Citation: | Li J, Lu XG, Li H et al. Racemic dielectric metasurfaces for arbitrary terahertz polarization rotation and wavefront manipulation. Opto-Electron Adv 7, 240075 (2024). doi: 10.29026/oea.2024.240075 |
[1] | Hao Y, Xiang SY, Han GQ et al. Recent progress of integrated circuits and optoelectronic chips. Sci China Inf Sci 64, 201401 (2021). doi: 10.1007/s11432-021-3235-7 |
[2] | Tan DZ, Wang Z, Xu BB et al. Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices. Adv Photonics 3, 024002 (2021). |
[3] | Khorasaninejad M, Capasso F. Metalenses: versatile multifunctional photonic components. Science 358, eaam8100 (2017). doi: 10.1126/science.aam8100 |
[4] | Fu R, Chen KX, Li ZL et al. Metasurface-based nanoprinting: principle, design and advances. Opto-Electronic Sci 1, 220011 (2022). doi: 10.29026/oes.2022.220011 |
[5] | Genevet P, Capasso F, Aieta F et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 4, 139–152 (2017). doi: 10.1364/OPTICA.4.000139 |
[6] | Lin DM, Fan PY, Hasman E et al. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014). doi: 10.1126/science.1253213 |
[7] | Liu XY, Zhang JC, Leng BR et al. Edge enhanced depth perception with binocular meta-lens. Opto-Electron Sci 3, 230033 (2024). |
[8] | Zhang F, Guo YH, Pu MB et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat Commun 14, 1946 (2023). doi: 10.1038/s41467-023-37510-z |
[9] | Li J, Zheng CL, Li JT et al. Terahertz wavefront shaping with multi-channel polarization conversion based on all-dielectric metasurface. Photonics Res 9, 1939–1947 (2021). doi: 10.1364/PRJ.431019 |
[10] | Li J, Li JT, Yue Z et al. Structured vector field manipulation of terahertz wave along the propagation direction based on dielectric metasurfaces. Laser Photonics Rev 16, 2200325 (2022). doi: 10.1002/lpor.202200325 |
[11] | Solntsev AS, Agarwal GS, Kivshar YS. Metasurfaces for quantum photonics. Nat Photonics 15, 327–336 (2021). doi: 10.1038/s41566-021-00793-z |
[12] | Wang Q, Tu CH, Li YN et al. Polarization singularities: progress, fundamental physics, and prospects. APL Photonics 6, 040901 (2021). doi: 10.1063/5.0045261 |
[13] | Kang M, Zhang ZY, Wu T et al. Coherent full polarization control based on bound states in the continuum. Nat Commun 13, 4536 (2022). doi: 10.1038/s41467-022-31726-1 |
[14] | Fan KB, Shadrivov IV, Padilla WJ. Dynamic bound states in the continuum. Optica 6, 169–173 (2019). doi: 10.1364/OPTICA.6.000169 |
[15] | Huang C, Zhang C, Xiao SM et al. Ultrafast control of vortex microlasers. Science 367, 1018–1021 (2020). doi: 10.1126/science.aba4597 |
[16] | Zhang XD, Liu YL, Han JC et al. Chiral emission from resonant metasurfaces. Science 377, 1215–1218 (2022). doi: 10.1126/science.abq7870 |
[17] | Chen Y, Feng JG, Huang YQ et al. Compact spin-valley-locked perovskite emission. Nat Mater 22, 1065–1070 (2023). doi: 10.1038/s41563-023-01531-2 |
[18] | Kim S, An SC, Kin Y et al. Chiral electroluminescence from thin-film perovskite metacavities. Sci Adv 9, eadh0414 (2023). doi: 10.1126/sciadv.adh0414 |
[19] | Chen Y, Du W, Zhang Q et al. Multidimensional nanoscopic chiroptics. Nat Rev Phys 4, 113–124 (2022). |
[20] | Chen YX, Zhang FY, Dang ZB et al. Chiral detection of biomolecules based on reinforcement learning. Opto-Electron Sci 2, 220019 (2023). doi: 10.29026/oes.2023.220019 |
[21] | Bu YH, Ren XS, Zhou J et al. Configurable circular-polarization-dependent optoelectronic silent state for ultrahigh light ellipticity discrimination. Light Sci Appl 12, 176 (2023). doi: 10.1038/s41377-023-01193-4 |
[22] | Guo YH, Zhang SC, Pu MB et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci Appl 10, 63 (2021). doi: 10.1038/s41377-021-00497-7 |
[23] | Niu CN, Wang ZJ, Zhao J et al. Photonic heterostructures for spin-flipped beam splitting. Phys Rev Appl 12, 044009 (2019). doi: 10.1103/PhysRevApplied.12.044009 |
[24] | Duan QL, Zeng YL, Yin YH et al. Photonic crystal slabs with maximal chiroptical response empowered by bound states in the continuum. Photonics Res 11, 1919–1933 (2023). doi: 10.1364/PRJ.497954 |
[25] | Kim RM, Huh JH, Yoo S et al. Enantioselective sensing by collective circular dichroism. Nature 612, 470–476 (2022). doi: 10.1038/s41586-022-05353-1 |
[26] | Panchenko E, Cadusch JJ, James TD et al. Plasmonic metasurface-enabled differential photodetectors for broadband optical polarization characterization. ACS Photonics 3, 1833–1839 (2016). doi: 10.1021/acsphotonics.6b00342 |
[27] | Li J, Li JT, Zheng CL et al. Lossless dielectric metasurface with giant intrinsic chirality for terahertz wave. Opt Express 29, 28329–28337 (2021). doi: 10.1364/OE.430033 |
[28] | Li JT, Wang GC, Yue Z et al. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization. Opto-Electron Adv 5, 210062 (2022). doi: 10.29026/oea.2022.210062 |
[29] | Li J, Zhang YT, Li JN et al. Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam-Berry coding metasurfaces. Nanoscale 11, 5746–5753 (2019). doi: 10.1039/C9NR00675C |
[30] | Gryb D, Wendisch FJ, Aigner A et al. Two-dimensional chiral metasurfaces obtained by geometrically simple meta-atom rotations. Nano Lett 23, 8891–8897 (2023). doi: 10.1021/acs.nanolett.3c02168 |
[31] | Yuan YY, Zhang K, Ratni B et al. Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces. Nat Commun 11, 4186 (2020). doi: 10.1038/s41467-020-17773-6 |
[32] | Chen C, Gao SL, Song WG et al. Metasurfaces with planar chiral meta-atoms for spin light manipulation. Nano Lett 21, 1815–1821 (2021). doi: 10.1021/acs.nanolett.0c04902 |
[33] | Zhu L, Xu CT, Chen P et al. Pancharatnam–Berry phase reversal via opposite-chirality-coexisted superstructures. Light Sci Appl 11, 135 (2022). doi: 10.1038/s41377-022-00835-3 |
[34] | Li ZC, Liu WW, Cheng H et al. Spin-selective full-dimensional manipulation of optical waves with chiral mirror. Adv Mater 32, 1907983 (2020). doi: 10.1002/adma.201907983 |
[35] | Ding F, Deng YD, Meng C et al. Electrically tunable topological phase transition in non-Hermitian optical MEMS metasurfaces. Sci Adv 10, eadl4661 (2024). doi: 10.1126/sciadv.adl4661 |
[36] | Singh R, Plum E, Menzel C et al. Terahertz metamaterial with asymmetric transmission. Phys Rev B 80, 153104 (2009). doi: 10.1103/PhysRevB.80.153104 |
[37] | Singh R, Plum E, Zhang WL et al. Highly tunable optical activity in planar achiral terahertz metamaterials. Opt Express 18, 13425–13430 (2010). doi: 10.1364/OE.18.013425 |
[38] | Cong LQ, Singh R. Spatiotemporal dielectric metasurfaces for unidirectional propagation and reconfigurable steering of terahertz beams. Adv Mater 32, 2001418 (2020). doi: 10.1002/adma.202001418 |
[39] | Tian Z, Singh R, Han JG et al. Terahertz superconducting plasmonic hole array. Opt Lett 35, 3586–3588 (2010). doi: 10.1364/OL.35.003586 |
[40] | Gu JQ, Han JG, Lu XC et al. A close-ring pair terahertz metamaterial resonating at normal incidence. Opt Express 17, 20307 (2009). doi: 10.1364/OE.17.020307 |
[41] | Cong LQ, Pitchappa P, Wang N et al. Electrically programmable terahertz diatomic metamolecules for chiral optical control. Research 2019, 7084251 (2019). |
[42] | Wang WH, Srivastava YK, Tan TCW et al. Brillouin zone folding driven bound states in the continuum. Nat Commun 14, 2811 (2023). doi: 10.1038/s41467-023-38367-y |
[43] | Cong LQ, Xu NN, Zhang WL et al. Polarization control in terahertz metasurfaces with the lowest order rotational symmetry. Adv Opt Mater 3, 1176–1183 (2015). doi: 10.1002/adom.201500100 |
[44] | Cong LQ, Xu NN, Han JG et al. A tunable dispersion-free terahertz metadevice with pancharatnam-berry-phase-enabled modulation and polarization control. Adv Mater 27, 6630–6636 (2015). doi: 10.1002/adma.201502716 |
[45] | Menzel C, Rockstuhl C, Lederer F. Advanced Jones calculus for the classification of periodic metamaterials. Phys Rev A 82, 053811 (2010). doi: 10.1103/PhysRevA.82.053811 |
[46] | Nastyshyn SY, Bolesta IM, Tsybulia SA et al. Optical spatial dispersion in terms of Jones calculus. Phys Rev A 100, 013806 (2019). doi: 10.1103/PhysRevA.100.013806 |
Supplementary information for Racemic dielectric metasurfaces for arbitrary terahertz polarization rotation and wavefrontmanipulation |
(a) Arbitrary polarization rotation and wavefront control capability of the device, such as beam deflection, focusing and vortex generation with different polarization rotation angles. (b) The array structure of a meta-device consisting of "super-units", where the chiral meta-atoms are rotated with different angles. (c) The composition of a "super-unit", where the red and blue parts respectively represent two different chiral meta-atoms (enantiomer A and enantiomer B, Ent A and Ent B). (d) The geometric parameters of the chiral meta-atoms, which are applicable to both Ent A and Ent B.
(a, b) Circularly polarized transmission coefficients of the chiral enantiomers. (c) The transmission component tRL of the meta-atoms with different rotation angles. (d) The transmission amplitude and phase of chiral meta-atoms with different rotation angles at the operating frequency of 1 THz. (e) The localized electric field excited by LCP and RCP waves of meta-atoms with different rotation angles.
(a) Scanning electron microscopy (SEM) images of the chiral metasurface sample, the scale bar is 200 μm. (b) Schematic diagram of the polarization resolved terahertz time-domain spectroscopy system. (c, d) Measured results of the circularly polarized transmission spectra for two chiral metasurfaces.
(a–c) Simulation results of the transmission circular dichroism for three types of super-units. (d–f) Local electric field excited by circularly polarized waves at 1 THz for three types of super-units. (g–i) Super-units with different rotation angles and the simulation results of their optical rotation function (β= 0°, 45°, and 90°).
(a) Simulated linearly polarized transmission spectra of the super-unit arrays (β=90°). (b) Example for generating relative phase between super-units (with common rotation angle β1=0, 45, 90°). (c) Design of the metasurface phase profile for beam focusing. (d) Simulation results of the focused beam in longitudinal cross-section (xoz plane). (e, f) Simulation results of the focused beam in transverse cross-section (xoy plane). (g) Localized SEM images of the racemic dielectric metasurface. (h, i) Experimental results of focused beam in transverse cross-section. (j) Experimental optical path for measuring focused terahertz beam.