Citation: | Ouyang XP. Charge collection narrowing mechanism in electronic-grade-diamond photodetectors. Opto-Electron Adv 7, 240070 (2024). doi: 10.29026/oea.2024.240070 |
[1] | Li ZQ, Yan TT, Fang XS. Low-dimensional wide-bandgap semiconductors for UV photodetectors. Nat Rev Mater 8, 587–603 (2023). doi: 10.1038/s41578-023-00583-9 |
[2] | Lee W, Liu Y, Lee Y et al. Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging. Nat Commun 9, 1417 (2018). doi: 10.1038/s41467-018-03870-0 |
[3] | Armin A, Jansen-van Vuuren RD, Kopidakis N et al. Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. Nat Commun 6, 6343 (2015). doi: 10.1038/ncomms7343 |
[4] | Elbanna A, Chaykun K, Lekina Y et al. Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives. Opto-Electron Sci 1, 220006 (2022). doi: 10.29026/oes.2022.220006 |
[5] | Zheng W, Jia LM, Huang F. Vacuum-ultraviolet photon detections. iScience 23, 101145 (2020). doi: 10.1016/j.isci.2020.101145 |
[6] | Lu YJ, Lin CN, Shan CX. Optoelectronic diamond: growth, properties, and photodetection applications. Adv Opt Mater 6, 1800359 (2018). doi: 10.1002/adom.201800359 |
[7] | Jia LM, Zheng W, Huang F. Vacuum-ultraviolet photodetectors. PhotoniX 1, 22 (2020). doi: 10.1186/s43074-020-00022-w |
[8] | Jia LM, Cheng L, Zheng W. 8-nm narrowband photodetection in diamonds. Opto-Electron Sci 2, 230010 (2023). doi: 10.29026/oes.2023.230010 |
[9] | Seeger K. Semiconductor Physics (Springer Science & Business Media, 2013). |
[10] | Koizumi S, Nebel C, Nesladek M. Physics and Applications of CVD Diamond (John Wiley & Sons, Hoboken, 2008). |
[11] | Yan SQ, Zuo Y, Xiao SS, Oxenløwe LK, Ding YH. Graphene photodetector employing double slot structure with enhanced responsivity and large bandwidth. Opto-Electron Adv 5, 210159 (2022). doi: 10.29026/oea.2022.210159 |
[12] | Yalagala BP, Dahiya AS, Dahiya R. ZnO nanowires based degradable high-performance photodetectors for eco-friendly green electronics. Opto-Electron Adv 6, 220020 (2023). doi: 10.29026/oea.2023.220020 |
[13] | Kawarada H, Matsuyama H, Yokota Y et al. Excitonic recombination radiation in undoped and boron-doped chemical-vapor-deposited diamonds. Phys Rev B 47, 3633–3637 (1993). doi: 10.1103/PhysRevB.47.3633 |
[14] | Konishi K, Naka N. Phonon-assisted excitonic absorption in diamond. Phys Rev B 104, 125204 (2021). doi: 10.1103/PhysRevB.104.125204 |
[15] | Dhomkar S, Jayakumar H, Zangara PR et al. Charge dynamics in near-surface, variable-density ensembles of nitrogen-vacancy centers in diamond. Nano Lett 18, 4046–4052 (2018). doi: 10.1021/acs.nanolett.8b01739 |
[16] | García De Arquer FP, Armin A, Meredith P et al. Solution-processed semiconductors for next-generation photodetectors. Nat Rev Mater 2, 16100 (2017). doi: 10.1038/natrevmats.2016.100 |
[17] | Lin QQ, Armin A, Burn PL et al. Filterless narrowband visible photodetectors. Nat Photonics 9, 687–694 (2015). doi: 10.1038/nphoton.2015.175 |
[18] | Konishi K, Akimoto I, Isberg J et al. Diffusion-related lifetime and quantum efficiency of excitons in diamond. Phys Rev B 102, 195204 (2020). doi: 10.1103/PhysRevB.102.195204 |
(a) Schematic of the main physical processes that may occur in diamond under photo-excitation. (b) EQE of the Diamond A-based photodetector from the experiment and calculation. (c) EQE of the Diamond C-based photodetector from the experiment and calculation. (d) Typical narrowband photodetectors in the spectral range of 200–1000 nm.