Citation: | Liang DH, Qaid SMH, Yang X et al. Luminescence regulation of Sb3+ in 0D hybrid metal halides by hydrogen bond network for optical anti-counterfeiting. Opto-Electron Adv 7, 230197 (2024). doi: 10.29026/oea.2024.230197 |
[1] | Liu H, Shonde TB, Gonzalez F et al. Efficient red light emitting diodes based on a zero-dimensional organic antimony halide hybrid. Adv Mater 35, 2209417 (2023). doi: 10.1002/adma.202209417 |
[2] | Kingsford RL, Jackson SR, Bloxham LC et al. Controlling phase transitions in two-dimensional perovskites through organic cation alloying. J Am Chem Soc 145, 11773–11780 (2023). doi: 10.1021/jacs.3c02956 |
[3] | Zhang Y, Zhang YG, Zhao YY et al. Crystal-liquid-glass transition and near-unity photoluminescence quantum yield in low melting point hybrid metal halides. J Am Chem Soc 145, 12360–12369 (2023). doi: 10.1021/jacs.3c03322 |
[4] | Yang CH, Xiao SB, Xiao H et al. Efficient red-emissive circularly polarized electroluminescence enabled by quasi-2D perovskite with chiral spacer cation. ACS Nano 17, 7830–7836 (2023). |
[5] | Dryzhakov B, Lawrie BJ, Celio JZ M et al. Dual emission bands of a 2D perovskite single crystal with charge transfer state characteristics. ACS Nano 17, 12200–12207 (2023). doi: 10.1021/acsnano.3c00496 |
[6] | Tian Y, Peng H, Wei QL et al. Moisture-induced reversible structure conversion of zero-dimensional organic cuprous bromide hybrids for multiple photoluminescent anti-counterfeiting, information encryption and rewritable luminescent paper. Chem Eng J 458, 141436 (2023). doi: 10.1016/j.cej.2023.141436 |
[7] | Pareja-Rivera C, Morán-Muñoz JA, Gómora-Figueroa AP et al. Optimizing broadband emission in 2D halide perovskites. Chem Mater 34, 9344–9349 (2022). |
[8] | Song ZX, Jia ZL, Guo XY et al. Chirality–racemization strategy toward copper (I) iodide hybrid single‐crystalline scintillators for X‐ray detection and imaging applications. Adv Opt Mater 11, 2203014 (2023). doi: 10.1002/adom.202203014 |
[9] | Su BB, Jin JC, Han K et al. Ceramic wafer scintillation screen by utilizing near‐unity blue‐emitting lead‐free metal halide (C8H20N)2Cu2Br4. Adv Funct Mater 33, 2210735 (2023). doi: 10.1002/adfm.202210735 |
[10] | Xu TT, Li YY, Nikl M et al. Lead-free zero-dimensional organic-copper(I) halides as stable and sensitive x-ray scintillators. ACS Appl Mater Interfaces 14, 14157–14164 (2022). |
[11] | Liang DH, Sun Z, Lu SR et al. Solvent-free grinding synthesis of hybrid copper halides for white light emission. Inorg Chem 62, 7296–7303 (2023). doi: 10.1021/acs.inorgchem.3c00352 |
[12] | Liang DH, Xiao HB, Cai WS et al. Mn2+‐based luminescent metal halides: syntheses, properties, and applications. Adv Opt Mater 11, 2202997 (2023). doi: 10.1002/adom.202202997 |
[13] | Ma W, Liang DH, Qian QK et al. Near-unity quantum yield in zero-dimensional lead-free manganese-based halides for flexible X-ray imaging with high spatial resolution. eScience 3, 100089 (2023). doi: 10.1016/j.esci.2022.100089 |
[14] | Liu XH, Li XL, Li J et al. Modulating anthracene excimer through guest engineering in two-dimensional lead bromide hybrids. Inorg Chem Front 10, 2917–2925 (2023). doi: 10.1039/D3QI00289F |
[15] | Liao JF, Zhang ZP, Wei JH et al. Emission‐color‐tunable Pb−Sn alloyed single crystals with high luminescent efficiency and stability. Adv Opt Mater 10, 2102426 (2022). doi: 10.1002/adom.202102426 |
[16] | Zhang ZP, Liao JF, Xing GC. Regulating the coordination geometry of polyhedra in zero-dimensional metal halides for tunable emission. Nanoscale 15, 5241–5248 (2023). doi: 10.1039/D2NR06975J |
[17] | Li ZY, Li Y, Liang P et al. Dual-band luminescent lead-free antimony chloride halides with near-unity photoluminescence quantum efficiency. Chem Mater 31, 9363–9371 (2019). doi: 10.1021/acs.chemmater.9b02935 |
[18] | Liao JF, Zhang ZP, Wang BZ et al. Full-color-tunable phosphorescence of antimony-doped lead halide single crystal. npj Flex Electron 6, 57 (2022). doi: 10.1038/s41528-022-00194-4 |
[19] | Liu KJ, Hao SQ, Cao JD et al. Antimony doping to enhance luminescence of tin(IV)-based hybrid metal halides. Inorg Chem Front 9, 3865–3873 (2022). |
[20] | Lin WC, Wei QL, Huang T et al. Antimony doped tin(IV) hybrid metal halides with high-efficiency tunable emission, WLED and information encryption. J Mater Chem C 11, 5688–5700 (2023). doi: 10.1039/D3TC00497J |
[21] | Wu JJ, Li XL, Lian X et al. Ultrafast study of exciton transfer in Sb(III)-doped two-dimensional [NH3(CH2)4NH3]CdBr4 perovskite. ACS Nano 15, 15354–15361 (2021). doi: 10.1021/acsnano.1c06564 |
[22] | Liang DH, Liu XH, Luo BB et al. High quantum yield of in-based halide perovskites for white light emission and flexible X-ray scintillators. Ecomat 5, e12296 (2023). |
[23] | Cheng XW, Li RF, Zheng W et al. Tailoring the broadband emission in all‐inorganic lead‐free 0D in‐based halides through Sb3+ doping. Adv Opt Mater 9, 2100434 (2021). doi: 10.1002/adom.202100434 |
[24] | Han PG, Luo C, Yang SQ et al. All-Inorganic lead-free 0D perovskites by a doping strategy to achieve a PLQY boost from <2 % to 90. Angew Chem Int Ed 59, 12709–12713 (2020). doi: 10.1002/anie.202003234 |
[25] | Li ZY, Song GM, Li Y et al. Realizing tunable white light emission in lead-free indium(III) bromine hybrid single crystals through antimony(III) cation doping. J Phys Chem Lett 11, 10164–10172 (2020). doi: 10.1021/acs.jpclett.0c03079 |
[26] | Chen CH, Xiang JM, Chen YH et al. White-light emission lead-free perovskite phosphor Cs2ZrCl6: Sb3+. Ceram Int 48, 1851–1856 (2022). doi: 10.1016/j.ceramint.2021.09.268 |
[27] | Jing YY, Liu Y, Jiang XX et al. Sb3+ dopant and halogen substitution triggered highly efficient and tunable emission in lead-free metal halide single crystals. Chem Mater 32, 5327–5334 (2020). doi: 10.1021/acs.chemmater.0c01708 |
[28] | Wei JH, Yu YW, Luo JB et al. Bright cyan-emissive copper(I)-halide single crystals for multi-functional applications. Adv Opt Mater 10, 2200724 (2022). doi: 10.1002/adom.202200724 |
[29] | Su BB, Jin JC, Peng YH et al. Zero-dimensional organic copper(I) iodide hybrid with high anti-water stability for blue-light-excitable solid-state lighting. Adv Opt Mater 10, 2102619 (2022). doi: 10.1002/adom.202102619 |
[30] | Banerjee D, Popy DA, Leininger BC et al. Zero-dimensional broadband yellow light emitter (TMS)3Cu2I5 for latent fingerprint detection and solid-state lighting. ACS Appl Mater Interfaces 15, 30455–30468 (2023). |
[31] | Chen D, Hao SQ, Zhou GJ, Deng CK et al. Lead-free broadband orange-emitting zero-dimensional hybrid (PMA)3InBr6 with direct band gap. Inorg Chem 58, 15602–15609 (2019). doi: 10.1021/acs.inorgchem.9b02669 |
[32] | Yangui A, Garrot D, Lauret JS et al. Optical investigation of broadband white-light emission in self-assembled organic–inorganic perovskite (C6H11NH3)2PbBr4. J Mater Chem C 119, 23638–23647 (2015). |
[33] | Yang HZ, Zhang YH, Pan J et al. Room-temperature engineering of all-inorganic perovskite nanocrsytals with different dimensionalities. Chem Mater 29, 8978–8982 (2017). doi: 10.1021/acs.chemmater.7b04161 |
[34] | Protesescu L, Yakunin S, Bodnarchuk MI et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett 15, 3692–3696 (2015). doi: 10.1021/nl5048779 |
[35] | Ai B, Liu C, Deng Z et al. Low temperature photoluminescence properties of CsPbBr3 quantum dots embedded in glasses. Phys Chem Chem Phys 19, 17349–17355 (2017). doi: 10.1039/C7CP02482G |
[36] | Peng H, Wang XX, Zhang ZH et al. Bulk assembly of a 0D organic tin(II) chloride hybrid with high anti-water stability. Chem Commun 57, 8162–8165 (2021). doi: 10.1039/D1CC02814F |
[37] | Wu LK, Li RF, Wen WY et al. Lead-free hybrid indium perovskites with near-unity PLQY and white light emission using an Sb3+ doping strategy. Inorg Chem Front 10, 3297–3306 (2023). doi: 10.1039/D3QI00420A |
[38] | Shi CM, Xuan HL, Wu Y et al. Tunable luminescence on indium halide hybrid regulated by Sb3+ doping concentration. Adv Opt Mater 11, 2202376 (2023). doi: 10.1002/adom.202202376 |
[39] | Su BB, Song GM, Molokeev MS et al. Synthesis, crystal structure and green luminescence in zero-dimensional tin halide (C8H14N2)2SnBr6. Inorg Chem 59, 9962–9968 (2020). |
[40] | Li J, Wu JJ, Xiao YH et al. Efficient triplet energy transfer in a 0D metal halide hybrid with long persistence room temperature phosphorescence for time-resolved anti-counterfeiting. Inorg Chem Front 10, 7167–7175 (2023). doi: 10.1039/D3QI01774E |
Supplementary information for Luminescence regulation of Sb3+ in 0D hybrid metal halides by hydrogen bond network for optical anti-counterfeiting |
(a) Crystal structures of undoped and Sb3+-doped C10H22N6InCl7·H2O. (b) Photographs of C10H22N6In1-xSbxCl7·H2O under day light and UV light. (c) PLQY, (d) Normalized PLE and PL spectra, (e) PL decay curve, (f) Powder XRD patterns of C10H22N6In1-xSbxCl7·H2O. (g) XPS spectra of Sb 3d in C10H22N6In0.95Sb0.05Cl7·H2O. (h) XPS spectra of In 3d in pristine C10H22N6InCl7·H2O and C10H22N6In0.95Sb0.05Cl7·H2O.
(a) PL of C10H22N6In0.95Sb0.05Cl7·H2O under different excitation wavelengths. (b) PL intensity of C10H22N6In0.95Sb0.05Cl7·H2O as a function of excitation powers. (c) PL spectra of C10H22N6In0.95Sb0.05Cl7·H2O under different temperatures. (d) Fitting curve between integrated PL intensity of C10H22N6In0.95Sb0.05Cl7·H2O and temperature. (e) The correlation between FWHM of the C10H22N6In0.95Sb0.05Cl7·H2O and temperature. (f) Schematic diagram of the photophysical processes.
(a) Patterned images of C10H22N6In0.95Sb0.05Cl7·H2O and C10H22N6In0.95Sb0.05Cl7 under day light and UV light. Normalized PLE spectra and PL spectra of (b) C10H22N6In0.95Sb0.05Cl7·H2O and (c) C10H22N6In0.95Sb0.05Cl7. (d) PL decay curve of C10H22N6In0.95Sb0.05Cl7·H2O and C10H22N6In0.95Sb0.05Cl7. (e) The crystal structure of Sb3+-doped C10H22N6InCl7·H2O before and after heating. DFT electronic structures of (f) C10H22N6InCl7·H2O, (g) Sb3+-doped C10H22N6InCl7·H2O and (h) Sb3+-doped C10H22N6InCl7. Density of states of (i) C10H22N6InCl7·H2O, (j) Sb3+-doped C10H22N6InCl7·H2O and (k) Sb3+-doped C10H22N6InCl7.
(a) Photographs of patterns composed of C10H22N6In0.95Sb0.05Cl7and C10H22N6In0.95Sb0.05Cl7@PMMA. (b) Information encryption process produced by C10H22N6In0.95Sb0.05Cl7·H2O and C10H22N6In0.95Sb0.05Cl7·H2O @PMMA. (c) Design of optical AND logical gate produced by C10H22N6In0.95Sb0.05Cl7·H2O and C10H22N6In0.95Sb0.05Cl7·H2O @PMMA. (d) The experimental demonstration of optical AND logical gate.