Liu YH, Qiao SD, Fang C et al. A highly sensitive LITES sensor based on a multi-pass cell with dense spot pattern and a novel quartz tuning fork with low frequency. Opto-Electron Adv 7, 230230 (2024). doi: 10.29026/oea.2024.230230
Citation: Liu YH, Qiao SD, Fang C et al. A highly sensitive LITES sensor based on a multi-pass cell with dense spot pattern and a novel quartz tuning fork with low frequency. Opto-Electron Adv 7, 230230 (2024). doi: 10.29026/oea.2024.230230

Article Open Access

A highly sensitive LITES sensor based on a multi-pass cell with dense spot pattern and a novel quartz tuning fork with low frequency

More Information
  • A highly sensitive light-induced thermoelectric spectroscopy (LITES) sensor based on a multi-pass cell (MPC) with dense spot pattern and a novel quartz tuning fork (QTF) with low resonance frequency is reported in this manuscript. An erbium-doped fiber amplifier (EDFA) was employed to amplify the output optical power so that the signal level was further enhanced. The optical path length (OPL) and the ratio of optical path length to volume (RLV) of the MPC is 37.7 m and 13.8 cm-2, respectively. A commercial QTF and a self-designed trapezoidal-tip QTF with low frequency of 9461.83 Hz were used as the detectors of the sensor, respectively. The target gas selected to test the performance of the system was acetylene (C2H2). When the optical power was constant at 1000 mW, the minimum detection limit (MDL) of the C2H2-LITES sensor can be achieved 48.3 ppb when using the commercial QTF and 24.6 ppb when using the trapezoidal-tip QTF. An improvement of the detection performance by a factor of 1.96 was achieved after replacing the commercial QTF with the trapezoidal-tip QTF.
  • 加载中
  • [1] Wu LM, Yuan XX, Tang YX et al. MXene sensors based on optical and electrical sensing signals: from biological, chemical, and physical sensing to emerging intelligent and bionic devices. PhotoniX 4, 15 (2023). doi: 10.1186/s43074-023-00091-7

    CrossRef Google Scholar

    [2] Ma YF, Lewicki R, Razeghi M et al. QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL. Opt Express 21, 1008–1019 (2013). doi: 10.1364/OE.21.001008

    CrossRef Google Scholar

    [3] Yan M, Luo PL, Iwakuni K et al. Mid-infrared dual-comb spectroscopy with electro-optic modulators. Light Sci Appl 6, e17076 (2017). doi: 10.1038/lsa.2017.76

    CrossRef Google Scholar

    [4] Qi YF, Liu YH, Luo JB. Recent application of Raman spectroscopy in tumor diagnosis: from conventional methods to artificial intelligence fusion. PhotoniX 4, 22 (2023). doi: 10.1186/s43074-023-00098-0

    CrossRef Google Scholar

    [5] Zhang C, He Y, Qiao SD et al. Differential integrating sphere-based photoacoustic spectroscopy gas sensing. Opt Lett 48, 5089–5092 (2023). doi: 10.1364/OL.500214

    CrossRef Google Scholar

    [6] Xu BX, Fan XY, Wang S et al. Sub-femtometer-resolution absolute spectroscopy with sweeping electro-optic combs. Opto-Electron Adv 5, 210023 (2022). doi: 10.29026/oea.2022.210023

    CrossRef Google Scholar

    [7] Liu XN, Ma YF. New temperature measurement method based on light-induced thermoelastic spectroscopy. Opt Lett 48, 5687–5690 (2023). doi: 10.1364/OL.503287

    CrossRef Google Scholar

    [8] Leal-Junior A, Avellar L, Biazi V et al. Multifunctional flexible optical waveguide sensor: on the bioinspiration for ultrasensitive sensors development. Opto-Electron Adv 5, 210098 (2022). doi: 10.29026/oea.2022.210098

    CrossRef Google Scholar

    [9] Chen WP, Qiao SD, Zhao ZX et al. Sensitive carbon monoxide detection based on laser absorption spectroscopy with hollow-core antiresonant fiber. Microw Opt Technol Lett 66, e33780 (2024). doi: 10.1002/mop.33780

    CrossRef Google Scholar

    [10] Jiang SL, Chen FF, Zhao Y et al. Broadband all-fiber optical phase modulator based on photo-thermal effect in a gas-filled hollow-core fiber. Opto-Electron Adv 6, 220085 (2023). doi: 10.29026/oea.2023.220085

    CrossRef Google Scholar

    [11] Zhang ZD, Peng T, Nie XY et al. Entangled photons enabled time-frequency-resolved coherent Raman spectroscopy and applications to electronic coherences at femtosecond scale. Light Sci Appl 11, 274 (2022). doi: 10.1038/s41377-022-00953-y

    CrossRef Google Scholar

    [12] Li A, Wang C, Bao FX et al. An integrated single-shot spectrometer with large bandwidth-resolution ratio and wide operation temperature range. PhotoniX 4, 29 (2023). doi: 10.1186/s43074-023-00109-0

    CrossRef Google Scholar

    [13] Hashimoto K, Nakamura T, Kageyama T et al. Upconversion time-stretch infrared spectroscopy. Light Sci Appl 12, 48 (2023). doi: 10.1038/s41377-023-01096-4

    CrossRef Google Scholar

    [14] Lang ZT, Qiao SD, Liang TT et al. Dual-frequency modulated heterodyne quartz-enhanced photoacoustic spectroscopy. Opt Express 32, 379–386 (2024). doi: 10.1364/OE.506861

    CrossRef Google Scholar

    [15] Yang W, Knorr F, Latka I et al. Real-time molecular imaging of near-surface tissue using Raman spectroscopy. Light Sci Appl 11, 90 (2022). doi: 10.1038/s41377-022-00773-0

    CrossRef Google Scholar

    [16] Wang T, Jiang JF, Liu K et al. Flexible minimally invasive coherent anti-Stokes Raman spectroscopy (CARS) measurement method with tapered optical fiber probe for single-cell application. PhotoniX 3, 11 (2022). doi: 10.1186/s43074-022-00058-0

    CrossRef Google Scholar

    [17] Le JM, Su YD, Tian CS et al. A novel scheme for ultrashort terahertz pulse generation over a gapless wide spectral range: Raman-resonance-enhanced four-wave mixing. Light Sci Appl 12, 34 (2023). doi: 10.1038/s41377-023-01071-z

    CrossRef Google Scholar

    [18] Wang H, Zhan ZY, Hu FT et al. Intelligent optoelectronic processor for orbital angular momentum spectrum measurement. PhotoniX 4, 9 (2023). doi: 10.1186/s43074-022-00079-9

    CrossRef Google Scholar

    [19] Yang LY, Li YP, Fang F et al. Highly sensitive and miniature microfiber-based ultrasound sensor for photoacoustic tomography. Opto-Electron Adv 5, 200076 (2022). doi: 10.29026/oea.2022.200076

    CrossRef Google Scholar

    [20] Vlk M, Datta A, Alberti S et al. Extraordinary evanescent field confinement waveguide sensor for mid-infrared trace gas spectroscopy. Light Sci Appl 10, 26 (2021). doi: 10.1038/s41377-021-00470-4

    CrossRef Google Scholar

    [21] Wang YQ, Zhang JH, Zheng YC et al. Brillouin scattering spectrum for liquid detection and applications in oceanography. Opto-Electron Adv 6, 220016 (2023). doi: 10.29026/oea.2023.220016

    CrossRef Google Scholar

    [22] Chen J, Hangauer A, Strzoda R et al. Laser spectroscopic oxygen sensor using diffuse reflector based optical cell and advanced signal processing. Appl Phys B 100, 417–425 (2010). doi: 10.1007/s00340-010-3956-3

    CrossRef Google Scholar

    [23] Chao X, Shen GF, Sun K et al. Cavity-enhanced absorption spectroscopy for shocktubes: design and optimization. Proc Combust Inst 37, 1345–1353 (2019). doi: 10.1016/j.proci.2018.06.230

    CrossRef Google Scholar

    [24] Zheng KY, Zheng CT, Zhang Y et al. Review of incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) for gas sensing. Sensors 18, 3646 (2018). doi: 10.3390/s18113646

    CrossRef Google Scholar

    [25] Zhou XB, Zhao G, Liu JX et al. Fiber pigtailed DFB laser-based optical feedback cavity enhanced absorption spectroscopy with a fiber-coupled EOM for phase correction. Opt Express 30, 6332–6340 (2022). doi: 10.1364/OE.449938

    CrossRef Google Scholar

    [26] Kosterev AA, Bakhirkin YA, Curl RF et al. Quartz-enhanced photoacoustic spectroscopy. Opt Lett 27, 1902–1904 (2002). doi: 10.1364/OL.27.001902

    CrossRef Google Scholar

    [27] Liu K, Mei JX, Zhang WJ et al. Multi-resonator photoacoustic spectroscopy. Sens Actuators B:Chem 251, 632–636 (2017). doi: 10.1016/j.snb.2017.05.114

    CrossRef Google Scholar

    [28] Zhang C, Qiao SD, He Y et al. Differential quartz-enhanced photoacoustic spectroscopy. Appl Phys Lett 122, 241103 (2023). doi: 10.1063/5.0157161

    CrossRef Google Scholar

    [29] Wang FP, Xue QS, Chang J et al. Wavelength scanning Q-switched fiber-ring laser intra-cavity QEPAS using a standard 32.76 kHz quartz tuning fork for acetylene detection. Opt Laser Technol 134, 106612 (2021). doi: 10.1016/j.optlastec.2020.106612

    CrossRef Google Scholar

    [30] Wang FP, Cheng YP, Xue QS et al. Techniques to enhance the photoacoustic signal for trace gas sensing: a review. Sens Actuators A:Phys 345, 113807 (2022). doi: 10.1016/j.sna.2022.113807

    CrossRef Google Scholar

    [31] Lang ZT, Qiao SD, Ma YF. Acoustic microresonator based in-plane quartz-enhanced photoacoustic spectroscopy sensor with a line interaction mode. Opt Lett 47, 1295–1298 (2022). doi: 10.1364/OL.452085

    CrossRef Google Scholar

    [32] Rousseau R, Loghmari Z, Bahriz M et al. Off-beam QEPAS sensor using an 11-μm DFB-QCL with an optimized acoustic resonator. Opt Express 27, 7435–7446 (2019). doi: 10.1364/OE.27.007435

    CrossRef Google Scholar

    [33] Liu XN, Qiao SD, Han GW et al. Highly sensitive HF detection based on absorption enhanced light-induced thermoelastic spectroscopy with a quartz tuning fork of receive and shallow neural network fitting. Photoacoustics 28, 100422 (2022). doi: 10.1016/j.pacs.2022.100422

    CrossRef Google Scholar

    [34] Ma YF, He Y, Yu X et al. HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork. Sens Actuators B:Chem 233, 388–393 (2016). doi: 10.1016/j.snb.2016.04.114

    CrossRef Google Scholar

    [35] Wu HP, Sampaolo A, Dong L et al. Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing. Appl Phys Lett 107, 111104 (2015). doi: 10.1063/1.4930995

    CrossRef Google Scholar

    [36] Ma YF, He Y, Tong Y et al. Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection. Opt Express 26, 32103–32110 (2018). doi: 10.1364/OE.26.032103

    CrossRef Google Scholar

    [37] Chen WP, Qiao SD, Lang ZT et al. Hollow-waveguide-based light-induced thermoelastic spectroscopy sensing. Opt Lett 48, 3989–3992 (2023). doi: 10.1364/OL.497685

    CrossRef Google Scholar

    [38] Sun B, Patimisco P, Sampaolo A et al. Light-induced thermoelastic sensor for ppb-level H2S detection in a SF6 gas matrices exploiting a mini-multi-pass cell and quartz tuning fork photodetector. Photoacoustics 33, 100553 (2023). doi: 10.1016/j.pacs.2023.100553

    CrossRef Google Scholar

    [39] Liu XN, Ma YF. Sensitive carbon monoxide detection based on light-induced thermoelastic spectroscopy with a fiber-coupled multipass cell [Invited]. Chin Opt Lett 20, 031201 (2022). doi: 10.3788/COL202220.031201

    CrossRef Google Scholar

    [40] Hu LE, Zheng CT, Zhang MH et al. Long-distance in-situ methane detection using near-infrared light-induced thermo-elastic spectroscopy. Photoacoustics 21, 100230 (2021). doi: 10.1016/j.pacs.2020.100230

    CrossRef Google Scholar

    [41] Ma YF, Hu YQ, Qiao SD et al. Quartz tuning forks resonance frequency matching for laser spectroscopy sensing. Photoacoustics 25, 100329 (2022). doi: 10.1016/j.pacs.2022.100329

    CrossRef Google Scholar

    [42] Qiao SD, Ma PZ, Tsepelin V et al. Super tiny quartz-tuning-fork-based light-induced thermoelastic spectroscopy sensing. Opt Lett 48, 419–422 (2023). doi: 10.1364/OL.482351

    CrossRef Google Scholar

    [43] Lang ZT, Qiao SD, Ma YF. Fabry–Perot-based phase demodulation of heterodyne light-induced thermoelastic spectroscopy. Light Adv Manuf 4, 23 (2023). doi: 10.37188/lam.2023.023

    CrossRef Google Scholar

    [44] Ma YF, Liang TT, Qiao SD et al. Highly sensitive and fast hydrogen detection based on light-induced thermoelastic spectroscopy. Ultrafast Sci 3, 0024 (2023). doi: 10.34133/ultrafastscience.0024

    CrossRef Google Scholar

    [45] Zhao XY, Guo M, Cui DY et al. Multi-pass differential photoacoustic sensor for real-time measurement of SF6 decomposition component H2S at the ppb level. Anal Chem 95, 8214–8222 (2023). doi: 10.1021/acs.analchem.3c00003

    CrossRef Google Scholar

    [46] Liu YH, Ma YF. Advances in multipass cell for absorption spectroscopy- based trace gas sensing technology [Invited]. Chin Opt Lett 21, 033001 (2023). doi: 10.3788/COL202321.033001

    CrossRef Google Scholar

    [47] Cao YN, Xu Z, Tian X et al. Generalized calculation model of different types of optical multi-pass cells based on refraction and reflection law. Opt Laser Technol 139, 106958 (2021). doi: 10.1016/j.optlastec.2021.106958

    CrossRef Google Scholar

    [48] He Y, Ma YF, Tong Y et al. Ultra-high sensitive light-induced thermoelastic spectroscopy sensor with a high Q-factor quartz tuning fork and a multipass cell. Opt Lett 44, 1904–1907 (2019). doi: 10.1364/OL.44.001904

    CrossRef Google Scholar

    [49] Chen HD, Chen C, Wang YZ. Auto-design of multi-pass cell with small size and long optical path length using parallel multi-population genetic algorithm. IEEE Sens J 22, 6518–6527 (2022). doi: 10.1109/JSEN.2022.3151847

    CrossRef Google Scholar

    [50] Cui RY, Dong L, Wu HP et al. Generalized optical design of two-spherical-mirror multi-pass cells with dense multi-circle spot patterns. Appl Phys Lett 116, 091103 (2020). doi: 10.1063/1.5145356

    CrossRef Google Scholar

    [51] Hudzikowski A, Głuszek A, Krzempek K et al. Compact, spherical mirror-based dense astigmatic-like pattern multipass cell design aided by a genetic algorithm. Opt Express 29, 26127–26136 (2021). doi: 10.1364/OE.432541

    CrossRef Google Scholar

    [52] Wei TT, Wu HP, Dong L et al. Palm-sized methane TDLAS sensor based on a mini-multi-pass cell and a quartz tuning fork as a thermal detector. Opt Express 29, 12357–12364 (2021). doi: 10.1364/OE.423217

    CrossRef Google Scholar

    [53] Zhang C, Qiao SD, Ma YF. Highly sensitive photoacoustic acetylene detection based on differential photoacoustic cell with retro-reflection-cavity. Photoacoustics 30, 100467 (2023). doi: 10.1016/j.pacs.2023.100467

    CrossRef Google Scholar

    [54] Fang C, Qiao SD, He Y et al. Design and sensing performance of T-shaped quartz tuning forks. Acta Opt Sin 43, 1899910 (2023). doi: 10.3788/AOS231163

    CrossRef Google Scholar

    [55] Lou CG, Dai JL, Wang YX et al. Highly sensitive light-induced thermoelastic spectroscopy oxygen sensor with co-coupling photoelectric and thermoelastic effect of quartz tuning fork. Photoacoustics 31, 100515 (2023). doi: 10.1016/j.pacs.2023.100515

    CrossRef Google Scholar

    [56] Lin HY, Zheng HD, Montano BAZ et al. Ppb-level gas detection using on-beam quartz-enhanced photoacoustic spectroscopy based on a 28 kHz tuning fork. Photoacoustics 25, 100321 (2022). doi: 10.1016/j.pacs.2021.100321

    CrossRef Google Scholar

    [57] Bernstein HJ, Herzberg G. Rotation-vibration spectra of diatomic and simple polyatomic molecules with long absorbing paths. I. The spectrum of Fluoroform (CHF3) from 2.4μ to 0.7μ. J Chem Phys 16, 30–39 (1948). doi: 10.1063/1.1746650

    CrossRef Google Scholar

    [58] Herriott DR, Schulte HJ. Folded optical delay lines. Appl Opt 4, 883–889 (1965). doi: 10.1364/AO.4.000883

    CrossRef Google Scholar

    [59] Herriott D, Kogelnik H, Kompfner R. Off-axis paths in spherical mirror interferometers. Appl Opt 3, 523–526 (1964). doi: 10.1364/AO.3.000523

    CrossRef Google Scholar

    [60] Cui RY, Dong L, Wu HP et al. Calculation model of dense spot pattern multi-pass cells based on a spherical mirror aberration. Opt Lett 44, 1108–1111 (2019). doi: 10.1364/OL.44.001108

    CrossRef Google Scholar

    [61] Liu JH, Chen YZ, Xu L et al. Generalized optical design and optimization of multipass cells with independent circle patterns based on the Monte Carlo and Nelder-Mead simplex algorithms. Opt Express 29, 20250–20261 (2021). doi: 10.1364/OE.429953

    CrossRef Google Scholar

    [62] Patimisco P, Sampaolo A, Dong L et al. Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing. Sens Actuators B:Chem 227, 539–546 (2016). doi: 10.1016/j.snb.2015.12.096

    CrossRef Google Scholar

    [63] Sun JC, Chang J, Wang FP et al. Tuning efficiency of distributed feedback laser diode for wavelength modulation spectroscopy. IEEE Sens J 19, 9722–9727 (2019). doi: 10.1109/JSEN.2019.2927043

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(17972) PDF downloads(885) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint