Citation: | Lu TW, Lin Y, Zhang TQ et al. Self-polarized RGB device realized by semipolar micro-LEDs and perovskite-in-polymer films for backlight applications. Opto-Electron Adv 7, 230210 (2024). doi: 10.29026/oea.2024.230210 |
[1] | Zhang DQ, Zhang QP, Zhu YY et al. Metal halide perovskite nanowires: synthesis, integration, properties, and applications in optoelectronics. Adv Energy Mater 13, 2201735 (2023). doi: 10.1002/aenm.202201735 |
[2] | Liu MZ, Huo PC, Zhu WQ et al. Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface. Nat Commun 12, 2230 (2021). doi: 10.1038/s41467-021-22462-z |
[3] | Khonina SN, Kazanskiy NL, Butt MA et al. Optical multiplexing techniques and their marriage for on-chip and optical fiber communication: a review. Opto-Electron Adv 5, 210127 (2022). doi: 10.29026/oea.2022.210127 |
[4] | Wang HP, Li SY, Liu XY et al. Low-dimensional metal halide perovskite photodetectors. Adv Mater 33, 2003309 (2021). doi: 10.1002/adma.202003309 |
[5] | Lu TW, Lin XS, Guo QA et al. High-speed visible light communication based on micro-LED: A technology with wide applications in next generation communication. Opto-Electron Sci 1 (2022). doi: 10.29026/oes.2022.220020 |
[6] | Zhu TX, Liu C, Jin M et al. On-demand integrated quantum memory for polarization qubits. Phys Rev Lett 128, 180501 (2022). doi: 10.1103/PhysRevLett.128.180501 |
[7] | Wang YF, Li JF, Zhang SC et al. Efficient quantum memory for single-photon polarization qubits. Nat Photonics 13, 346–351 (2019). doi: 10.1038/s41566-019-0368-8 |
[8] | Lu WG, Wu XG, Huang S et al. Strong polarized photoluminescence from stretched perovskite-nanocrystal-embedded polymer composite films. Adv Opt Mater 5, 1700594 (2017). doi: 10.1002/adom.201700594 |
[9] | Lin CH, Kang CY, Wu TZ et al. Giant optical anisotropy of perovskite nanowire array films. Adv Funct Mater 30, 1909275 (2020). doi: 10.1002/adfm.201909275 |
[10] | Fan XT, Wu TZ, Liu B et al. Recent developments of quantum dot based micro-LED based on non-radiative energy transfer mechanism. Opto-Electron Adv 4, 210022 (2021). doi: 10.29026/oea.2021.210022 |
[11] | Baeva M, Gets D, Polushkin A et al. ITO-free silicon-integrated perovskite electrochemical cell for light-emission and light-detection. Opto-Electron Adv 6, 220154 (2023). doi: 10.29026/oea.2023.220154 |
[12] | Subedi S, Rella AK, Trung LG et al. Electrically switchable anisometric carbon quantum dots exhibiting linearly polarized photoluminescence: syntheses, anisotropic properties, and facile control of uniaxial orientation. ACS Nano 16, 6480–6492 (2022). doi: 10.1021/acsnano.2c00758 |
[13] | Lai SQ, Liu SB, Li ZL et al. Applications of lasers: A promising route toward low-cost fabrication of high-efficiency full-color micro-LED displays. Opto-Electron Sci 2, 230028 (2023). doi: 10.29026/oes.2023.230028 |
[14] | Täuber D, Dobrovolsky A, Camacho R et al. Exploring the electronic band structure of organometal halide perovskite via photoluminescence anisotropy of individual nanocrystals. Nano Lett 16, 5087–5094 (2016). doi: 10.1021/acs.nanolett.6b02012 |
[15] | Ghoshal D, Wang TM, Tsai HZ et al. Catalyst-free and morphology-controlled growth of 2D perovskite nanowires for polarized light detection. Adv Opt Mater 7, 1900039 (2019). doi: 10.1002/adom.201900039 |
[16] | Chen QP, Huang XJ, Yang DD et al. Three-dimensional laser writing aligned perovskite quantum dots in glass for polarization-sensitive anti-counterfeiting. Adv Opt Mater 11, 2300090 (2023). doi: 10.1002/adom.202300090 |
[17] | Ng M, Shivarudraiah SB, Halpert JE. Polarization anisotropy losses due to morphological instability in CsPbX3 nanorods and strategies for mitigation. J Mater Chem C 10, 8947–8954 (2022). doi: 10.1039/D2TC00174H |
[18] | Li YX, Huang H, Xiong Y et al. Using polar alcohols for the direct synthesis of cesium lead halide perovskite nanorods with anisotropic emission. ACS Nano 13, 8237–8245 (2019). doi: 10.1021/acsnano.9b03508 |
[19] | Tong Y, Bohn BJ, Bladt E et al. From precursor powders to CsPbX3 perovskite nanowires: one-pot synthesis, growth mechanism, and oriented self-assembly. Angew Chem Int Ed 56, 13887–13892 (2017). doi: 10.1002/anie.201707224 |
[20] | Wang YZ, Jia S, Luo W et al. Inch-sized aligned polymer nanofiber films with embedded CH3NH3PbBr3 nanocrystals: electrospinning fabrication using a folded aluminum foil as the collector. Nanotechnology 31, 075708 (2020). doi: 10.1088/1361-6528/ab52ac |
[21] | Qin JJ, Zhang J, Shen TY et al. Aligning transition dipole moment toward light amplification and polarized emission in hybrid aerovskites. Adv Opt Mater 9, 2100984 (2021). doi: 10.1002/adom.202100984 |
[22] | Liu LG, Huang S, Pan LF et al. Colloidal synthesis of CH3NH3PbBr3 nanoplatelets with polarized emission through self-organization. Angew Chem Int Ed 56, 1780–1783 (2017). doi: 10.1002/anie.201610619 |
[23] | Gao Y, Zhao LY, Shang QY et al. Ultrathin CsPbX3 nanowire arrays with strong emission anisotropy. Adv Mater 30, 1801805 (2018). doi: 10.1002/adma.201801805 |
[24] | Güner T, Topçu G, Savacı U et al. Polarized emission from CsPbBr3 nanowire embedded-electrospun PU fibers. Nanotechnology 29, 135202 (2018). doi: 10.1088/1361-6528/aaaaef |
[25] | Ma JQ, Fang C, Chen C et al. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence. ACS Nano 13, 3659–3665 (2019). doi: 10.1021/acsnano.9b00302 |
[26] | Shi ZF, Li Y, Li S et al. Polarized emission effect realized in CH3NH3PbI3 perovskite nanocrystals. J Mater Chem C 5, 8699–8706 (2017). doi: 10.1039/C7TC03104A |
[27] | Wang D, Wu D, Dong D et al. Polarized emission from CsPbX3 perovskite quantum dots. Nanoscale 8, 11565–11570 (2016). doi: 10.1039/C6NR01915C |
[28] | Chang CL, Bang K, Wetzstein G et al. Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective. Optica 7, 1563–1578 (2020). doi: 10.1364/OPTICA.406004 |
[29] | Huang CH, Cheng YT, Tsao YC et al. Micro-LED backlight module by deep reinforcement learning and micro-macro-hybrid environment control agent. Photonics Res 10, 269–279 (2022). doi: 10.1364/PRJ.441188 |
[30] | Chen SWH, Huang YM, Singh KJ et al. Full-color micro-LED display with high color stability using semipolar (20–21) InGaN LEDs and quantum-dot photoresist. Photonics Res 8, 630–636 (2020). doi: 10.1364/PRJ.388958 |
[31] | Chen SWH, Huang YM, Chang YH et al. High-bandwidth green semipolar (20–21) InGaN/GaN micro light-emitting diodes for visible light communication. ACS Photonics 7, 2228–2235 (2020). doi: 10.1021/acsphotonics.0c00764 |
[32] | Singh KJ, Fan XT, Sadhu AS et al. CsPbBr3 perovskite quantum-dot paper exhibiting a highest 3 dB bandwidth and realizing a flexible white-light system for visible-light communication. Photonics Res 9, 2341–2350 (2021). doi: 10.1364/PRJ.434270 |
[33] | Khoury M, Li HJ, Li PP et al. Polarized monolithic white semipolar (20–21) InGaN light-emitting diodes grown on high quality (20–21) GaN/sapphire templates and its application to visible light communication. Nano Energy 67, 104236 (2020). doi: 10.1016/j.nanoen.2019.104236 |
[34] | Zhang HJ, Li PP, Li HJ et al. High polarization and fast modulation speed of dual wavelengths electroluminescence from semipolar (20–21) micro light-emitting diodes with indium tin oxide surface grating. Appl Phys Lett 117, 181105 (2020). doi: 10.1063/5.0022412 |
[35] | Peng ZA, Peng XG. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J Am Chem Soc 124, 3343–3353 (2002). doi: 10.1021/ja0173167 |
[36] | Raja SN, Bekenstein Y, Koc MA et al. Encapsulation of perovskite nanocrystals into macroscale polymer matrices: enhanced stability and polarization. ACS Appl Mater Interfaces 8, 35523–35533 (2016). doi: 10.1021/acsami.6b09443 |
[37] | Kamal JS, Gomes R, Hens Z et al. Direct determination of absorption anisotropy in colloidal quantum rods. Phys Rev B 85, 035126 (2012). doi: 10.1103/PhysRevB.85.035126 |
[38] | Han BN, Cai B, Shan QS et al. Stable, efficient red perovskite light-emitting diodes by (α, δ)-CsPbI3 phase engineering. Adv Funct Mater 28, 1804285 (2018). doi: 10.1002/adfm.201804285 |
[39] | Cao LY, Liu BM, Huang L et al. Bright and tunable emissive monodisperse CsPbI3@Cs4PbI6 nanocomposites via a precise and controllable dissolution-recrystallization method. Nano Res 16, 1586–1594 (2023). doi: 10.1007/s12274-022-4791-7 |
[40] | Grandhi GK, Viswanath NSM, In JH et al. Robust, brighter red emission from CsPbI3 perovskite nanocrystals via endotaxial protection. J Phys Chem Lett 11, 3699–3704 (2020). doi: 10.1021/acs.jpclett.0c00522 |
[41] | Wang X, Ling YC, Lian XJ et al. Suppressed phase separation of mixed-halide perovskites confined in endotaxial matrices. Nat Commun 10, 695 (2019). doi: 10.1038/s41467-019-08610-6 |
[42] | Dong J, Wang W, Li YQ et al. Crystallization regulation and protection of quasi-2D perovskite film by copolymer to enhance the stability of perovskite light-emitting diodes. J Mater Chem C 10, 11258–11265 (2022). doi: 10.1039/D2TC01412B |
[43] | Meng XC, Cai ZR, Zhang YY et al. Bio-inspired vertebral design for scalable and flexible perovskite solar cells. Nat Commun 11, 3016 (2020). doi: 10.1038/s41467-020-16831-3 |
[44] | Chu ZM, Ye QF, Zhao Y et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 22% via small-molecule passivation. Adv Mater 33, 2007169 (2021). doi: 10.1002/adma.202007169 |
[45] | Looyenga H. Dielectric constants of homogeneous mixture. Mol Phys 9, 501–511 (1965). doi: 10.1080/00268976500100671 |
[46] | Afsari M, Boochani A, Hantezadeh M. Electronic, optical and elastic properties of cubic perovskite CsPbI3: using first principles study. Optik 127, 11433–11443 (2016). doi: 10.1016/j.ijleo.2016.09.013 |
[47] | Li C, Nie J, Cai JF et al. 0D structured Cs4PbI6 single crystals for highly performance UV photodetection. J Alloys Compd 896, 163047 (2022). doi: 10.1016/j.jallcom.2021.163047 |
[48] | Dou YJ, Cao F, Dudka T et al. Lattice distortion in mixed-anion lead halide perovskite nanorods leads to their high fluorescence anisotropy. ACS Mater Lett 2, 814–820 (2020). doi: 10.1021/acsmaterialslett.0c00118 |
[49] | Pan GC, Bai X, Shen XY et al. Bright red YCl3-promoted CsPbI3 perovskite nanorods towards efficient light-emitting diode. Nano Energy 81, 105615 (2021). doi: 10.1016/j.nanoen.2020.105615 |
[50] | Wu TZ, Lin Y, Huang YM et al. Highly stable full-color display device with VLC application potential using semipolar μLEDs and all-inorganic encapsulated perovskite nanocrystal. Photonics Res 9, 2132–2143 (2021). doi: 10.1364/PRJ.431095 |
[51] | De Mierry P, Guehne T, Nemoz M et al. Comparison between polar (0001) and semipolar (1122) nitride blue-green light-emitting diodes grown on c- and m-plane sapphire substrates. Jpn J Appl Phys 48, 031002 (2009). doi: 10.1143/JJAP.48.031002 |
[52] | Brinkley SE, Lin YD, Chakraborty A et al. Polarized spontaneous emission from blue-green m-plane GaN-based light emitting diodes. Appl Phys Lett 98, 011110 (2011). doi: 10.1063/1.3541655 |
[53] | Ng M, Geng P, Shivarudraiah SB et al. Synthesis of cesium copper bromide nanorods with strong linearly polarized emission. Adv Opt Mater 10, 2201031 (2022). doi: 10.1002/adom.202201031 |
[54] | Kong CY, Lin CH, Lin CH et al. Highly efficient and stable white light-emitting diodes using perovskite quantum dot paper. Adv Sci 6, 1902230 (2019). doi: 10.1002/advs.201902230 |
Supplementary information for Self-polarized RGB device realized by semipolar micro-LEDs and perovskite-in-polymer films for backlight applications |
Structure of an LCD based on semipolar blue μLEDs excite anisotropic perovskite NCs as backlight.
(a) Photograph of CsPbBr3 NR solution under 365 nm UV lamp irradiation. (b) XRD patterns. (c) Absorption and PL spectra and (d–f) typical TEM images of the CsPbBr3 NRs.
(a) Fabrication process. (b) Longevity of the PL properties and (c) polarization characteristics of the composite film. (d) Absorption of polarized light by anisotropic NRs aligned in stretched films. (e) Schematic setup for the PL polarization measurement of the NR composite films with linearly polarized excitation. (f) Polarized characteristics of the stretched NR composite films with // and ⊥ polarized light excitation. (g) PL spectra of the stretched NRs composite films with // and ⊥ polarized excitation in the direction parallel to the film stretching.
(a) Photograph of hybrid NC solution under UV excitation. (b) XRD patterns. (c) Absorption and PL spectra and (d) and (e) typical TEM images of hybrid NCs. (f) Longevity of the PL properties of the hybrid NCs and pure CsPbI3 QD composite films.
(a) FTIR spectrum of composite (embedded) film and pure EVA. (b) Mechanism of interaction among hybrid NCs and EVA. (c) Formation mechanism of NC-AWs in the polymer films. (d) Model of NC-AWs embedded in the polymer. (e) Model for achieving highly polarized emission from hybrid NC-AWs embedded in polymers. (f) Polarization characteristics of the hybrid NC composite film before and after stretching with unpolarized light excitation. (g) Polarized PL of the stretched NC composite films with // and ⊥ polarized excitation. (h) PL spectra of the stretched NC composite films with // and ⊥ polarized excitation on the direction parallel to film stretching.
(a) Schematic diagram of semipolar µLED array. (b) SEM image of the epitaxial wafer. (c) EQE of semipolar and c-plane μLEDs. (d) Peak wavelength shift and FWHM, and (e) polarization characteristics of the semipolar µLED array.
(a) Fabrication process and (b) photograph of the proposed RGB polarized μLED device. (c) EL spectra and (d) color gamut of the system under various current densities.
(a) Polarization measurements of blue light after exciting the composite films comprising green NRs and red NCs. (b, c) Polarization characteristics of the RGB polarized device. (d) Benchmark of the DOLP for perovskite NCs. (e, f) Comparison of emission spectra for the device after transmission through the polarizer, aligned with the stretching direction, under excitation by c-plane and semipolar blue μLED arrays. In (e), both have the same LOP of 5.8 mW; in (f), both operate at an injection current of 20 mA.