Liang DH, Qaid SMH, Yang X et al. Luminescence regulation of Sb3+ in 0D hybrid metal halides by hydrogen bond network for optical anti-counterfeiting. Opto-Electron Adv 7, 230197 (2024). doi: 10.29026/oea.2024.230197
Citation: Liang DH, Qaid SMH, Yang X et al. Luminescence regulation of Sb3+ in 0D hybrid metal halides by hydrogen bond network for optical anti-counterfeiting. Opto-Electron Adv 7, 230197 (2024). doi: 10.29026/oea.2024.230197

Article Open Access

Luminescence regulation of Sb3+ in 0D hybrid metal halides by hydrogen bond network for optical anti-counterfeiting

More Information
  • The Sb3+ doping strategy has been proven to be an effective way to regulate the band gap and improve the photophysical properties of organic-inorganic hybrid metal halides (OIHMHs). However, the emission of Sb3+ ions in OIHMHs is primarily confined to the low energy region, resulting in yellow or red emissions. To date, there are few reports about green emission of Sb3+-doped OIHMHs. Here, we present a novel approach for regulating the luminescence of Sb3+ ions in 0D C10H22N6InCl7·H2O via hydrogen bond network, in which water molecules act as agents for hydrogen bonding. Sb3+-doped C10H22N6InCl7·H2O shows a broadband green emission peaking at 540 nm and a high photoluminescence quantum yield (PLQY) of 80%. It is found that the intense green emission stems from the radiative recombination of the self-trapped excitons (STEs). Upon removal of water molecules with heat, C10H22N6In1-xSbxCl7 generates yellow emission, attributed to the breaking of the hydrogen bond network and large structural distortions of excited state. Once water molecules are adsorbed by C10H22N6In1-xSbxCl7, it can subsequently emit green light. This water-induced reversible emission switching is successfully used for optical security and information encryption. Our findings expand the understanding of how the local coordination structure influences the photophysical mechanism in Sb3+-doped metal halides and provide a novel method to control the STEs emission.
  • 加载中
  • [1] Liu H, Shonde TB, Gonzalez F et al. Efficient red light emitting diodes based on a zero-dimensional organic antimony halide hybrid. Adv Mater 35, 2209417 (2023). doi: 10.1002/adma.202209417

    CrossRef Google Scholar

    [2] Kingsford RL, Jackson SR, Bloxham LC et al. Controlling phase transitions in two-dimensional perovskites through organic cation alloying. J Am Chem Soc 145, 11773–11780 (2023). doi: 10.1021/jacs.3c02956

    CrossRef Google Scholar

    [3] Zhang Y, Zhang YG, Zhao YY et al. Crystal-liquid-glass transition and near-unity photoluminescence quantum yield in low melting point hybrid metal halides. J Am Chem Soc 145, 12360–12369 (2023). doi: 10.1021/jacs.3c03322

    CrossRef Google Scholar

    [4] Yang CH, Xiao SB, Xiao H et al. Efficient red-emissive circularly polarized electroluminescence enabled by quasi-2D perovskite with chiral spacer cation. ACS Nano 17, 7830–7836 (2023).

    Google Scholar

    [5] Dryzhakov B, Lawrie BJ, Celio JZ M et al. Dual emission bands of a 2D perovskite single crystal with charge transfer state characteristics. ACS Nano 17, 12200–12207 (2023). doi: 10.1021/acsnano.3c00496

    CrossRef Google Scholar

    [6] Tian Y, Peng H, Wei QL et al. Moisture-induced reversible structure conversion of zero-dimensional organic cuprous bromide hybrids for multiple photoluminescent anti-counterfeiting, information encryption and rewritable luminescent paper. Chem Eng J 458, 141436 (2023). doi: 10.1016/j.cej.2023.141436

    CrossRef Google Scholar

    [7] Pareja-Rivera C, Morán-Muñoz JA, Gómora-Figueroa AP et al. Optimizing broadband emission in 2D halide perovskites. Chem Mater 34, 9344–9349 (2022).

    Google Scholar

    [8] Song ZX, Jia ZL, Guo XY et al. Chirality–racemization strategy toward copper (I) iodide hybrid single‐crystalline scintillators for X‐ray detection and imaging applications. Adv Opt Mater 11, 2203014 (2023). doi: 10.1002/adom.202203014

    CrossRef Google Scholar

    [9] Su BB, Jin JC, Han K et al. Ceramic wafer scintillation screen by utilizing near‐unity blue‐emitting lead‐free metal halide (C8H20N)2Cu2Br4. Adv Funct Mater 33, 2210735 (2023). doi: 10.1002/adfm.202210735

    CrossRef Google Scholar

    [10] Xu TT, Li YY, Nikl M et al. Lead-free zero-dimensional organic-copper(I) halides as stable and sensitive x-ray scintillators. ACS Appl Mater Interfaces 14, 14157–14164 (2022).

    Google Scholar

    [11] Liang DH, Sun Z, Lu SR et al. Solvent-free grinding synthesis of hybrid copper halides for white light emission. Inorg Chem 62, 7296–7303 (2023). doi: 10.1021/acs.inorgchem.3c00352

    CrossRef Google Scholar

    [12] Liang DH, Xiao HB, Cai WS et al. Mn2+‐based luminescent metal halides: syntheses, properties, and applications. Adv Opt Mater 11, 2202997 (2023). doi: 10.1002/adom.202202997

    CrossRef Google Scholar

    [13] Ma W, Liang DH, Qian QK et al. Near-unity quantum yield in zero-dimensional lead-free manganese-based halides for flexible X-ray imaging with high spatial resolution. eScience 3, 100089 (2023). doi: 10.1016/j.esci.2022.100089

    CrossRef Google Scholar

    [14] Liu XH, Li XL, Li J et al. Modulating anthracene excimer through guest engineering in two-dimensional lead bromide hybrids. Inorg Chem Front 10, 2917–2925 (2023). doi: 10.1039/D3QI00289F

    CrossRef Google Scholar

    [15] Liao JF, Zhang ZP, Wei JH et al. Emission‐color‐tunable Pb−Sn alloyed single crystals with high luminescent efficiency and stability. Adv Opt Mater 10, 2102426 (2022). doi: 10.1002/adom.202102426

    CrossRef Google Scholar

    [16] Zhang ZP, Liao JF, Xing GC. Regulating the coordination geometry of polyhedra in zero-dimensional metal halides for tunable emission. Nanoscale 15, 5241–5248 (2023). doi: 10.1039/D2NR06975J

    CrossRef Google Scholar

    [17] Li ZY, Li Y, Liang P et al. Dual-band luminescent lead-free antimony chloride halides with near-unity photoluminescence quantum efficiency. Chem Mater 31, 9363–9371 (2019). doi: 10.1021/acs.chemmater.9b02935

    CrossRef Google Scholar

    [18] Liao JF, Zhang ZP, Wang BZ et al. Full-color-tunable phosphorescence of antimony-doped lead halide single crystal. npj Flex Electron 6, 57 (2022). doi: 10.1038/s41528-022-00194-4

    CrossRef Google Scholar

    [19] Liu KJ, Hao SQ, Cao JD et al. Antimony doping to enhance luminescence of tin(IV)-based hybrid metal halides. Inorg Chem Front 9, 3865–3873 (2022).

    Google Scholar

    [20] Lin WC, Wei QL, Huang T et al. Antimony doped tin(IV) hybrid metal halides with high-efficiency tunable emission, WLED and information encryption. J Mater Chem C 11, 5688–5700 (2023). doi: 10.1039/D3TC00497J

    CrossRef Google Scholar

    [21] Wu JJ, Li XL, Lian X et al. Ultrafast study of exciton transfer in Sb(III)-doped two-dimensional [NH3(CH2)4NH3]CdBr4 perovskite. ACS Nano 15, 15354–15361 (2021). doi: 10.1021/acsnano.1c06564

    CrossRef Google Scholar

    [22] Liang DH, Liu XH, Luo BB et al. High quantum yield of in-based halide perovskites for white light emission and flexible X-ray scintillators. Ecomat 5, e12296 (2023).

    Google Scholar

    [23] Cheng XW, Li RF, Zheng W et al. Tailoring the broadband emission in all‐inorganic lead‐free 0D in‐based halides through Sb3+ doping. Adv Opt Mater 9, 2100434 (2021). doi: 10.1002/adom.202100434

    CrossRef Google Scholar

    [24] Han PG, Luo C, Yang SQ et al. All-Inorganic lead-free 0D perovskites by a doping strategy to achieve a PLQY boost from <2 % to 90. Angew Chem Int Ed 59, 12709–12713 (2020). doi: 10.1002/anie.202003234

    CrossRef Google Scholar

    [25] Li ZY, Song GM, Li Y et al. Realizing tunable white light emission in lead-free indium(III) bromine hybrid single crystals through antimony(III) cation doping. J Phys Chem Lett 11, 10164–10172 (2020). doi: 10.1021/acs.jpclett.0c03079

    CrossRef Google Scholar

    [26] Chen CH, Xiang JM, Chen YH et al. White-light emission lead-free perovskite phosphor Cs2ZrCl6: Sb3+. Ceram Int 48, 1851–1856 (2022). doi: 10.1016/j.ceramint.2021.09.268

    CrossRef Google Scholar

    [27] Jing YY, Liu Y, Jiang XX et al. Sb3+ dopant and halogen substitution triggered highly efficient and tunable emission in lead-free metal halide single crystals. Chem Mater 32, 5327–5334 (2020). doi: 10.1021/acs.chemmater.0c01708

    CrossRef Google Scholar

    [28] Wei JH, Yu YW, Luo JB et al. Bright cyan-emissive copper(I)-halide single crystals for multi-functional applications. Adv Opt Mater 10, 2200724 (2022). doi: 10.1002/adom.202200724

    CrossRef Google Scholar

    [29] Su BB, Jin JC, Peng YH et al. Zero-dimensional organic copper(I) iodide hybrid with high anti-water stability for blue-light-excitable solid-state lighting. Adv Opt Mater 10, 2102619 (2022). doi: 10.1002/adom.202102619

    CrossRef Google Scholar

    [30] Banerjee D, Popy DA, Leininger BC et al. Zero-dimensional broadband yellow light emitter (TMS)3Cu2I5 for latent fingerprint detection and solid-state lighting. ACS Appl Mater Interfaces 15, 30455–30468 (2023).

    Google Scholar

    [31] Chen D, Hao SQ, Zhou GJ, Deng CK et al. Lead-free broadband orange-emitting zero-dimensional hybrid (PMA)3InBr6 with direct band gap. Inorg Chem 58, 15602–15609 (2019). doi: 10.1021/acs.inorgchem.9b02669

    CrossRef Google Scholar

    [32] Yangui A, Garrot D, Lauret JS et al. Optical investigation of broadband white-light emission in self-assembled organic–inorganic perovskite (C6H11NH3)2PbBr4. J Mater Chem C 119, 23638–23647 (2015).

    Google Scholar

    [33] Yang HZ, Zhang YH, Pan J et al. Room-temperature engineering of all-inorganic perovskite nanocrsytals with different dimensionalities. Chem Mater 29, 8978–8982 (2017). doi: 10.1021/acs.chemmater.7b04161

    CrossRef Google Scholar

    [34] Protesescu L, Yakunin S, Bodnarchuk MI et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett 15, 3692–3696 (2015). doi: 10.1021/nl5048779

    CrossRef Google Scholar

    [35] Ai B, Liu C, Deng Z et al. Low temperature photoluminescence properties of CsPbBr3 quantum dots embedded in glasses. Phys Chem Chem Phys 19, 17349–17355 (2017). doi: 10.1039/C7CP02482G

    CrossRef Google Scholar

    [36] Peng H, Wang XX, Zhang ZH et al. Bulk assembly of a 0D organic tin(II) chloride hybrid with high anti-water stability. Chem Commun 57, 8162–8165 (2021). doi: 10.1039/D1CC02814F

    CrossRef Google Scholar

    [37] Wu LK, Li RF, Wen WY et al. Lead-free hybrid indium perovskites with near-unity PLQY and white light emission using an Sb3+ doping strategy. Inorg Chem Front 10, 3297–3306 (2023). doi: 10.1039/D3QI00420A

    CrossRef Google Scholar

    [38] Shi CM, Xuan HL, Wu Y et al. Tunable luminescence on indium halide hybrid regulated by Sb3+ doping concentration. Adv Opt Mater 11, 2202376 (2023). doi: 10.1002/adom.202202376

    CrossRef Google Scholar

    [39] Su BB, Song GM, Molokeev MS et al. Synthesis, crystal structure and green luminescence in zero-dimensional tin halide (C8H14N2)2SnBr6. Inorg Chem 59, 9962–9968 (2020).

    Google Scholar

    [40] Li J, Wu JJ, Xiao YH et al. Efficient triplet energy transfer in a 0D metal halide hybrid with long persistence room temperature phosphorescence for time-resolved anti-counterfeiting. Inorg Chem Front 10, 7167–7175 (2023). doi: 10.1039/D3QI01774E

    CrossRef Google Scholar

  • Supplementary information for Luminescence regulation of Sb3+ in 0D hybrid metal halides by hydrogen bond network for optical anti-counterfeiting
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(2530) PDF downloads(624) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint