Huo PC, Yu RX, Liu MZ et al. Tailoring electron vortex beams with customizable intensity patterns by electron diffraction holography. Opto-Electron Adv 7, 230184 (2024). doi: 10.29026/oea.2024.230184
Citation: Huo PC, Yu RX, Liu MZ et al. Tailoring electron vortex beams with customizable intensity patterns by electron diffraction holography. Opto-Electron Adv 7, 230184 (2024). doi: 10.29026/oea.2024.230184

Article Open Access

Tailoring electron vortex beams with customizable intensity patterns by electron diffraction holography

More Information
  • An electron vortex beam (EVB) carrying orbital angular momentum (OAM) plays a key role in a series of fundamental scientific researches, such as chiral energy-loss spectroscopy and magnetic dichroism spectroscopy. So far, almost all the experimentally created EVBs manifest isotropic doughnut intensity patterns. Here, based on the correlation between local divergence angle of electron beam and phase gradient along azimuthal direction, we show that free electrons can be tailored to EVBs with customizable intensity patterns independent of the carried OAM. As proof-of-concept, by using computer generated hologram and designing phase masks to shape the incident free electrons in the transmission electron microscope, three structured EVBs carrying identical OAM are tailored to exhibit completely different intensity patterns. Furthermore, through the modal decomposition, we quantitatively investigate their OAM spectral distributions and reveal that structured EVBs present a superposition of a series of different eigenstates induced by the locally varied geometries. These results not only generalize the concept of EVB, but also demonstrate an extra highly controllable degree of freedom for electron beam manipulation in addition to OAM.
  • 加载中
  • [1] Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 45, 8185–8189 (1992). doi: 10.1103/PhysRevA.45.8185

    CrossRef Google Scholar

    [2] Pu MB, Li X, Ma XL, Wang YQ, Zhao ZY et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv 1, e1500396 (2015). doi: 10.1126/sciadv.1500396

    CrossRef Google Scholar

    [3] Shen YJ, Wang XJ, Xie ZW, Min CJ, Fu X et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci Appl 8, 90 (2019). doi: 10.1038/s41377-019-0194-2

    CrossRef Google Scholar

    [4] Fang XY, Ren HR, Li KY, Luan HT, Hua YL et al. Nanophotonic manipulation of optical angular momentum for high-dimensional information optics. Adv Opt Photonics 13, 772–833 (2021). doi: 10.1364/AOP.414320

    CrossRef Google Scholar

    [5] Guo YH, Zhang SC, Pu MB, He Q, Jin JJ et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci Appl 10, 63 (2021). doi: 10.1038/s41377-021-00497-7

    CrossRef Google Scholar

    [6] Zhang YX, Liu XF, Lin H, Wang D, Cao ES et al. Ultrafast multi-target control of tightly focused light fields. Opto-Electron Adv 5, 210026 (2022). doi: 10.29026/oea.2022.210026

    CrossRef Google Scholar

    [7] Porfirev A, Khonina S, Ustinov A, Ivliev N, Golub I. Vectorial spin-orbital Hall effect of light upon tight focusing and its experimental observation in azopolymer films. Opto-Electron Sci 2, 230014 (2023). doi: 10.29026/oes.2023.230014

    CrossRef Google Scholar

    [8] Paterson L, MacDonald MP, Arlt J, Sibbett W, Bryant PE et al. Controlled rotation of optically trapped microscopic particles. Science 292, 912–914 (2001). doi: 10.1126/science.1058591

    CrossRef Google Scholar

    [9] Grier DG. A revolution in optical manipulation. Nature 424, 810–816 (2003). doi: 10.1038/nature01935

    CrossRef Google Scholar

    [10] Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW. STED-microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440, 935–939 (2006). doi: 10.1038/nature04592

    CrossRef Google Scholar

    [11] Luo XG. Principles of electromagnetic waves in metasurfaces. Sci China Phys, Mech Astron 58, 594201 (2015). doi: 10.1007/s11433-015-5688-1

    CrossRef Google Scholar

    [12] Nicolas A, Veissier L, Giner L, Giacobino E, Maxein D et al. A quantum memory for orbital angular momentum photonic qubits. Nat Photonics 8, 234–238 (2014). doi: 10.1038/nphoton.2013.355

    CrossRef Google Scholar

    [13] Ren HR, Li XP, Zhang QM, Gu M. On-chip noninterference angular momentum multiplexing of broadband light. Science 352, 805–809 (2016). doi: 10.1126/science.aaf1112

    CrossRef Google Scholar

    [14] Fang XY, Ren HR, Gu M. Orbital angular momentum holography for high-security encryption. Nat Photonics 14, 102–108 (2020). doi: 10.1038/s41566-019-0560-x

    CrossRef Google Scholar

    [15] Uchida M, Tonomura A. Generation of electron beams carrying orbital angular momentum. Nature 464, 737–739 (2010). doi: 10.1038/nature08904

    CrossRef Google Scholar

    [16] Verbeeck J, Tian H, Schattschneider P. Production and application of electron vortex beams. Nature 467, 301–304 (2010). doi: 10.1038/nature09366

    CrossRef Google Scholar

    [17] McMorran BJ, Agrawal A, Anderson IM, Herzing AA, Lezec HJ et al. Electron vortex beams with high quanta of orbital angular momentum. Science 331, 192–195 (2011). doi: 10.1126/science.1198804

    CrossRef Google Scholar

    [18] Grillo V, Gazzadi GC, Mafakheri E, Frabboni S, Karimi E et al. Holographic generation of highly twisted electron beams. Phys Rev Lett 114, 034801 (2015). doi: 10.1103/PhysRevLett.114.034801

    CrossRef Google Scholar

    [19] Yuan XY, Xu Q, Lang YH, Jiang XH, Xu YH et al. Tailoring spatiotemporal dynamics of plasmonic vortices. Opto-Electron Adv 6, 220133 (2023). doi: 10.29026/oea.2023.220133

    CrossRef Google Scholar

    [20] Petersen TC, Weyland M, Paganin DM, Simula TP, Eastwood SA et al. Electron vortex production and control using aberration induced diffraction catastrophes. Phys Rev Lett 110, 033901 (2013). doi: 10.1103/PhysRevLett.110.033901

    CrossRef Google Scholar

    [21] Béché A, Van Boxem R, Van Tendeloo G, Verbeeck J. Magnetic monopole field exposed by electrons. Nat Phys 10, 26–29 (2014). doi: 10.1038/nphys2816

    CrossRef Google Scholar

    [22] Harris J, Grillo V, Mafakheri E, Gazzadi GC, Frabboni S et al. Structured quantum waves. Nat Phys 11, 629–634 (2015). doi: 10.1038/nphys3404

    CrossRef Google Scholar

    [23] Bliokh KY, Ivanov IP, Guzzinati G, Clark L, Van Boxem R et al. Theory and applications of free-electron vortex states. Phys Rep 690, 1–70 (2017). doi: 10.1016/j.physrep.2017.05.006

    CrossRef Google Scholar

    [24] Mousley M, Thirunavukkarasu G, Babiker M, Yuan J. Robust and adjustable C-shaped electron vortex beams. New J Phys 19, 063008 (2017). doi: 10.1088/1367-2630/aa6e3c

    CrossRef Google Scholar

    [25] Yang YQ, Forbes A, Cao LC. A review of liquid crystal spatial light modulators: devices and applications. Opto-Electron Sci 2, 230026 (2023). doi: 10.29026/oes.2023.230026

    CrossRef Google Scholar

    [26] Freund I. Optical vortices in Gaussian random wave fields: statistical probability densities. J Opt Soc Am A 11, 1644–1652 (1994).

    Google Scholar

    [27] Freund I, Freilikher V. Parameterization of anisotropic vortices. J Opt Soc Am A 14, 1902–1910 (1997). doi: 10.1364/JOSAA.14.001902

    CrossRef Google Scholar

    [28] Nye JF, Berry MV. Dislocations in wave trains. Proc Roy Soc A Math Phys Eng Sci 336, 165–190 (1974).

    Google Scholar

    [29] Harvey TR, Pierce JS, Agrawal AK, Ercius P, Linck M et al. Efficient diffractive phase optics for electrons. New J Phys 16, 093039 (2014). doi: 10.1088/1367-2630/16/9/093039

    CrossRef Google Scholar

    [30] Grillo V, Karimi E, Gazzadi GC, Frabboni S, Dennis MR et al. Generation of nondiffracting electron Bessel beams. Phys Rev X 4, 011013 (2014).

    Google Scholar

    [31] Polman A, Kociak M, Javier García de Abajo F. Electron-beam spectroscopy for nanophotonics. Nat Mater 18, 1158–1171 (2019). doi: 10.1038/s41563-019-0409-1

    CrossRef Google Scholar

    [32] Yu RX, Huo PC, Liu MZ, Zhu WQ, Agrawal A et al. Generation of perfect electron vortex beam with a customized beam size independent of orbital angular momentum. Nano Lett 23, 2436–2441 (2023). doi: 10.1021/acs.nanolett.2c03822

    CrossRef Google Scholar

    [33] Verbeeck J, He T, Van Tendeloo G. How to manipulate nanoparticles with an electron beam. Adv Mater 25, 1114–1117 (2013). doi: 10.1002/adma.201204206

    CrossRef Google Scholar

    [34] Lloyd S, Babiker M, Yuan J. Quantized orbital angular momentum transfer and magnetic dichroism in the interaction of electron vortices with matter. Phys Rev Lett 108, 074802 (2012). doi: 10.1103/PhysRevLett.108.074802

    CrossRef Google Scholar

    [35] Ugarte D, Ducati C. Controlling multipolar surface Plasmon excitation through the azimuthal phase structure of electron vortex beams. Phys Rev B 93, 205418 (2016). doi: 10.1103/PhysRevB.93.205418

    CrossRef Google Scholar

    [36] Guzzinati G, Béché A, Lourenço-Martins H, Martin J, Kociak M et al. Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams. Nat Commun 8, 14999 (2017). doi: 10.1038/ncomms14999

    CrossRef Google Scholar

    [37] Clark CW, Barankov R, Huber MG, Arif M, Cory DG et al. Controlling neutron orbital angular momentum. Nature 525, 504–506 (2015). doi: 10.1038/nature15265

    CrossRef Google Scholar

    [38] Madan I, Vanacore GM, Gargiulo S, LaGrange T, Carbone F. The quantum future of microscopy: wave function engineering of electrons, ions, and nuclei. Appl Phys Lett 116, 230502 (2020). doi: 10.1063/1.5143008

    CrossRef Google Scholar

    [39] Lembessis VE, Ellinas D, Babiker M, Al-Dossary O. Atom vortex beams. Phys Rev A 89, 053616 (2014). doi: 10.1103/PhysRevA.89.053616

    CrossRef Google Scholar

    [40] Luski A, Segev Y, David R, Bitton O, Nadler H et al. Vortex beams of atoms and molecules. Science 373, 1105–1109 (2021). doi: 10.1126/science.abj2451

    CrossRef Google Scholar

  • Supplementary information for Tailoring electron vortex beams with customizable intensity patterns by electron diffraction holography
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(3490) PDF downloads(659) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint