Citation: | Wu Z, Xu LM, Wang JD et al. Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes. Opto-Electron Adv 7, 240050 (2024). doi: 10.29026/oea.2024.240050 |
[1] | Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115, 8706–8715 (1993). doi: 10.1021/ja00072a025 |
[2] | Sun CJ, Jiang YZ, Zhang L et al. Toward the controlled synthesis of lead halide perovskite nanocrystals. ACS Nano 17, 17600–17609 (2023). doi: 10.1021/acsnano.3c05609 |
[3] | Hamanaka Y, Ogawa T, Tsuzuki M et al. Photoluminescence properties and its origin of AgInS2 quantum dots with chalcopyrite structure. J Phys Chem C 115, 1786–1792 (2011). doi: 10.1021/jp110409q |
[4] | Jain S, Bharti S, Bhullar GK et al. I-III-VI core/shell QDs: synthesis, characterizations and applications. J Lumin 219, 116912 (2020). doi: 10.1016/j.jlumin.2019.116912 |
[5] | Zhang J, Zeng B, Ye HH et al. Facile synthesis of ternary AgInS2 nanowires and their self-assembly of fingerprint-like nanostructures. Chin Chem Lett 32, 1507–1510 (2021). doi: 10.1016/j.cclet.2020.09.050 |
[6] | Azhniuk Y, Lopushanska B, Selyshchev O et al. Synthesis and optical properties of Ag-Ga-S quantum dots. Phys Status Solidi B 259, 2100349 (2022). doi: 10.1002/pssb.202100349 |
[7] | Suzuki K, Kuzuya T, Hamanaka Y. Luminescence enhancement in CuInS2 nanoparticles through the selective passivation of nonradiative recombination sites by phosphine ligands. J Phys Chem C 126, 16751–16758 (2022). doi: 10.1021/acs.jpcc.2c05187 |
[8] | Zang HD, Li HB, Makarov NS et al. Thick-shell CuInS2/ZnS quantum dots with suppressed “blinking” and narrow single-particle emission line widths. Nano Lett 17, 1787–1795 (2017). doi: 10.1021/acs.nanolett.6b05118 |
[9] | Uematsu T, Doi T, Torimoto T et al. Preparation of luminescent AgInS2-AgGaS2 solid solution nanoparticles and their optical properties. J Phys Chem Lett 1, 3283–3287 (2010). doi: 10.1021/jz101295w |
[10] | Kameyama T, Yamauchi H, Yamamoto T et al. Tailored photoluminescence properties of Ag(In, Ga)Se2 quantum dots for near-infrared in vivo imaging. ACS Appl Nano Mater 3, 3275–3287 (2020). doi: 10.1021/acsanm.9b02608 |
[11] | Liu ZY, Guan ZY, Li X et al. Rational design and synthesis of highly luminescent multinary Cu-In-Zn-S semiconductor nanocrystals with tailored nanostructures. Adv Opt Mater 8, 1901555 (2020). doi: 10.1002/adom.201901555 |
[12] | Rismaningsih N, Yamauchi H, Kameyama T et al. Controlling electronic energy structure of Ag-Ιn-Ga-S-Se quantum dots showing band-edge emission. Meet Abstr MA2020-02, 3121 (2020). doi: 10.1149/MA2020-02613121mtgabs |
[13] | Guan ZY, Ye HH, Lv PW et al. The formation process of five-component Cu-In-Zn-Se-S nanocrystals from ternary Cu–In–S and quaternary Cu-In-Se-S nanocrystals via gradually induced synthesis. J Mater Chem C 9, 8537–8544 (2021). doi: 10.1039/D1TC02108G |
[14] | Rismaningsih N, Yamauchi H, Kameyama T et al. Photoluminescence properties of quinary Ag-(In, Ga)-(S, Se) quantum dots with a gradient alloy structure for in vivo bioimaging. J Mater Chem C 9, 12791–12801 (2021). doi: 10.1039/D1TC02746H |
[15] | Kottayi R, Ilangovan V, Sittaramane R. Wide light-harvesting AgZnGaS3 quantum dots as an efficient sensitizer for solar cells. Opt Mater 134, 113036 (2022). doi: 10.1016/j.optmat.2022.113036 |
[16] | Xie XL, Zhao JX, Lin OY et al. Narrow-bandwidth blue-emitting Ag-Ga-Zn-S semiconductor nanocrystals for quantum-dot light-emitting diodes. J Phys Chem Lett 13, 11857–11863 (2022). doi: 10.1021/acs.jpclett.2c03437 |
[17] | Kameyama T, Kishi M, Miyamae C et al. Wavelength-tunable band-edge photoluminescence of nonstoichiometric Ag-In-S nanoparticles via Ga3+ doping. ACS Appl Mater Interfaces 10, 42844–42855 (2018). doi: 10.1021/acsami.8b15222 |
[18] | Li JB, Wang LW. First principle study of core/shell structure quantum dots. Appl Phys Lett 84, 3648–3650 (2004). doi: 10.1063/1.1737470 |
[19] | Reiss P, Protière M, Li L. Core/shell semiconductor nanocrystals. Small 5, 154–168 (2009). doi: 10.1002/smll.200800841 |
[20] | Raevskaya A, Lesnyak V, Haubold D et al. A fine size selection of brightly luminescent water-soluble Ag-In-S and Ag-In-S/ZnS quantum dots. J Phys Chem C 121, 9032–9042 (2017). |
[21] | Uematsu T, Wajima K, Sharma DK et al. Narrow band-edge photoluminescence from AgInS2 semiconductor nanoparticles by the formation of amorphous III-VI semiconductor shells. NPG Asia Mater 10, 713–726 (2018). doi: 10.1038/s41427-018-0067-9 |
[22] | Hoisang W, Uematsu T, Yamamoto T et al. Core nanoparticle engineering for narrower and more intense band-edge emission from AgInS2/GaSx core/shell quantum Dots. Nanomaterials 9, 1763 (2019). doi: 10.3390/nano9121763 |
[23] | Bai TY, Wang XM, Dong YY et al. One-pot synthesis of high-quality AgGaS2/ZnS-based photoluminescent nanocrystals with widely tunable band gap. Inorg Chem 59, 5975–5982 (2020). doi: 10.1021/acs.inorgchem.9b03768 |
[24] | Motomura G, Ogura K, Iwasaki Y et al. Electroluminescence from band-edge-emitting AgInS2/GaSx core/shell quantum dots. Appl Phys Lett 117, 091101 (2020). doi: 10.1063/5.0018132 |
[25] | Wei JH, Li F, Chang C et al. Synthesis of emission tunable AgInS2/ZnS quantum dots and application for light emitting diodes. J Phys Commun 4, 045016 (2020). doi: 10.1088/2399-6528/ab885a |
[26] | Li X, Tong X, Yue S et al. Rational design of colloidal AgGaS2/CdSeS core/shell quantum dots for solar energy conversion and light detection. Nano Energy 89, 106392 (2021). doi: 10.1016/j.nanoen.2021.106392 |
[27] | Lee SJ, Lee JE, Lee CJ et al. Design of Ag-Ga-S2-xSex-based eco-friendly core/shell quantum dots for narrow full-width at half-maximum using noble ZnGa2S4 shell material. J Korean Phys Soc 81, 935–941 (2022). doi: 10.1007/s40042-022-00649-x |
[28] | Lee HJ, Im S, Jung D et al. Coherent heteroepitaxial growth of I-III-VI2 Ag(In, Ga)S2 colloidal nanocrystals with near-unity quantum yield for use in luminescent solar concentrators. Nat Commun 14, 3779 (2023). doi: 10.1038/s41467-023-39509-y |
[29] | Motomura G, Uematsu T, Kuwabata S et al. Quantum-dot light-emitting diodes exhibiting narrow-spectrum green electroluminescence by using Ag-In-Ga-S/GaS x quantum dotS. ACS Appl Mater Interfaces 15, 8336–8344 (2023). doi: 10.1021/acsami.2c21232 |
[30] | Hoisang W, Uematsu T, Torimoto T et al. Luminescent quaternary Ag(In xGa1– x)S2/GaS y core/shell quantum dots prepared using dithiocarbamate compounds and photoluminescence recovery via post treatment. Inorg Chem 60, 13101–13109 (2021). doi: 10.1021/acs.inorgchem.1c01513 |
[31] | Hoisang W, Uematsu T, Torimoto T et al. Surface ligand chemistry on quaternary Ag(In xGa1− x)S2 semiconductor quantum dots for improving photoluminescence properties. Nanoscale Adv 4, 849–857 (2022). doi: 10.1039/D1NA00684C |
[32] | Uematsu T, Tepakidareekul M, Hirano T et al. Facile high-yield synthesis of Ag-In-Ga-S quaternary quantum dots and coating with gallium sulfide shells for narrow band-edge emission. Chem Mater 35, 1094–1106 (2023). doi: 10.1021/acs.chemmater.2c03023 |
[33] | Chen JW, Xiang HY, Wang J et al. Perovskite white light emitting diodes: progress, challenges, and opportunities. ACS Nano 15, 17150–17174 (2021). doi: 10.1021/acsnano.1c06849 |
[34] | Huang GX, Huang Y, Liu ZL et al. White light-emitting diodes based on quaternary Ag-In-Ga-S quantum dots and their influences on melatonin suppression index. J Lumin 233, 117903 (2021). doi: 10.1016/j.jlumin.2021.117903 |
[35] | Lu HX, Hu Z, Zhou WJ et al. Synthesis and structure design of I-III-VI quantum dots for white light-emitting diodes. Mater Chem Front 6, 418–429 (2022). doi: 10.1039/D1QM01452H |
[36] | Hu Z, Lu HX, Zhou WJ et al. Aqueous synthesis of 79% efficient AgInGaS/ZnS quantum dots for extremely high color rendering white light-emitting diodes. J Mater Sci Technol 134, 189–196 (2023). doi: 10.1016/j.jmst.2022.06.035 |
[37] | Omata T, Nose K, Otsuka-Yao-Matsuo S. Size dependent optical band gap of ternary I-III-VI2 semiconductor nanocrystals. J Appl Phys 105, 073106 (2009). doi: 10.1063/1.3103768 |
[38] | Zhu PF, Thapa S, Zhu HY et al. Solid-state white light-emitting diodes based on 3D-printed CsPbX3-resin color conversion layers. ACS Appl Electron Mater 5, 5316–5324 (2023). doi: 10.1021/acsaelm.2c01778 |
[39] | Zhu PF, Thapa S, Zhu HY et al. Composition engineering of lead-free double perovskites towards efficient warm white light emission for health and well-being. J Alloys Compd 960, 170836 (2023). doi: 10.1016/j.jallcom.2023.170836 |
[40] | Zhang KS, Fan WX, Yao TL et al. Polymer‐surface‐mediated mechanochemical reaction for rapid and scalable manufacture of perovskite QD phosphors. Adv Mater 36, 2310521 (2024). doi: 10.1002/adma.202310521 |
[41] | Thanh NTK, Maclean N, Mahiddine S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 114, 7610–7630 (2014). doi: 10.1021/cr400544s |
[42] | Zhao HF, Zhu YC, Ye HY et al. Atomic‐scale structure dynamics of nanocrystals revealed by in situ and environmental transmission electron microscopy. Adv Mater 35, 2206911 (2023). doi: 10.1002/adma.202206911 |
[43] | Sun GW, Liu XY, Liu Z et al. Emission wavelength tuning via competing lattice expansion and octahedral tilting for efficient red perovskite light‐emitting diodes. Adv Funct Mater 31, 2106691 (2021). doi: 10.1002/adfm.202106691 |
[44] | Wang PH, Tang JL, Kang YB et al. Crystal structure and optical properties of GaAs nanowires. Acta Phys Sin 68, 087803 (2019). doi: 10.7498/aps.68.20182116 |
[45] | Jiang B, Chen SL, Cui XL et al. Temperature-dependent photoluminescence in hybrid iodine-based perovskites film. Acta Phys Sin 68, 246801 (2019). doi: 10.7498/aps.68.20191238 |
[46] | Huang HL, Yang YL, Qiao SY et al. Accommodative organoammonium cations in a‐sites of Sb-In halide perovskite derivatives for tailoring BroadBand photoluminescence with X‐ray scintillation and white‐light emission. Adv Funct Mater 34, 2309112 (2024). doi: 10.1002/adfm.202309112 |
[47] | Zhou R, Sui LZ, Liu XB et al. Multiphoton excited singlet/triplet mixed self-trapped exciton emission. Nat Commun 14, 1310 (2023). doi: 10.1038/s41467-023-36958-3 |
Supplementary information for Finely regulated luminescent Ag-In-Ga-S quantum dots with dual emission for white light-emitting diodes | |
Supplementary movie 1 | |
Schematic diagram of the size-dependent band gap and spectral correspondence based on size effect of QDs.
The temperature-dependent microstructure of AIGS QDs and corresponding PL spectra. (a, b, c) TEM, (d, f, h) HRTEM images, (e, g, i) histograms of the statistical distributions of particle sizes and corresponding (j, k, l) normalized PL spectra of the AIGS QDs synthesized at 180 °C, 220 °C and 250 °C, respectively.
The growth mechanism of dual-emissive AIGS QDs. (a) Schematic diagram of nucleation and growth patterns as a function of temperature. Stage Ⅰ: increased temperature induces decreased critical size and more nucleation, stage Ⅱ: higher nucleation rate at higher temperature lead to the growth of smaller crystals under the same concentration of precursor compared to lower temperature. (b) XRD patterns of the AIGS QDs synthesized at 180 °C, 220 °C and 250 °C, inserted on the upper and lower axe are the standard diffraction peaks of AgInS2 and AgGaS2. (c) The element ratio of the AIGS QDs synthesized at 180 °C, 220 °C and 250 °C analyzed by ICP-OES.
The element distribution of typical AIGS QDs. (a) Schematic diagram structure of AIGS. (b–f) EDS element mapping of typical AIGS QDs for (c) Ag, (d) In, (e) Ga, (f) S.
The optical properties of AIGS QDs with dual emission. (a) Photographs of the AIGS QDs synthesized at different temperature under room light (top) and UV irradiation (bottom). (b) Corresponding PL and UV-vis absorbance spectra were recorded with the excitation wavelength of 365 nm under different temperature.
PL mechanism of dual-emissive AIGS QDs. (a) The temperature-dependent PL spectra of AIGS QDs under 370 nm laser excitation. (b) Peak position versus temperature for AIGS QDs. (c) Excitation power (370 nm)-dependent PL spectra AIGS QDs. (d) Emission intensity versus excitation power for the AIGS QDs at room temperature.
WLED based on dual-emissive AIGS QDs. (a) The schematic diagram of constructing dual-emissive AIGS QD-based white light-emitting diode and the corresponding optical photograph of the white-emitting device. (b) PL spectra of the WLED and (c) corresponding CIE chromaticity coordinates under different voltage.