Li J, Lu XG, Li H et al. Racemic dielectric metasurfaces for arbitrary terahertz polarization rotation and wavefront manipulation. Opto-Electron Adv 7, 240075 (2024). doi: 10.29026/oea.2024.240075
Citation: Li J, Lu XG, Li H et al. Racemic dielectric metasurfaces for arbitrary terahertz polarization rotation and wavefront manipulation. Opto-Electron Adv 7, 240075 (2024). doi: 10.29026/oea.2024.240075

Article Open Access

Racemic dielectric metasurfaces for arbitrary terahertz polarization rotation and wavefront manipulation

More Information
  • Dielectric chiral metasurface is a new type of planar and efficient chiral optical device that shows strong circular dichroism or optical activity, which has important application potential in optical sensing and display. However, the two types of chiral optical responses in conventional chiral metasurfaces are often interdependent, as their modulation of the amplitudes and phases of orthogonal circularly polarized components is correlated, which limits the further progress of chiral meta-devices. Here we propose a new scheme for independently designing the circular dichroism and optical activity of chiral metasurfaces to further control the polarization and wavefront of transmitted waves. Inspired by mixtures of chiral molecular isomers, we use the dielectric isomer resonators to form “super-units” instead of single meta-atoms for chiral responses in terahertz band, which is called racemic metasurface. By introducing two levels of Pancharatnam-Berry phases between meta-atoms and “super-units”, the polarization rotation angle and wavefront of the beam can be designed without the far-field circular dichroism. We demonstrate the strong control ability on terahertz waves of this scheme through simulation and experiments. In addition, this new type of device with near-field chirality but no far-field circular dichroism may also have important value in optical sensing and other technologies.
  • 加载中
  • [1] Hao Y, Xiang SY, Han GQ et al. Recent progress of integrated circuits and optoelectronic chips. Sci China Inf Sci 64, 201401 (2021). doi: 10.1007/s11432-021-3235-7

    CrossRef Google Scholar

    [2] Tan DZ, Wang Z, Xu BB et al. Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices. Adv Photonics 3, 024002 (2021).

    Google Scholar

    [3] Khorasaninejad M, Capasso F. Metalenses: versatile multifunctional photonic components. Science 358, eaam8100 (2017). doi: 10.1126/science.aam8100

    CrossRef Google Scholar

    [4] Fu R, Chen KX, Li ZL et al. Metasurface-based nanoprinting: principle, design and advances. Opto-Electronic Sci 1, 220011 (2022). doi: 10.29026/oes.2022.220011

    CrossRef Google Scholar

    [5] Genevet P, Capasso F, Aieta F et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 4, 139–152 (2017). doi: 10.1364/OPTICA.4.000139

    CrossRef Google Scholar

    [6] Lin DM, Fan PY, Hasman E et al. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014). doi: 10.1126/science.1253213

    CrossRef Google Scholar

    [7] Liu XY, Zhang JC, Leng BR et al. Edge enhanced depth perception with binocular meta-lens. Opto-Electron Sci 3, 230033 (2024).

    Google Scholar

    [8] Zhang F, Guo YH, Pu MB et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat Commun 14, 1946 (2023). doi: 10.1038/s41467-023-37510-z

    CrossRef Google Scholar

    [9] Li J, Zheng CL, Li JT et al. Terahertz wavefront shaping with multi-channel polarization conversion based on all-dielectric metasurface. Photonics Res 9, 1939–1947 (2021). doi: 10.1364/PRJ.431019

    CrossRef Google Scholar

    [10] Li J, Li JT, Yue Z et al. Structured vector field manipulation of terahertz wave along the propagation direction based on dielectric metasurfaces. Laser Photonics Rev 16, 2200325 (2022). doi: 10.1002/lpor.202200325

    CrossRef Google Scholar

    [11] Solntsev AS, Agarwal GS, Kivshar YS. Metasurfaces for quantum photonics. Nat Photonics 15, 327–336 (2021). doi: 10.1038/s41566-021-00793-z

    CrossRef Google Scholar

    [12] Wang Q, Tu CH, Li YN et al. Polarization singularities: progress, fundamental physics, and prospects. APL Photonics 6, 040901 (2021). doi: 10.1063/5.0045261

    CrossRef Google Scholar

    [13] Kang M, Zhang ZY, Wu T et al. Coherent full polarization control based on bound states in the continuum. Nat Commun 13, 4536 (2022). doi: 10.1038/s41467-022-31726-1

    CrossRef Google Scholar

    [14] Fan KB, Shadrivov IV, Padilla WJ. Dynamic bound states in the continuum. Optica 6, 169–173 (2019). doi: 10.1364/OPTICA.6.000169

    CrossRef Google Scholar

    [15] Huang C, Zhang C, Xiao SM et al. Ultrafast control of vortex microlasers. Science 367, 1018–1021 (2020). doi: 10.1126/science.aba4597

    CrossRef Google Scholar

    [16] Zhang XD, Liu YL, Han JC et al. Chiral emission from resonant metasurfaces. Science 377, 1215–1218 (2022). doi: 10.1126/science.abq7870

    CrossRef Google Scholar

    [17] Chen Y, Feng JG, Huang YQ et al. Compact spin-valley-locked perovskite emission. Nat Mater 22, 1065–1070 (2023). doi: 10.1038/s41563-023-01531-2

    CrossRef Google Scholar

    [18] Kim S, An SC, Kin Y et al. Chiral electroluminescence from thin-film perovskite metacavities. Sci Adv 9, eadh0414 (2023). doi: 10.1126/sciadv.adh0414

    CrossRef Google Scholar

    [19] Chen Y, Du W, Zhang Q et al. Multidimensional nanoscopic chiroptics. Nat Rev Phys 4, 113–124 (2022).

    Google Scholar

    [20] Chen YX, Zhang FY, Dang ZB et al. Chiral detection of biomolecules based on reinforcement learning. Opto-Electron Sci 2, 220019 (2023). doi: 10.29026/oes.2023.220019

    CrossRef Google Scholar

    [21] Bu YH, Ren XS, Zhou J et al. Configurable circular-polarization-dependent optoelectronic silent state for ultrahigh light ellipticity discrimination. Light Sci Appl 12, 176 (2023). doi: 10.1038/s41377-023-01193-4

    CrossRef Google Scholar

    [22] Guo YH, Zhang SC, Pu MB et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci Appl 10, 63 (2021). doi: 10.1038/s41377-021-00497-7

    CrossRef Google Scholar

    [23] Niu CN, Wang ZJ, Zhao J et al. Photonic heterostructures for spin-flipped beam splitting. Phys Rev Appl 12, 044009 (2019). doi: 10.1103/PhysRevApplied.12.044009

    CrossRef Google Scholar

    [24] Duan QL, Zeng YL, Yin YH et al. Photonic crystal slabs with maximal chiroptical response empowered by bound states in the continuum. Photonics Res 11, 1919–1933 (2023). doi: 10.1364/PRJ.497954

    CrossRef Google Scholar

    [25] Kim RM, Huh JH, Yoo S et al. Enantioselective sensing by collective circular dichroism. Nature 612, 470–476 (2022). doi: 10.1038/s41586-022-05353-1

    CrossRef Google Scholar

    [26] Panchenko E, Cadusch JJ, James TD et al. Plasmonic metasurface-enabled differential photodetectors for broadband optical polarization characterization. ACS Photonics 3, 1833–1839 (2016). doi: 10.1021/acsphotonics.6b00342

    CrossRef Google Scholar

    [27] Li J, Li JT, Zheng CL et al. Lossless dielectric metasurface with giant intrinsic chirality for terahertz wave. Opt Express 29, 28329–28337 (2021). doi: 10.1364/OE.430033

    CrossRef Google Scholar

    [28] Li JT, Wang GC, Yue Z et al. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization. Opto-Electron Adv 5, 210062 (2022). doi: 10.29026/oea.2022.210062

    CrossRef Google Scholar

    [29] Li J, Zhang YT, Li JN et al. Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam-Berry coding metasurfaces. Nanoscale 11, 5746–5753 (2019). doi: 10.1039/C9NR00675C

    CrossRef Google Scholar

    [30] Gryb D, Wendisch FJ, Aigner A et al. Two-dimensional chiral metasurfaces obtained by geometrically simple meta-atom rotations. Nano Lett 23, 8891–8897 (2023). doi: 10.1021/acs.nanolett.3c02168

    CrossRef Google Scholar

    [31] Yuan YY, Zhang K, Ratni B et al. Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces. Nat Commun 11, 4186 (2020). doi: 10.1038/s41467-020-17773-6

    CrossRef Google Scholar

    [32] Chen C, Gao SL, Song WG et al. Metasurfaces with planar chiral meta-atoms for spin light manipulation. Nano Lett 21, 1815–1821 (2021). doi: 10.1021/acs.nanolett.0c04902

    CrossRef Google Scholar

    [33] Zhu L, Xu CT, Chen P et al. Pancharatnam–Berry phase reversal via opposite-chirality-coexisted superstructures. Light Sci Appl 11, 135 (2022). doi: 10.1038/s41377-022-00835-3

    CrossRef Google Scholar

    [34] Li ZC, Liu WW, Cheng H et al. Spin-selective full-dimensional manipulation of optical waves with chiral mirror. Adv Mater 32, 1907983 (2020). doi: 10.1002/adma.201907983

    CrossRef Google Scholar

    [35] Ding F, Deng YD, Meng C et al. Electrically tunable topological phase transition in non-Hermitian optical MEMS metasurfaces. Sci Adv 10, eadl4661 (2024). doi: 10.1126/sciadv.adl4661

    CrossRef Google Scholar

    [36] Singh R, Plum E, Menzel C et al. Terahertz metamaterial with asymmetric transmission. Phys Rev B 80, 153104 (2009). doi: 10.1103/PhysRevB.80.153104

    CrossRef Google Scholar

    [37] Singh R, Plum E, Zhang WL et al. Highly tunable optical activity in planar achiral terahertz metamaterials. Opt Express 18, 13425–13430 (2010). doi: 10.1364/OE.18.013425

    CrossRef Google Scholar

    [38] Cong LQ, Singh R. Spatiotemporal dielectric metasurfaces for unidirectional propagation and reconfigurable steering of terahertz beams. Adv Mater 32, 2001418 (2020). doi: 10.1002/adma.202001418

    CrossRef Google Scholar

    [39] Tian Z, Singh R, Han JG et al. Terahertz superconducting plasmonic hole array. Opt Lett 35, 3586–3588 (2010). doi: 10.1364/OL.35.003586

    CrossRef Google Scholar

    [40] Gu JQ, Han JG, Lu XC et al. A close-ring pair terahertz metamaterial resonating at normal incidence. Opt Express 17, 20307 (2009). doi: 10.1364/OE.17.020307

    CrossRef Google Scholar

    [41] Cong LQ, Pitchappa P, Wang N et al. Electrically programmable terahertz diatomic metamolecules for chiral optical control. Research 2019, 7084251 (2019).

    Google Scholar

    [42] Wang WH, Srivastava YK, Tan TCW et al. Brillouin zone folding driven bound states in the continuum. Nat Commun 14, 2811 (2023). doi: 10.1038/s41467-023-38367-y

    CrossRef Google Scholar

    [43] Cong LQ, Xu NN, Zhang WL et al. Polarization control in terahertz metasurfaces with the lowest order rotational symmetry. Adv Opt Mater 3, 1176–1183 (2015). doi: 10.1002/adom.201500100

    CrossRef Google Scholar

    [44] Cong LQ, Xu NN, Han JG et al. A tunable dispersion-free terahertz metadevice with pancharatnam-berry-phase-enabled modulation and polarization control. Adv Mater 27, 6630–6636 (2015). doi: 10.1002/adma.201502716

    CrossRef Google Scholar

    [45] Menzel C, Rockstuhl C, Lederer F. Advanced Jones calculus for the classification of periodic metamaterials. Phys Rev A 82, 053811 (2010). doi: 10.1103/PhysRevA.82.053811

    CrossRef Google Scholar

    [46] Nastyshyn SY, Bolesta IM, Tsybulia SA et al. Optical spatial dispersion in terms of Jones calculus. Phys Rev A 100, 013806 (2019). doi: 10.1103/PhysRevA.100.013806

    CrossRef Google Scholar

  • Supplementary information for Racemic dielectric metasurfaces for arbitrary terahertz polarization rotation and wavefrontmanipulation
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint