Ding YQ, Luo ZY, Borjigin G et al. Breaking the optical efficiency limit of virtual reality with a nonreciprocal polarization rotator. Opto-Electron Adv 7, 230178 (2024). doi: 10.29026/oea.2024.230178
Citation: Ding YQ, Luo ZY, Borjigin G et al. Breaking the optical efficiency limit of virtual reality with a nonreciprocal polarization rotator. Opto-Electron Adv 7, 230178 (2024). doi: 10.29026/oea.2024.230178

Article Open Access

Breaking the optical efficiency limit of virtual reality with a nonreciprocal polarization rotator

More Information
  • A catadioptric lens structure, also known as pancake lens, has been widely used in virtual reality (VR) displays to reduce the formfactor. However, the utilization of a half mirror (HM) to fold the optical path thrice leads to a significant optical loss. The theoretical maximum optical efficiency is merely 25%. To transcend this optical efficiency constraint while retaining the foldable characteristic inherent to traditional pancake optics, in this paper, we propose a theoretically lossless folded optical system to replace the HM with a nonreciprocal polarization rotator. In our feasibility demonstration experiment, we used a commercial Faraday rotator (FR) and reflective polarizers to replace the lossy HM. The theoretically predicted 100% efficiency can be achieved approximately by using two high-extinction-ratio reflective polarizers. In addition, we evaluated the ghost images using a micro-OLED panel in our imaging system. Indeed, the ghost images can be suppressed to undetectable level if the optics are with antireflection coating. Our novel pancake optical system holds great potential for revolutionizing next-generation VR displays with lightweight, compact formfactor, and low power consumption.
  • 加载中
  • [1] Kress BC. Optical Architectures for Augmented-, Virtual-, and Mixed-Reality Headsets. (SPIE, Bellingham, Washington, 2020).

    Google Scholar

    [2] Xiong JH, Hsiang EL, He ZQ et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci Appl 10, 216 (2021). doi: 10.1038/s41377-021-00658-8

    CrossRef Google Scholar

    [3] Yin K, Hsiang EL, Zou JY et al. Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications. Light Sci Appl 11, 161 (2022). doi: 10.1038/s41377-022-00851-3

    CrossRef Google Scholar

    [4] Lu YQ, Li Y. Planar liquid crystal polarization optics for near-eye displays. Light Sci Appl 10, 122 (2021). doi: 10.1038/s41377-021-00567-w

    CrossRef Google Scholar

    [5] Ding, Y. et al. Waveguide-based augmented reality displays: perspectives and challenges. eLight 3, 24 (2023).

    Google Scholar

    [6] Chang CL, Bang K, Wetzstein G et al. Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective. Optica 7, 1563–1578 (2020). doi: 10.1364/OPTICA.406004

    CrossRef Google Scholar

    [7] Park HS, Hoskinson R, Abdollahi H et al. Compact near-eye display system using a superlens-based microlens array magnifier. Opt Express 23, 30618–30633 (2015). doi: 10.1364/OE.23.030618

    CrossRef Google Scholar

    [8] Xiong JH, Wu ST. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications. eLight 1, 3 (2021). doi: 10.1186/s43593-021-00003-x

    CrossRef Google Scholar

    [9] Yang X, Lin Y, Wu TZ et al. An overview on the principle of inkjet printing technique and its application in micro-display for augmented/virtual realities. Opto-Electron Adv 5, 210123 (2022). doi: 10.29026/oea.2022.210123

    CrossRef Google Scholar

    [10] Li Y, Huang XJ, Liu SX et al. Metasurfaces for near-eye display applications. Opto-Electron Sci 2, 230025 (2023). doi: 10.29026/oes.2023.230025

    CrossRef Google Scholar

    [11] LaRussa JA, Gill AT. The holographic pancake window TM. Proc SPIE 162, 120–129 (1978). doi: 10.1117/12.956898

    CrossRef Google Scholar

    [12] Wong TL, Yun ZS, Ambur G et al. Folded optics with birefringent reflective polarizers. Proc SPIE 10335, 103350E (2017).

    Google Scholar

    [13] Geng Y, Jacques G, Brian W et al. Viewing optics for immersive near-eye displays: pupil swim/size and weight/stray light. Proc SPIE 10676, 1067606 (2018).

    Google Scholar

    [14] Li YNQ, Zhan T, Yang ZY et al. Broadband cholesteric liquid crystal lens for chromatic aberration correction in catadioptric virtual reality optics. Opt Express 29, 6011–6020 (2021). doi: 10.1364/OE.419595

    CrossRef Google Scholar

    [15] Le J, Hao B, Aastuen D et al. High resolution reflective polarizer lens for catadioptric VR optics with accommodating eye box design. Proc SPIE 12449, 124490O (2023).

    Google Scholar

    [16] Zou JY, Zhan T, Hsiang EL et al. Doubling the optical efficiency of VR systems with a directional backlight and a diffractive deflection film. Opt Express 29, 20673–20686 (2021). doi: 10.1364/OE.430920

    CrossRef Google Scholar

    [17] Hsiang EL, Yang ZY, Zhan T et al. Optimizing the display performance for virtual reality systems. OSA Continuum 4, 3052–3067 (2021). doi: 10.1364/OSAC.441739

    CrossRef Google Scholar

    [18] Qian Y, Yang Z, Huang YH et al. Directional high-efficiency nanowire LEDs with reduced angular color shift for AR and VR displays. Opto-Electron Sci 1, 220021 (2022).

    Google Scholar

    [19] Wu YH, Tsai CH, Wu YH et al. 5-2: Invited paper: high dynamic range 2117-ppi LCD for VR displays. SID Symp Dig Tech Pap 54, 36–39 (2023). doi: 10.1002/sdtp.16481

    CrossRef Google Scholar

    [20] Komura S, Okuda K, Kijima H. 49-4: thin and lightweight head-mounted displays with polarized laser backlights and holographic optics. SID Symp Dig Tech Pap 53, 636–639 (2022).

    Google Scholar

    [21] Luo ZY, Ding YQ, Rao Y et al. High-efficiency folded optics for near-eye displays. J Soc Inf Display 31, 336–343 (2023). doi: 10.1002/jsid.1207

    CrossRef Google Scholar

    [22] Usukura N, Minoura K, Maruyama R. Novel pancake-based HMD optics to improve light efficiency. J Soc Inf Display 31, 344–354 (2023). doi: 10.1002/jsid.1212

    CrossRef Google Scholar

    [23] Saleh BEA, Teich MC. Fundamentals of Photonics, Multi-Volume 3rd ed (John Wiley & Sons, Hoboken, 2019).

    Google Scholar

    [24] Inoue M, Levy M, Baryshev AV. Magnetophotonics: From Theory to Applications (Springer, Berlin, 2013).

    Google Scholar

    [25] Berent M, Rangelov AA, Vitanov NV. Broadband Faraday isolator. J Opt Soc Am A 30, 149–153 (2013).

    Google Scholar

    [26] Hou QC, Cheng DW, Li Y et al. Stray light analysis and suppression method of a pancake virtual reality head-mounted display. Opt Express 30, 44918–44932 (2022). doi: 10.1364/OE.476078

    CrossRef Google Scholar

    [27] Cheng DW, Cheng DW, Cheng DW et al. Optical design and pupil swim analysis of a compact, large EPD and immersive VR head mounted display. Opt Express 30, 6584–6602 (2022). doi: 10.1364/OE.452747

    CrossRef Google Scholar

    [28] Zhang ZH, Wu Z, Zhang Z et al. Characteristics and recent development of fluoride magneto-optical crystals. Magnetochemistry 9, 41 (2023). doi: 10.3390/magnetochemistry9020041

    CrossRef Google Scholar

    [29] Schulz PA. Wavelength independent Faraday isolator. Appl Opt 28, 4458–4464 (1989). doi: 10.1364/AO.28.004458

    CrossRef Google Scholar

    [30] Nelson Z, Delage-Laurin L, Swager TM. ABCs of faraday rotation in organic materials. J Am Chem Soc 144, 11912–11926 (2022). doi: 10.1021/jacs.2c01983

    CrossRef Google Scholar

    [31] Carothers KJ, Norwood RA, Pyun J. High Verdet constant materials for magneto-optical faraday rotation: a review. Chem Mater 34, 2531–2544 (2022). doi: 10.1021/acs.chemmater.2c00158

    CrossRef Google Scholar

    [32] Vandendriessche S, Van Cleuvenbergen S, Willot P et al. Giant faraday rotation in mesogenic organic molecules. Chem Mater 25, 1139–1143 (2013). doi: 10.1021/cm4004118

    CrossRef Google Scholar

    [33] Levy M. Nanomagnetic route to bias-magnet-free, on-chip Faraday rotators. J Opt Soc Am B 22, 254–260 (2005). doi: 10.1364/JOSAB.22.000254

    CrossRef Google Scholar

    [34] Karki D, Stenger V, Pollick A et al. Thin-film magnetless Faraday rotators for compact heterogeneous integrated optical isolators. J Appl Phys 121, 233101 (2017). doi: 10.1063/1.4986237

    CrossRef Google Scholar

    [35] Abbott RR, Fratello VJ, Licht SJ et al. Article comprising a faraday rotator that does not require a bias magnet. Patent 6770223 (2004).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(3185) PDF downloads(782) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint