Chu ZT, Cai XQ, Zhu RC et al. Complete-basis-reprogrammable coding metasurface for generating dynamically-controlled holograms under arbitrary polarization states. Opto-Electron Adv 7, 240045 (2024). doi: 10.29026/oea.2024.240045
Citation: Chu ZT, Cai XQ, Zhu RC et al. Complete-basis-reprogrammable coding metasurface for generating dynamically-controlled holograms under arbitrary polarization states. Opto-Electron Adv 7, 240045 (2024). doi: 10.29026/oea.2024.240045

Article Open Access

Complete-basis-reprogrammable coding metasurface for generating dynamically-controlled holograms under arbitrary polarization states

More Information
  • Reprogrammable metasurfaces, which establish a fascinating bridge between physical and information domains, can dynamically control electromagnetic (EM) waves in real time and thus have attracted great attentions from researchers around the world. To control EM waves with an arbitrary polarization state, it is desirable that a complete set of basis states be controlled independently since incident EM waves with an arbitrary polarization state can be decomposed as a linear sum of these basis states. In this work, we present the concept of complete-basis-reprogrammable coding metasurface (CBR-CM) in reflective manners, which can achieve independently dynamic controls over the reflection phases while maintaining the same amplitude for left-handed circularly polarized (LCP) waves and right-handed circularly polarized (RCP) waves. Since LCP and RCP waves together constitute a complete basis set of planar EM waves, dynamically-controlled holograms can be generated under arbitrarily polarized wave incidence. The dynamically reconfigurable meta-particle is implemented to demonstrate the CBR-CM’s robust capability of controlling the longitudinal and transverse positions of holograms under LCP and RCP waves independently. It’s expected that the proposed CBR-CM opens up ways of realizing more sophisticated and advanced devices with multiple independent information channels, which may provide technical assistance for digital EM environment reproduction.
  • 加载中
  • [1] Yu NF, Genevet P, Kats MA et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Google Scholar

    [2] Huang L, Chang CC, Zeng BB et al. Bilayer metasurfaces for dual- and broadband optical antireflection. ACS Photonics 4, 2111–2116 (2017). doi: 10.1021/acsphotonics.7b00471

    CrossRef Google Scholar

    [3] Rubin NA, Shi ZJ, Capasso F. Polarization in diffractive optics and metasurfaces. Adv Opt Photonics 13, 836–970 (2021).

    Google Scholar

    [4] Li LL, Zhao HT, Liu C et al. Intelligent metasurfaces: control, communication and computing. eLight 2, 7 (2022).

    Google Scholar

    [5] Liu JY, Fan F, Tan ZY et al. Terahertz cascaded metasurfaces for both spin-symmetric and asymmetric beam diffractions with active power distribution. APL Photonics 8, 096112 (2023). doi: 10.1063/5.0168561

    CrossRef Google Scholar

    [6] Fan JX, Li ZL, Xue ZQ et al. Hybrid bound states in the continuum in terahertz metasurfaces. Opto-Electron Sci 2, 230006 (2023). doi: 10.29026/oes.2023.230006

    CrossRef Google Scholar

    [7] Zhu RC, Wang JF, Sui S et al. Chameleon-like intelligent camouflage metasurface. Mater Des 235, 112422 (2023).

    Google Scholar

    [8] Li SJ, Li ZY, Liu XB et al. Transmissive digital coding metasurfaces for polarization-dependent dual-mode quad orbital angular momentum beams. ACS Appl Mater Interfaces 15, 23690–23700 (2023). doi: 10.1021/acsami.3c04082

    CrossRef Google Scholar

    [9] Li J, Zheng CL, Li JT et al. Terahertz wavefront shaping with multi-channel polarization conversion based on all-dielectric metasurface. Photonics Res 9, 1939–1947 (2021). doi: 10.1364/PRJ.431019

    CrossRef Google Scholar

    [10] Shen ZY, Zhang QH, Huang XJ et al. Simultaneous transmissive and reflective polarization conversion cross different operating bands in a single metasurface. Opt Laser Technol 169, 110071 (2024).

    Google Scholar

    [11] Wu GB, Zhu SY, Pang SW et al. Superheterodyne-inspired waveguide-integrated metasurfaces for flexible free-space light manipulation. Nanophotonics 11, 4499–4514 (2022).

    Google Scholar

    [12] Zhao F, Li ZP, Li S et al. Terahertz metalens of hyper-dispersion. Photonics Res 10, 886–895 (2022). doi: 10.1364/PRJ.439481

    CrossRef Google Scholar

    [13] Li JX, Yuan YY, Yang GH et al. Hybrid dispersion engineering based on chiral metamirror. Laser Photonics Rev 17, 2200777 (2023).

    Google Scholar

    [14] Zhu RC, Wang JF, Qiu TS et al. Direct field-to-pattern monolithic design of holographic metasurface via residual encoder-decoder convolutional neural network. Opto-Electron Adv 6, 220148 (2023). doi: 10.29026/oea.2023.220148

    CrossRef Google Scholar

    [15] Zhang XY, Cheng JQ, Yue WJ et al. Twofold optical display and encryption of binary and grayscale images with a wavelength-multiplexed metasurface. Nanophotonics 12, 3747–3756 (2023). doi: 10.1515/nanoph-2023-0324

    CrossRef Google Scholar

    [16] Ma Q, Gao W, Xiao Q et al. Directly wireless communication of human minds via non-invasive brain-computer-metasurface platform. eLight 2, 11 (2022).

    Google Scholar

    [17] Hou TY, Li XT, Luo H et al. Optically-transparent meta-window for wireless communication. Opt Express 31, 38949–38957 (2023). doi: 10.1364/OE.504238

    CrossRef Google Scholar

    [18] Pan YB, Lan F, Zhang YX et al. Dual-band multifunctional coding metasurface with a mingled anisotropic aperture for polarized manipulation in full space. Photonics Res 10, 416–425 (2022).

    Google Scholar

    [19] Han ZX, Wang F, Sun JH et al. Recent advances in ultrathin chiral metasurfaces by twisted stacking. Adv Mater 35, 2206141 (2023). doi: 10.1002/adma.202206141

    CrossRef Google Scholar

    [20] Yuan YY, Wu Q, Burokur SN et al. Chirality-assisted phase metasurface for circular polarization preservation and independent hologram imaging in microwave region. IEEE Trans Microwave Theory Tech 71, 3259–3272 (2023).

    Google Scholar

    [21] Shang GY, Li HY, Wang ZC et al. Transmission-reflection-integrated multiplexed janus metasurface. ACS Appl Electron Mater 3, 2638–2645 (2021). doi: 10.1021/acsaelm.1c00246

    CrossRef Google Scholar

    [22] Mu YH, Qi JR, Xia SY et al. Non-interleaved bilayer complex-amplitude janus metasurface enabling energy-tailorable bidirectional wave modulation. Laser Photonics Rev 17, 2200659 (2023).

    Google Scholar

    [23] Chen SQ, Xie ZQ, Ye HP et al. Cylindrical vector beam multiplexer/demultiplexer using off-axis polarization control. Light Sci Appl 10, 222 (2021).

    Google Scholar

    [24] Zhang F, Guo YH, Pu MB et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat Commun 14, 1946 (2023). doi: 10.1038/s41467-023-37510-z

    CrossRef Google Scholar

    [25] Balthasar Mueller JP, Rubin NA, Devlin RC et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett 118, 113901 (2017). doi: 10.1103/PhysRevLett.118.113901

    CrossRef Google Scholar

    [26] Cui TJ, Qi MQ, Wan X et al. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci Appl 3, e218 (2014).

    Google Scholar

    [27] Liu S, Cui TJ, Zhang L et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams. Adv Sci 3, 1600156 (2016). doi: 10.1002/advs.201600156

    CrossRef Google Scholar

    [28] Cui TJ, Liu S, Li LL. Information entropy of coding metasurface. Light Sci Appl 5, e16172 (2016).

    Google Scholar

    [29] Wu RY, Shi CB, Liu S et al. Addition theorem for digital coding metamaterials. Adv Opt Mater 6, 1701236 (2018). doi: 10.1002/adom.201701236

    CrossRef Google Scholar

    [30] Zhang C, Cao WK, Yang J et al. Multiphysical digital coding metamaterials for independent control of broadband electromagnetic and acoustic waves with a large variety of functions. ACS Appl Mater Interfaces 11, 17050–17055 (2019).

    Google Scholar

    [31] Jiao P, Mueller J, Raney JR et al. Mechanical metamaterials and beyond. Nat Commun 14, 6004 (2023). doi: 10.1038/s41467-023-41679-8

    CrossRef Google Scholar

    [32] Wang YH, Sha W, Xiao M et al. Deep-learning-enabled intelligent design of thermal metamaterials. Adv Mater 35, 2302387 (2023). doi: 10.1002/adma.202302387

    CrossRef Google Scholar

    [33] Li JT, Wang GC, Yue Z et al. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization. Opto-Electron Adv 5, 210062 (2022).

    Google Scholar

    [34] Wang ZD, Qian C, Lin PJ et al. 3D Intelligent Cloaked Vehicle Equipped with Thousand-Level Reconfigurable Full-Polarization Metasurfaces. Adv Mater, 2400797 (2024). doi: 10.1002/adma.202400797

    CrossRef Google Scholar

    [35] Wan X, Xiao CK, Huang H et al. Joint modulations of electromagnetic waves and digital signals on a single metasurface platform to reach programmable wireless communications. Engineering 8, 86–95 (2022).

    Google Scholar

    [36] Li RJ, Liu HX, Xu P et al. Light-controlled metasurface with a controllable range of reflection phase modulation. J Phys D Appl Phys 55, 225302 (2022). doi: 10.1088/1361-6463/ac5555

    CrossRef Google Scholar

    [37] Xu Q, Su XQ, Zhang XQ et al. Mechanically reprogrammable pancharatnam-berry metasurface for microwaves. Adv Photonics 4, 016002 (2022).

    Google Scholar

    [38] Zhang L, Cui TJ. Space-time-coding digital metasurfaces: principles and applications. Research 2021, 9802673 (2021).

    Google Scholar

    [39] Wang HL, Ma HF, Cui TJ. A polarization-modulated information metasurface for encryption wireless communications. Adv Sci 9, 2204333 (2022). doi: 10.1002/advs.202204333

    CrossRef Google Scholar

    [40] Jiang LX, Li YF, Zheng L et al. Smart metasurface for active and passive cooperative manipulation of electromagnetic waves. ACS Appl Mater Interfaces 14, 54359–54368 (2022). doi: 10.1021/acsami.2c15768

    CrossRef Google Scholar

    [41] Wang CH, Xu HX, Wang YZ et al. Reconfigurable transmissive metasurface synergizing dynamic and geometric phase for versatile polarization and wavefront manipulations. Mater Des 225, 111445 (2023).

    Google Scholar

    [42] Liu TH, Meng YY, Wang JF et al. Six-channel programmable coding metasurface simultaneously for orthogonal circular and linear polarizations. Photonics Res 11, 1047–1056 (2023).

    Google Scholar

    [43] Ma Q, Bai GD, Jing HB et al. Smart metasurface with self-adaptively reprogrammable functions. Light Sci Appl 8, 98 (2019). doi: 10.1038/s41377-019-0205-3

    CrossRef Google Scholar

    [44] Krasikov S, Tranter A, Bogdanov A et al. Intelligent metaphotonics empowered by machine learning. Opto-Electron Adv 5, 210147 (2022). doi: 10.29026/oea.2022.210147

    CrossRef Google Scholar

    [45] Zeng C, Lu H, Mao D et al. Graphene-empowered dynamic metasurfaces and metadevices. Opto-Electron Adv 5, 200098 (2022). doi: 10.29026/oea.2022.200098

    CrossRef Google Scholar

    [46] Kim I, Jeong H, Kim J et al. Dual-band operating metaholograms with heterogeneous meta-atoms in the visible and near-infrared. Adv Opt Mater 9, 2100609 (2021).

    Google Scholar

    [47] Park C, Kim W, Kim Y et al. High-throughput fabrication of large-scale metaholograms via one-step printing. Adv Opt Mater 12, 2301562 (2024). doi: 10.1002/adom.202301562

    CrossRef Google Scholar

    [48] Kim J, Jeon D, Seong J et al. Photonic encryption platform via dual-band vectorial metaholograms in the ultraviolet and visible. ACS Nano 16, 3546–3553 (2022). doi: 10.1021/acsnano.1c10100

    CrossRef Google Scholar

    [49] Mehmood MQ, Seong J, Naveed MA et al. Single-cell-driven tri-channel encryption meta-displays. Adv Sci 9, 2203962 (2022).

    Google Scholar

    [50] Naveed MA, Ansari MA, Kim I et al. Optical spin-symmetry breaking for high-efficiency directional helicity-multiplexed metaholograms. Microsyst Nanoeng 7, 5 (2021).

    Google Scholar

    [51] Li Y, Huang XJ, Liu SX et al. Metasurfaces for near-eye display applications. Opto-Electron Sci 2, 230025 (2023). doi: 10.29026/oes.2023.230025

    CrossRef Google Scholar

    [52] Jung C, Kim G, Jeong M et al. Metasurface-driven optically variable devices. Chem Rev 121, 13013–13050 (2021). doi: 10.1021/acs.chemrev.1c00294

    CrossRef Google Scholar

    [53] Kim J, Seong J, Yang Y et al. Tunable metasurfaces towards versatile metalenses and metaholograms: a review. Adv Photonics 4, 024001 (2022).

    Google Scholar

    [54] So S, Kim J, Badloe T et al. Multicolor and 3D holography generated by inverse-designed single-cell metasurfaces. Adv Mater 35, 2208520 (2023). doi: 10.1002/adma.202208520

    CrossRef Google Scholar

    [55] Li LL, Cui TJ, Ji W et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat Commun 8, 197 (2017).

    Google Scholar

    [56] Li LL, Ruan HX, Liu C et al. Machine-learning reprogrammable metasurface imager. Nat Commun 10, 1082 (2019).

    Google Scholar

    [57] Wu LW, Ma HF, Wu RY et al. Transmission-reflection controls and polarization controls of electromagnetic holograms by a reconfigurable anisotropic digital coding metasurface. Adv Opt Mater 8, 2001065 (2020). doi: 10.1002/adom.202001065

    CrossRef Google Scholar

    [58] Wang H, Qin Z, Huang LL et al. Metasurface with dynamic chiral meta-atoms for spin multiplexing hologram and low observable reflection. PhotoniX 3, 10 (2022). doi: 10.1186/s43074-022-00057-1

    CrossRef Google Scholar

  • Supplementary information for Complete-basis-reprogrammable coding metasurface for generating dynamically-controlled holograms under arbitrary polarization states
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(1678) PDF downloads(545) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint