in particular when coupled with machine learning frameworks such as convolutional neural networks (CNN). A recent review in Opto-Electronic Science reports on the developments in data-driven polarimetric imaging, including polarimetric descattering, 3D imaging, reflection removal, target detection and biomedical imaging. The review carefully analyzes these new trends with their advantages and disadvantages, and provides a general insight for future research and development.
  • 加载中
  • [1] Yang K, Liu F, Liang SY et al. Data-driven polarimetric imaging: a review. Opto-Electron Sci 3, 230042 (2024). doi: 10.29026/oes.2024.230042

    CrossRef Google Scholar

    [2] Hu HF, Zhang YB, Li XB et al. Polarimetric underwater image recovery via deep learning. Opt Lasers Eng 133, 106152 (2020). doi: 10.1016/j.optlaseng.2020.106152

    CrossRef Google Scholar

    [3] Liu HD, Zhang YZ, Cheng ZZ et al. Attention-based neural network for polarimetric image denoising. Opt Lett 47, 2726–2729 (2022). doi: 10.1364/OL.458514

    CrossRef Google Scholar

    [4] Zhang JC, Shao JB, Luo HB et al. Learning a convolutional demosaicing network for microgrid polarimeter imagery. Opt Lett 43, 4534–4537 (2018). doi: 10.1364/OL.43.004534

    CrossRef Google Scholar

    [5] Wu XS, Zhang H, Hu XP et al. HDR reconstruction based on the polarization camera. IEEE Robot Autom Lett 5, 5113–5119 (2020). doi: 10.1109/LRA.2020.3005379

    CrossRef Google Scholar

    [6] Wieschollek P, Gallo O, Gu JW et al. Separating reflection and transmission images in the wild. In 15th European Conference on Computer Vision 90–105 (Springer, 2018); https://doi.org/10.1007/978-3-030-01261-8_6.

    Google Scholar

    [7] Hu HF, Lin Y, Li XB et al. IPLNet: a neural network for intensity-polarization imaging in low light. Opt Lett 45, 6162–6165 (2020). doi: 10.1364/OL.409673

    CrossRef Google Scholar

    [8] Ba YH, Gilbert AR, Wang F et al. Deep shape from polarization. In 16th European Conference on Computer Vision 554–571 (Springer, 2020); https://doi.org/10.1007/978-3-030-58586-0_33.

    Google Scholar

    [9] Kalra A, Taamazyan V, Rao SK et al. Deep polarization cues for transparent object segmentation. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition 8599–8608 (IEEE, 2020); https://doi.org/10.1109/CVPR42600.2020.00863.

    Google Scholar

    [10] Shen Y, Lin WF, Wang ZF et al. Rapid detection of camouflaged artificial target based on polarization imaging and deep learning. IEEE Photonics J 13, 7800309 (2021).

    Google Scholar

    [11] Li XP, Liao R, Zhou JL et al. Classification of morphologically similar algae and cyanobacteria using Mueller matrix imaging and convolutional neural networks. Appl Opt 56, 6520–6530 (2017). doi: 10.1364/AO.56.006520

    CrossRef Google Scholar

    [12] Wang YH, Louie DC, Cai JY et al. Deep learning enhances polarization speckle for in vivo skin cancer detection. Opt Laser Technol 140, 107006 (2021). doi: 10.1016/j.optlastec.2021.107006

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Article Metrics

Article views(3151) PDF downloads(689) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint