Lu TW, Lin Y, Zhang TQ et al. Self-polarized RGB device realized by semipolar micro-LEDs and perovskite-in-polymer films for backlight applications. Opto-Electron Adv 7, 230210 (2024). doi: 10.29026/oea.2024.230210
Citation: Lu TW, Lin Y, Zhang TQ et al. Self-polarized RGB device realized by semipolar micro-LEDs and perovskite-in-polymer films for backlight applications. Opto-Electron Adv 7, 230210 (2024). doi: 10.29026/oea.2024.230210

Article Open Access

Self-polarized RGB device realized by semipolar micro-LEDs and perovskite-in-polymer films for backlight applications

More Information
  • These authors contributed equally to this work

  • *Corresponding author: TZ Wu, E-mail: wutingzhu@xmu.edu.cn 
  • In backlighting systems for liquid crystal displays, conventional red, green, and blue (RGB) light sources that lack polarization properties can result in a significant optical loss of up to 50% when passing through a polarizer. To address this inefficiency and optimize energy utilization, this study presents a high-performance device designed for RGB polarized emissions. The device employs an array of semipolar blue µLEDs with inherent polarization capabilities, coupled with mechanically stretched films of green-emitting CsPbBr3 nanorods and red-emitting CsPbI3-Cs4PbI6 hybrid nanocrystals. The CsPbBr3 nanorods in the polymer film offer intrinsic polarization emission, while the aligned-wire structures formed by the stable CsPbI3-Cs4PbI6 hybrid nanocrystals contribute to substantial anisotropic emissions, due to their high dielectric constant. The resulting device achieved RGB polarization degrees of 0.26, 0.48, and 0.38, respectively, and exhibited a broad color gamut, reaching 137.2% of the NTSC standard and 102.5% of the Rec. 2020 standard. When compared to a device utilizing c-plane LEDs for excitation, the current approach increased the intensity of light transmitted through the polarizer by 73.6%. This novel fabrication approach for polarized devices containing RGB components holds considerable promise for advancing next-generation display technologies.
  • 加载中
  • [1] Zhang DQ, Zhang QP, Zhu YY et al. Metal halide perovskite nanowires: synthesis, integration, properties, and applications in optoelectronics. Adv Energy Mater 13, 2201735 (2023). doi: 10.1002/aenm.202201735

    CrossRef Google Scholar

    [2] Liu MZ, Huo PC, Zhu WQ et al. Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface. Nat Commun 12, 2230 (2021). doi: 10.1038/s41467-021-22462-z

    CrossRef Google Scholar

    [3] Khonina SN, Kazanskiy NL, Butt MA et al. Optical multiplexing techniques and their marriage for on-chip and optical fiber communication: a review. Opto-Electron Adv 5, 210127 (2022). doi: 10.29026/oea.2022.210127

    CrossRef Google Scholar

    [4] Wang HP, Li SY, Liu XY et al. Low-dimensional metal halide perovskite photodetectors. Adv Mater 33, 2003309 (2021). doi: 10.1002/adma.202003309

    CrossRef Google Scholar

    [5] Lu TW, Lin XS, Guo QA et al. High-speed visible light communication based on micro-LED: A technology with wide applications in next generation communication. Opto-Electron Sci 1 (2022). doi: 10.29026/oes.2022.220020

    CrossRef Google Scholar

    [6] Zhu TX, Liu C, Jin M et al. On-demand integrated quantum memory for polarization qubits. Phys Rev Lett 128, 180501 (2022). doi: 10.1103/PhysRevLett.128.180501

    CrossRef Google Scholar

    [7] Wang YF, Li JF, Zhang SC et al. Efficient quantum memory for single-photon polarization qubits. Nat Photonics 13, 346–351 (2019). doi: 10.1038/s41566-019-0368-8

    CrossRef Google Scholar

    [8] Lu WG, Wu XG, Huang S et al. Strong polarized photoluminescence from stretched perovskite-nanocrystal-embedded polymer composite films. Adv Opt Mater 5, 1700594 (2017). doi: 10.1002/adom.201700594

    CrossRef Google Scholar

    [9] Lin CH, Kang CY, Wu TZ et al. Giant optical anisotropy of perovskite nanowire array films. Adv Funct Mater 30, 1909275 (2020). doi: 10.1002/adfm.201909275

    CrossRef Google Scholar

    [10] Fan XT, Wu TZ, Liu B et al. Recent developments of quantum dot based micro-LED based on non-radiative energy transfer mechanism. Opto-Electron Adv 4, 210022 (2021). doi: 10.29026/oea.2021.210022

    CrossRef Google Scholar

    [11] Baeva M, Gets D, Polushkin A et al. ITO-free silicon-integrated perovskite electrochemical cell for light-emission and light-detection. Opto-Electron Adv 6, 220154 (2023). doi: 10.29026/oea.2023.220154

    CrossRef Google Scholar

    [12] Subedi S, Rella AK, Trung LG et al. Electrically switchable anisometric carbon quantum dots exhibiting linearly polarized photoluminescence: syntheses, anisotropic properties, and facile control of uniaxial orientation. ACS Nano 16, 6480–6492 (2022). doi: 10.1021/acsnano.2c00758

    CrossRef Google Scholar

    [13] Lai SQ, Liu SB, Li ZL et al. Applications of lasers: A promising route toward low-cost fabrication of high-efficiency full-color micro-LED displays. Opto-Electron Sci 2, 230028 (2023). doi: 10.29026/oes.2023.230028

    CrossRef Google Scholar

    [14] Täuber D, Dobrovolsky A, Camacho R et al. Exploring the electronic band structure of organometal halide perovskite via photoluminescence anisotropy of individual nanocrystals. Nano Lett 16, 5087–5094 (2016). doi: 10.1021/acs.nanolett.6b02012

    CrossRef Google Scholar

    [15] Ghoshal D, Wang TM, Tsai HZ et al. Catalyst-free and morphology-controlled growth of 2D perovskite nanowires for polarized light detection. Adv Opt Mater 7, 1900039 (2019). doi: 10.1002/adom.201900039

    CrossRef Google Scholar

    [16] Chen QP, Huang XJ, Yang DD et al. Three-dimensional laser writing aligned perovskite quantum dots in glass for polarization-sensitive anti-counterfeiting. Adv Opt Mater 11, 2300090 (2023). doi: 10.1002/adom.202300090

    CrossRef Google Scholar

    [17] Ng M, Shivarudraiah SB, Halpert JE. Polarization anisotropy losses due to morphological instability in CsPbX3 nanorods and strategies for mitigation. J Mater Chem C 10, 8947–8954 (2022). doi: 10.1039/D2TC00174H

    CrossRef Google Scholar

    [18] Li YX, Huang H, Xiong Y et al. Using polar alcohols for the direct synthesis of cesium lead halide perovskite nanorods with anisotropic emission. ACS Nano 13, 8237–8245 (2019). doi: 10.1021/acsnano.9b03508

    CrossRef Google Scholar

    [19] Tong Y, Bohn BJ, Bladt E et al. From precursor powders to CsPbX3 perovskite nanowires: one-pot synthesis, growth mechanism, and oriented self-assembly. Angew Chem Int Ed 56, 13887–13892 (2017). doi: 10.1002/anie.201707224

    CrossRef Google Scholar

    [20] Wang YZ, Jia S, Luo W et al. Inch-sized aligned polymer nanofiber films with embedded CH3NH3PbBr3 nanocrystals: electrospinning fabrication using a folded aluminum foil as the collector. Nanotechnology 31, 075708 (2020). doi: 10.1088/1361-6528/ab52ac

    CrossRef Google Scholar

    [21] Qin JJ, Zhang J, Shen TY et al. Aligning transition dipole moment toward light amplification and polarized emission in hybrid aerovskites. Adv Opt Mater 9, 2100984 (2021). doi: 10.1002/adom.202100984

    CrossRef Google Scholar

    [22] Liu LG, Huang S, Pan LF et al. Colloidal synthesis of CH3NH3PbBr3 nanoplatelets with polarized emission through self-organization. Angew Chem Int Ed 56, 1780–1783 (2017). doi: 10.1002/anie.201610619

    CrossRef Google Scholar

    [23] Gao Y, Zhao LY, Shang QY et al. Ultrathin CsPbX3 nanowire arrays with strong emission anisotropy. Adv Mater 30, 1801805 (2018). doi: 10.1002/adma.201801805

    CrossRef Google Scholar

    [24] Güner T, Topçu G, Savacı U et al. Polarized emission from CsPbBr3 nanowire embedded-electrospun PU fibers. Nanotechnology 29, 135202 (2018). doi: 10.1088/1361-6528/aaaaef

    CrossRef Google Scholar

    [25] Ma JQ, Fang C, Chen C et al. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence. ACS Nano 13, 3659–3665 (2019). doi: 10.1021/acsnano.9b00302

    CrossRef Google Scholar

    [26] Shi ZF, Li Y, Li S et al. Polarized emission effect realized in CH3NH3PbI3 perovskite nanocrystals. J Mater Chem C 5, 8699–8706 (2017). doi: 10.1039/C7TC03104A

    CrossRef Google Scholar

    [27] Wang D, Wu D, Dong D et al. Polarized emission from CsPbX3 perovskite quantum dots. Nanoscale 8, 11565–11570 (2016). doi: 10.1039/C6NR01915C

    CrossRef Google Scholar

    [28] Chang CL, Bang K, Wetzstein G et al. Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective. Optica 7, 1563–1578 (2020). doi: 10.1364/OPTICA.406004

    CrossRef Google Scholar

    [29] Huang CH, Cheng YT, Tsao YC et al. Micro-LED backlight module by deep reinforcement learning and micro-macro-hybrid environment control agent. Photonics Res 10, 269–279 (2022). doi: 10.1364/PRJ.441188

    CrossRef Google Scholar

    [30] Chen SWH, Huang YM, Singh KJ et al. Full-color micro-LED display with high color stability using semipolar (20–21) InGaN LEDs and quantum-dot photoresist. Photonics Res 8, 630–636 (2020). doi: 10.1364/PRJ.388958

    CrossRef Google Scholar

    [31] Chen SWH, Huang YM, Chang YH et al. High-bandwidth green semipolar (20–21) InGaN/GaN micro light-emitting diodes for visible light communication. ACS Photonics 7, 2228–2235 (2020). doi: 10.1021/acsphotonics.0c00764

    CrossRef Google Scholar

    [32] Singh KJ, Fan XT, Sadhu AS et al. CsPbBr3 perovskite quantum-dot paper exhibiting a highest 3 dB bandwidth and realizing a flexible white-light system for visible-light communication. Photonics Res 9, 2341–2350 (2021). doi: 10.1364/PRJ.434270

    CrossRef Google Scholar

    [33] Khoury M, Li HJ, Li PP et al. Polarized monolithic white semipolar (20–21) InGaN light-emitting diodes grown on high quality (20–21) GaN/sapphire templates and its application to visible light communication. Nano Energy 67, 104236 (2020). doi: 10.1016/j.nanoen.2019.104236

    CrossRef Google Scholar

    [34] Zhang HJ, Li PP, Li HJ et al. High polarization and fast modulation speed of dual wavelengths electroluminescence from semipolar (20–21) micro light-emitting diodes with indium tin oxide surface grating. Appl Phys Lett 117, 181105 (2020). doi: 10.1063/5.0022412

    CrossRef Google Scholar

    [35] Peng ZA, Peng XG. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J Am Chem Soc 124, 3343–3353 (2002). doi: 10.1021/ja0173167

    CrossRef Google Scholar

    [36] Raja SN, Bekenstein Y, Koc MA et al. Encapsulation of perovskite nanocrystals into macroscale polymer matrices: enhanced stability and polarization. ACS Appl Mater Interfaces 8, 35523–35533 (2016). doi: 10.1021/acsami.6b09443

    CrossRef Google Scholar

    [37] Kamal JS, Gomes R, Hens Z et al. Direct determination of absorption anisotropy in colloidal quantum rods. Phys Rev B 85, 035126 (2012). doi: 10.1103/PhysRevB.85.035126

    CrossRef Google Scholar

    [38] Han BN, Cai B, Shan QS et al. Stable, efficient red perovskite light-emitting diodes by (α, δ)-CsPbI3 phase engineering. Adv Funct Mater 28, 1804285 (2018). doi: 10.1002/adfm.201804285

    CrossRef Google Scholar

    [39] Cao LY, Liu BM, Huang L et al. Bright and tunable emissive monodisperse CsPbI3@Cs4PbI6 nanocomposites via a precise and controllable dissolution-recrystallization method. Nano Res 16, 1586–1594 (2023). doi: 10.1007/s12274-022-4791-7

    CrossRef Google Scholar

    [40] Grandhi GK, Viswanath NSM, In JH et al. Robust, brighter red emission from CsPbI3 perovskite nanocrystals via endotaxial protection. J Phys Chem Lett 11, 3699–3704 (2020). doi: 10.1021/acs.jpclett.0c00522

    CrossRef Google Scholar

    [41] Wang X, Ling YC, Lian XJ et al. Suppressed phase separation of mixed-halide perovskites confined in endotaxial matrices. Nat Commun 10, 695 (2019). doi: 10.1038/s41467-019-08610-6

    CrossRef Google Scholar

    [42] Dong J, Wang W, Li YQ et al. Crystallization regulation and protection of quasi-2D perovskite film by copolymer to enhance the stability of perovskite light-emitting diodes. J Mater Chem C 10, 11258–11265 (2022). doi: 10.1039/D2TC01412B

    CrossRef Google Scholar

    [43] Meng XC, Cai ZR, Zhang YY et al. Bio-inspired vertebral design for scalable and flexible perovskite solar cells. Nat Commun 11, 3016 (2020). doi: 10.1038/s41467-020-16831-3

    CrossRef Google Scholar

    [44] Chu ZM, Ye QF, Zhao Y et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 22% via small-molecule passivation. Adv Mater 33, 2007169 (2021). doi: 10.1002/adma.202007169

    CrossRef Google Scholar

    [45] Looyenga H. Dielectric constants of homogeneous mixture. Mol Phys 9, 501–511 (1965). doi: 10.1080/00268976500100671

    CrossRef Google Scholar

    [46] Afsari M, Boochani A, Hantezadeh M. Electronic, optical and elastic properties of cubic perovskite CsPbI3: using first principles study. Optik 127, 11433–11443 (2016). doi: 10.1016/j.ijleo.2016.09.013

    CrossRef Google Scholar

    [47] Li C, Nie J, Cai JF et al. 0D structured Cs4PbI6 single crystals for highly performance UV photodetection. J Alloys Compd 896, 163047 (2022). doi: 10.1016/j.jallcom.2021.163047

    CrossRef Google Scholar

    [48] Dou YJ, Cao F, Dudka T et al. Lattice distortion in mixed-anion lead halide perovskite nanorods leads to their high fluorescence anisotropy. ACS Mater Lett 2, 814–820 (2020). doi: 10.1021/acsmaterialslett.0c00118

    CrossRef Google Scholar

    [49] Pan GC, Bai X, Shen XY et al. Bright red YCl3-promoted CsPbI3 perovskite nanorods towards efficient light-emitting diode. Nano Energy 81, 105615 (2021). doi: 10.1016/j.nanoen.2020.105615

    CrossRef Google Scholar

    [50] Wu TZ, Lin Y, Huang YM et al. Highly stable full-color display device with VLC application potential using semipolar μLEDs and all-inorganic encapsulated perovskite nanocrystal. Photonics Res 9, 2132–2143 (2021). doi: 10.1364/PRJ.431095

    CrossRef Google Scholar

    [51] De Mierry P, Guehne T, Nemoz M et al. Comparison between polar (0001) and semipolar (1122) nitride blue-green light-emitting diodes grown on c- and m-plane sapphire substrates. Jpn J Appl Phys 48, 031002 (2009). doi: 10.1143/JJAP.48.031002

    CrossRef Google Scholar

    [52] Brinkley SE, Lin YD, Chakraborty A et al. Polarized spontaneous emission from blue-green m-plane GaN-based light emitting diodes. Appl Phys Lett 98, 011110 (2011). doi: 10.1063/1.3541655

    CrossRef Google Scholar

    [53] Ng M, Geng P, Shivarudraiah SB et al. Synthesis of cesium copper bromide nanorods with strong linearly polarized emission. Adv Opt Mater 10, 2201031 (2022). doi: 10.1002/adom.202201031

    CrossRef Google Scholar

    [54] Kong CY, Lin CH, Lin CH et al. Highly efficient and stable white light-emitting diodes using perovskite quantum dot paper. Adv Sci 6, 1902230 (2019). doi: 10.1002/advs.201902230

    CrossRef Google Scholar

  • Supplementary information for Self-polarized RGB device realized by semipolar micro-LEDs and perovskite-in-polymer films for backlight applications
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(3491) PDF downloads(708) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint