Berhe AM, As’ham K, Al-Ani I et al. Strong coupling and catenary field enhancement in the hybrid plasmonic metamaterial cavity and TMDC monolayers. Opto-Electron Adv 7, 230181 (2024). doi: 10.29026/oea.2024.230181
Citation: Berhe AM, As’ham K, Al-Ani I et al. Strong coupling and catenary field enhancement in the hybrid plasmonic metamaterial cavity and TMDC monolayers. Opto-Electron Adv 7, 230181 (2024). doi: 10.29026/oea.2024.230181

Article Open Access

Strong coupling and catenary field enhancement in the hybrid plasmonic metamaterial cavity and TMDC monolayers

More Information
  • Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states. In plasmon-exciton strong coupling, plasmonic nanocavities play a significant role due to their ability to confine light in an ultrasmall volume. Additionally, two-dimensional transition metal dichalcogenides (TMDCs) have a significant exciton binding energy and remain stable at ambient conditions, making them an excellent alternative for investigating light-matter interactions. As a result, strong plasmon-exciton coupling has been reported by introducing a single metallic cavity. However, single nanoparticles have lower spatial confinement of electromagnetic fields and limited tunability to match the excitonic resonance. Here, we introduce the concept of catenary-shaped optical fields induced by plasmonic metamaterial cavities to scale the strength of plasmon-exciton coupling. The demonstrated plasmon modes of metallic metamaterial cavities offer high confinement and tunability and can match with the excitons of TMDCs to exhibit a strong coupling regime by tuning either the size of the cavity gap or thickness. The calculated Rabi splitting of Au-MoSe2 and Au-WSe2 heterostructures strongly depends on the catenary-like field enhancement induced by the Au cavity, resulting in room-temperature Rabi splitting ranging between 77.86 and 320 meV. These plasmonic metamaterial cavities can pave the way for manipulating excitons in TMDCs and operating active nanophotonic devices at ambient temperature.
  • 加载中
  • [1] Deng F, Liu HF, Xu L, Lan S, Miroshnichenko AE. Strong exciton–plasmon coupling in a WS2 monolayer on Au film hybrid structures mediated by liquid Ga nanoparticles. Laser Photonics Rev 14, 1900420 (2020). doi: 10.1002/lpor.201900420

    CrossRef Google Scholar

    [2] Liu F, Brash AJ, O’Hara J, Martins LMPP, Phillips CL et al. High purcell factor generation of indistinguishable on-chip single photons. Nat Nanotechnol 13, 835–840 (2018). doi: 10.1038/s41565-018-0188-x

    CrossRef Google Scholar

    [3] Santhosh K, Bitton O, Chuntonov L, Haran G. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat Commun 7, 11823 (2016). doi: 10.1038/ncomms11823

    CrossRef Google Scholar

    [4] Degen CL, Reinhard F, Cappellaro P. Quantum sensing. Rev Mod Phys 89, 035002 (2017). doi: 10.1103/RevModPhys.89.035002

    CrossRef Google Scholar

    [5] Wang SJ, Li SL, Chervy T, Shalabney A, Azzini S et al. Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature. Nano Lett 16, 4368–4374 (2016). doi: 10.1021/acs.nanolett.6b01475

    CrossRef Google Scholar

    [6] Brongersma ML, Shalaev VM. The case for plasmonics. Science 328, 440–441 (2010). doi: 10.1126/science.1186905

    CrossRef Google Scholar

    [7] Baumberg JJ, Aizpurua J, Mikkelsen MH, Smith DR. Extreme nanophotonics from ultrathin metallic gaps. Nat Mater 18, 668–678 (2019). doi: 10.1038/s41563-019-0290-y

    CrossRef Google Scholar

    [8] Törmä P, Barnes WL. Strong coupling between surface plasmon polaritons and emitters: a review. Rep Prog Phys 78, 013901 (2014).

    Google Scholar

    [9] Vasa P, Wang W, Pomraenke R, Lammers M, Maiuri M et al. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates. Nat Photonics 7, 128–132 (2013). doi: 10.1038/nphoton.2012.340

    CrossRef Google Scholar

    [10] Chikkaraddy R, De Nijs B, Benz F, Barrow SJ, Scherman OA et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016). doi: 10.1038/nature17974

    CrossRef Google Scholar

    [11] Zheng D, Zhang SP, Deng Q, Kang M, Nordlander P et al. Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2. Nano Lett 17, 3809–3814 (2017). doi: 10.1021/acs.nanolett.7b01176

    CrossRef Google Scholar

    [12] Li BW, Zu S, Zhang ZP, Zheng LH, Jiang Q et al. Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Opto‐Electron Adv 2, 190008 (2019).

    Google Scholar

    [13] Huang LJ, Krasnok A, Alú A, Yu YL, Neshev D et al. Enhanced light–matter interaction in two-dimensional transition metal dichalcogenides. Rep Prog Phys 85, 046401 (2022). doi: 10.1088/1361-6633/ac45f9

    CrossRef Google Scholar

    [14] Rahaman M, Kim G, Ma KY, Song S, Shin HS et al. Tailoring exciton dynamics in TMDC heterobilayers in the ultranarrow gap-plasmon regime. npj 2D Mater Appl 7, 66 (2023). doi: 10.1038/s41699-023-00428-7

    CrossRef Google Scholar

    [15] Qin MB, Duan JY, Xiao SY, Liu WX, Yu TB et al. Manipulating strong coupling between exciton and quasibound states in the continuum resonance. Phys Rev B 105, 195425 (2022). doi: 10.1103/PhysRevB.105.195425

    CrossRef Google Scholar

    [16] Jiang YZ, Wang H, Wen SY, Chen HJ, Deng SZ. Resonance coupling in an individual gold nanorod–monolayer WS2 heterostructure: photoluminescence enhancement with spectral broadening. ACS Nano 14, 13841–13851 (2020). doi: 10.1021/acsnano.0c06220

    CrossRef Google Scholar

    [17] Al-Ani IAM, As’ham K, Klochan O, Hattori HT, Huang LJ et al. Recent advances on strong light-matter coupling in atomically thin TMDC semiconductor materials. J Opt 24, 053001 (2022). doi: 10.1088/2040-8986/ac5cd7

    CrossRef Google Scholar

    [18] Han XB, Wang K, Xing XY, Wang MY, Lu PX. Rabi splitting in a plasmonic nanocavity coupled to a WS2 monolayer at room temperature. ACS Photonics 5, 3970–3976 (2018). doi: 10.1021/acsphotonics.8b00931

    CrossRef Google Scholar

    [19] Kawata S. Near-Field Optics and Surface Plasmon Polaritons (Springer, Berlin Heidelberg, 2001).

    Google Scholar

    [20] Ma XL, Guo YH, Pu MB, Li X, Luo XG. Refined model for plasmon ruler based on catenary-shaped optical fields. Plasmonics 14, 845–850 (2019). doi: 10.1007/s11468-018-0865-5

    CrossRef Google Scholar

    [21] Luo XG. Catenary Optics (Springer, Singapore, 2019).

    Google Scholar

    [22] Huang YJ, Luo J, Pu MB, Guo YH, Zhao ZY et al. Catenary electromagnetics for ultra‐broadband lightweight absorbers and large‐scale flat antennas. Adv Sci 6, 1801691 (2019). doi: 10.1002/advs.201801691

    CrossRef Google Scholar

    [23] Xie X, Pu MB, Huang YJ, Ma XL, Li X et al. Heat resisting metallic meta‐skin for simultaneous microwave broadband scattering and infrared invisibility based on catenary optical field. Adv Mater Technol 4, 1800612 (2019). doi: 10.1002/admt.201800612

    CrossRef Google Scholar

    [24] Cao E, Lin WH, Sun MT, Liang WJ, Song YZ. Exciton-plasmon coupling interactions: from principle to applications. Nanophotonics 7, 145–167 (2018). doi: 10.1515/nanoph-2017-0059

    CrossRef Google Scholar

    [25] Gong MG, Jiang D, Tao T, Chen F, Xu CX et al. Surface plasmon coupling regulated CsPbBr3 perovskite lasers in a metal–insulator–semiconductor structure. RSC Adv 11, 37218–37224 (2021). doi: 10.1039/D1RA06828H

    CrossRef Google Scholar

    [26] Lee B, Liu WJ, Naylor CH, Park J, Malek SC et al. Electrical tuning of exciton–plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice. Nano Lett 17, 4541–4547 (2017). doi: 10.1021/acs.nanolett.7b02245

    CrossRef Google Scholar

    [27] Kim JH, Lee J, Kim H, Yun SJ, Kim J et al. Optical logic operation via plasmon-exciton interconversion in 2D semiconductors. Sci Rep 9, 9164 (2019). doi: 10.1038/s41598-019-45204-0

    CrossRef Google Scholar

    [28] Qian ZY, Ren JJ, Zhang F, Duan XK, Gong QH et al. Nanoscale quantum plasmon sensing based on strong photon–exciton coupling. Nanotechnology 31, 125001 (2020). doi: 10.1088/1361-6528/ab5dd0

    CrossRef Google Scholar

    [29] Zhang L, Gogna R, Burg W, Tutuc E, Deng H. Photonic-crystal exciton-polaritons in monolayer semiconductors. Nat Commun 9, 713 (2018). doi: 10.1038/s41467-018-03188-x

    CrossRef Google Scholar

    [30] Al‐Ani IAM, As’ham K, Huang LJ, Miroshnichenko AE, Hattori HT. Enhanced strong coupling of TMDC monolayers by bound state in the continuum. Laser Photonics Rev 15, 2100240 (2021). doi: 10.1002/lpor.202100240

    CrossRef Google Scholar

    [31] Johnson PB, Christy RW. Optical constants of the noble metals. Phys Rev B 6, 4370–4379 (1972). doi: 10.1103/PhysRevB.6.4370

    CrossRef Google Scholar

    [32] Bouloumis TD, Kotsifaki DG, Nic Chormaic S. Enabling self-induced back-action trapping of gold nanoparticles in metamaterial plasmonic tweezers. Nano Lett 23, 4723–4731 (2023). doi: 10.1021/acs.nanolett.2c04492

    CrossRef Google Scholar

    [33] Zhang M, Tian Y, Chen XZ, Sun Z, Zhu XL et al. Observation of ultra-large Rabi splitting in the plasmon-exciton polaritons at room temperature. Nanophotonics 12, 3267–3275 (2023). doi: 10.1515/nanoph-2023-0162

    CrossRef Google Scholar

    [34] As’ham K, Al-Ani I, Huang LJ, Miroshnichenko AE, Hattori HT. Boosting strong coupling in a hybrid WSe2 monolayer–anapole–plasmon system. ACS Photonics 8, 489–496 (2021).

    Google Scholar

    [35] As’ham K, Al-Ani I, Alaloul M, Abdo S, Abdulghani A et al. Enhanced strong coupling in the hybrid dielectric-metallic nanoresonator and WS2 monolayer. Phys Rev Appl 19, 054049 (2023). doi: 10.1103/PhysRevApplied.19.054049

    CrossRef Google Scholar

    [36] Gao CG, You SJ, Zhang Y, Zhou CB, Xie Q. Strong coupling of excitons and electric/magnetic toroidal dipole modes in perovskite metasurfaces. Opt Express 31, 34143–34153 (2023). doi: 10.1364/OE.502206

    CrossRef Google Scholar

    [37] Zengin G, Wersäll M, Nilsson S, Antosiewicz TJ, Käll M et al. Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions. Phys Rev Lett 114, 157401 (2015). doi: 10.1103/PhysRevLett.114.157401

    CrossRef Google Scholar

    [38] Hassan SG, Mohammad EJ. Study of the skin depth in different metallic atoms. Mater Today Proc 42, 2749–2751 (2021). doi: 10.1016/j.matpr.2020.12.715

    CrossRef Google Scholar

    [39] Lu YW, Zhou WJ, Li Y, Li R, Liu JF et al. Unveiling atom-photon quasi-bound states in hybrid plasmonic-photonic cavity. Nanophotonics 11, 3307–3317 (2022). doi: 10.1515/nanoph-2022-0162

    CrossRef Google Scholar

    [40] Xu G, Tazawa M, Jin P, Nakao S, Yoshimura K. Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films. Appl Phys Lett 82, 3811–3813 (2003). doi: 10.1063/1.1578518

    CrossRef Google Scholar

    [41] Ai RQ, Xia XY, Zhang H, Chui KK, Wang JF. Orientation-dependent interaction between the magnetic plasmons in gold nanocups and the excitons in WS2 monolayer and multilayer. ACS Nano 17, 2356–2367 (2023). doi: 10.1021/acsnano.2c09099

    CrossRef Google Scholar

    [42] Gurarslan A, Yu YF, Su LQ, Yu YL, Suarez F et al. Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano 8, 11522–11528 (2014). doi: 10.1021/nn5057673

    CrossRef Google Scholar

    [43] Petrić MM, Kremser M, Barbone M, Nolinder A, Lyamkina A et al. Tuning the optical properties of a MoSe2 monolayer using nanoscale plasmonic antennas. Nano Lett 22, 561–569 (2022). doi: 10.1021/acs.nanolett.1c02676

    CrossRef Google Scholar

    [44] Wen JX, Wang H, Wang WL, Deng ZX, Zhuang C et al. Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals. Nano Lett 17, 4689–4697 (2017). doi: 10.1021/acs.nanolett.7b01344

    CrossRef Google Scholar

    [45] Liang K, Jin L, Deng XY, Jiang P, Yu L. Fine-tuning biexcitons-plasmon coherent states in a single nanocavity. Nanophotonics 12, 3471–3480 (2023). doi: 10.1515/nanoph-2023-0304

    CrossRef Google Scholar

    [46] Kleemann ME, Chikkaraddy R, Alexeev EM, Kos D, Carnegie C et al. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature. Nat Commun 8, 1296 (2017). doi: 10.1038/s41467-017-01398-3

    CrossRef Google Scholar

  • Supplementary information for Strong coupling and catenary field enhancement in the hybrid plasmonic metamaterial cavity and TMDC Monolayers
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(4628) PDF downloads(1031) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint