Citation: | Zhang JC, Chen MK, Fan YB et al. Miniature tunable Airy beam optical meta-device. Opto-Electron Adv 7, 230171 (2024). doi: 10.29026/oea.2024.230171 |
[1] | Siviloglou GA, Broky J, Dogariu A et al. Observation of accelerating airy beams. Phys Rev Lett 99, 213901 (2007). doi: 10.1103/PhysRevLett.99.213901 |
[2] | Ellenbogen T, Voloch-Bloch N, Ganany-Padowicz A et al. Nonlinear generation and manipulation of airy beams. Nat Photonics 3, 395–398 (2009). doi: 10.1038/nphoton.2009.95 |
[3] | Li Z, Liu WW, Geng GZ et al. Multiplexed nondiffracting nonlinear metasurfaces. Adv Funct Mater 30, 1910744 (2020). doi: 10.1002/adfm.201910744 |
[4] | Wen J, Chen L, Yu BB et al. All-dielectric synthetic-phase metasurfaces generating practical airy beams. ACS Nano 15, 1030–1038 (2021). doi: 10.1021/acsnano.0c07770 |
[5] | Efremidis NK, Chen ZG, Segev M et al. Airy beams and accelerating waves: an overview of recent advances. Optica 6, 686–701 (2019). doi: 10.1364/OPTICA.6.000686 |
[6] | Gao DL, Ding WQ, Nieto-Vesperinas M et al. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light Sci Appl 6, e17039 (2017). doi: 10.1038/lsa.2017.39 |
[7] | Kuo HY, Vyas S, Chu CH et al. Cubic-phase metasurface for three-dimensional optical manipulation. Nanomaterials 11, 1730 (2021). doi: 10.3390/nano11071730 |
[8] | Manousidaki M, Papazoglou DG, Farsari M et al. Abruptly autofocusing beams enable advanced multiscale photo-polymerization. Optica 3, 525–530 (2016). doi: 10.1364/OPTICA.3.000525 |
[9] | Papazoglou DG, Suntsov S, Abdollahpour D et al. Tunable intense airy beams and tailored femtosecond laser filaments. Phys Rev A 81, 061807 (2010). doi: 10.1103/PhysRevA.81.061807 |
[10] | Wang J, Hua XW, Guo CL et al. Airy-beam tomographic microscopy. Optica 7, 790–793 (2020). doi: 10.1364/OPTICA.389894 |
[11] | Chen MK, Liu XY, Sun YN et al. Artificial intelligence in meta-optics. Chem Rev 122, 15356–15413 (2022). doi: 10.1021/acs.chemrev.2c00012 |
[12] | Yao J, Lin R, Chen MK et al. Integrated-resonant metadevices: a review. Adv Photonics 5, 024001 (2023). |
[13] | Chen MK, Wu YF, Feng L et al. Principles, functions, and applications of optical meta‐lens. Adv Opt Mater 9, 2001414 (2021). doi: 10.1002/adom.202001414 |
[14] | Li T, Chen C, Xiao XJ et al. Revolutionary meta-imaging: From superlens to metalens. Photonics Insights 2, R01 (2023). doi: 10.3788/PI.2023.R01 |
[15] | Ma Q, Liu C, Xiao Q et al. Information metasurfaces and intelligent metasurfaces. Photonics Insights 1, R01 (2022). doi: 10.3788/PI.2022.R01 |
[16] | Xu Q, Lang YH, Jiang XH et al. Meta-optics inspired surface plasmon devices. Photonics Insights 2, R02 (2023). doi: 10.3788/PI.2023.R02 |
[17] | Wang Z, Liang Y, Qu JQ et al. Plasmonic bound states in the continuum for unpolarized weak spatially coherent light. Photonics Res 11, 260–269 (2023). doi: 10.1364/PRJ.477385 |
[18] | Liang Y, Koshelev K, Zhang FC et al. Bound states in the continuum in anisotropic plasmonic metasurfaces. Nano Lett 20, 6351–6356 (2020). doi: 10.1021/acs.nanolett.0c01752 |
[19] | Zhang JC, Wu GB, Chen MK et al. A 6g meta-device for 3d varifocal. Sci Adv 9, eadf8478 (2023). doi: 10.1126/sciadv.adf8478 |
[20] | Georgi P, Wei QS, Sain B et al. Optical secret sharing with cascaded metasurface holography. Sci Adv 7, eabf9718 (2021). doi: 10.1126/sciadv.abf9718 |
[21] | Li X, Chen QM, Zhang X et al. Time-sequential color code division multiplexing holographic display with metasurface. Opto-Electron Adv 6, 220060 (2023). doi: 10.29026/oea.2023.220060 |
[22] | Liu J, Shi MM, Chen Z et al. Quantum photonics based on metasurfaces. Opto-Electron Adv 4, 200092 (2021). doi: 10.29026/oea.2021.200092 |
[23] | Semmlinger M, Tseng ML, Yang J et al. Vacuum ultraviolet light-generating metasurface. Nano Lett 18, 5738–5743 (2018). doi: 10.1021/acs.nanolett.8b02346 |
[24] | Ma XL, Pu MB, Li X et al. All-metallic wide-angle metasurfaces for multifunctional polarization manipulation. Opto-Electron Adv 2, 180023 (2019). |
[25] | Wu PC, Tsai WY, Chen WT et al. Versatile polarization generation with an aluminum plasmonic metasurface. Nano Lett 17, 445–452 (2017). doi: 10.1021/acs.nanolett.6b04446 |
[26] | Chen WT, Török P, Foreman MR et al. Integrated plasmonic metasurfaces for spectropolarimetry. Nanotechnology 27, 224002 (2016). doi: 10.1088/0957-4484/27/22/224002 |
[27] | Wu GB, Chan KF, Shum KM et al. Millimeter-wave holographic flat lens antenna for orbital angular momentum multiplexing. IEEE Trans Antennas Propag 69, 4289–4303 (2021). doi: 10.1109/TAP.2020.3048527 |
[28] | Zhang JC, Chen MK, Liang Y et al. Nanoimprint meta‐device for chiral imaging. Adv Funct Mater 33 (2023). doi: 10.1002/adfm.202306422 |
[29] | Fan YB, Tonkaev P, Wang YH et al. Enhanced multiphoton processes in perovskite metasurfaces. Nano Lett 21, 7191–7197 (2021). doi: 10.1021/acs.nanolett.1c02074 |
[30] | Fan YB, Wang YH, Zhang N et al. Resonance-enhanced three-photon luminesce via lead halide perovskite metasurfaces for optical encoding. Nat Commun 10, 2085 (2019). doi: 10.1038/s41467-019-10090-7 |
[31] | Chen J, Wang DP, Si GY et al. Planar peristrophic multiplexing metasurfaces. Opto-Electron Adv 6, 220141 (2023). doi: 10.29026/oea.2023.220141 |
[32] | Chen ZK, Hong MH. All-optical vector visual cryptography with high security and rapid decryption. Opto-Electron Adv 6, 230073 (2023). doi: 10.29026/oea.2023.230073 |
[33] | Yao J, Ou JY, Savinov V et al. Plasmonic anapole metamaterial for refractive index sensing. PhotoniX 3, 23 (2022). doi: 10.1186/s43074-022-00069-x |
[34] | Wu GB, Dai JY, Shum KM et al. A universal metasurface antenna to manipulate all fundamental characteristics of electromagnetic waves. Nat Commun 14, 5155 (2023). doi: 10.1038/s41467-023-40717-9 |
[35] | Wu GB, Dai JY, Cheng Q et al. Sideband-free space–time-coding metasurface antennas. Nat Electron 5, 808–819 (2022). doi: 10.1038/s41928-022-00857-0 |
[36] | Wang SM, Wu PC, Su VC et al. A broadband achromatic metalens in the visible. Nat Nanotechnol 13, 227–232 (2018). doi: 10.1038/s41565-017-0052-4 |
[37] | Luo Y, Tseng ML, Vyas S et al. Meta-lens light-sheet fluorescence microscopy for in vivo imaging. Nanophotonics 11, 1949–1959 (2022). doi: 10.1515/nanoph-2021-0748 |
[38] | Gao H, Fan XH, Wang YX et al. Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction. Opto-Electron Sci 2, 220026 (2023). doi: 10.29026/oes.2023.220026 |
[39] | Pu MB, Li X, Guo YH et al. Nanoapertures with ordered rotations: Symmetry transformation and wide-angle flat lensing. Opt Express 25, 31471–31477 (2017). doi: 10.1364/OE.25.031471 |
[40] | Tseng ML, Semmlinger M, Zhang M et al. Vacuum ultraviolet nonlinear metalens. Sci Adv 8, eabn5644 (2022). doi: 10.1126/sciadv.abn5644 |
[41] | Gao H, Fan XH, Wang YX et al. Metasurface‐based orbital angular momentum multi‐dimensional demultiplexer and decoder. Laser Photonics Rev 17, 2300393 (2023). doi: 10.1002/lpor.202300393 |
[42] | Pu MB, Li X, Ma XL et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv 1, e1500396 (2015). doi: 10.1126/sciadv.1500396 |
[43] | Guo YH, Zhang SC, Pu MB et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci Appl 10, 63 (2021). doi: 10.1038/s41377-021-00497-7 |
[44] | Huang YJ, Xiao TX, Chen S et al. All-optical controlled-not logic gate achieving directional asymmetric transmission based on metasurface doublet. Opto-Electron Adv 6, 220073 (2023). doi: 10.29026/oea.2023.220073 |
[45] | Yang WH, Xiao SM, Song QH et al. All-dielectric metasurface for high-performance structural color. Nat Commun 11, 1864 (2020). doi: 10.1038/s41467-020-15773-0 |
[46] | Kwon H, Arbabi E, Kamali SM et al. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nat Photonics 14, 109–114 (2020). doi: 10.1038/s41566-019-0536-x |
[47] | Engay E, Huo D, Malureanu R et al. Polarization-dependent all-dielectric metasurface for single-shot quantitative phase imaging. Nano Lett 21, 3820–3826 (2021). doi: 10.1021/acs.nanolett.1c00190 |
[48] | Wu QY, Zhou JX, Chen XY et al. Single-shot quantitative amplitude and phase imaging based on a pair of all-dielectric metasurfaces. Optica 10, 619–625 (2023). doi: 10.1364/OPTICA.483366 |
[49] | Luo Y, Chu CH, Vyas S et al. Varifocal metalens for optical sectioning fluorescence microscopy. Nano Lett 21, 5133–5142 (2021). doi: 10.1021/acs.nanolett.1c01114 |
[50] | Wang HY, Du J, Wang H et al. Generation of spin‐dependent accelerating beam with geometric metasurface. Adv Opt Mater 7, 1900552 (2019). doi: 10.1002/adom.201900552 |
[51] | Cheng QQ, Wang JC, Ma L et al. Achromatic terahertz airy beam generation with dielectric metasurfaces. Nanophotonics 10, 1123–1131 (2021). doi: 10.1515/nanoph-2020-0536 |
[52] | Yu BB, Wen J, Chen L et al. Polarization-independent highly efficient generation of airy optical beams with dielectric metasurfaces. Photonics Res 8, 1148–1154 (2020). doi: 10.1364/PRJ.390202 |
[53] | Zhang S, Xue H, Zhao SH et al. Generation and modulation of a two-dimensional airy beam based on a holographic tensor metasurface. Phys Rev Appl 18, 064085 (2022). doi: 10.1103/PhysRevApplied.18.064085 |
[54] | Miao ZW, Hao ZC, Jin BB et al. Low-profile 2-D THz airy beam generator using the phase-only reflective metasurface. IEEE Trans Antennas Propag 68, 1503–1513 (2020). doi: 10.1109/TAP.2019.2925290 |
[55] | Luo Y, Tseng ML, Vyas S et al. Metasurface-based abrupt autofocusing beam for biomedical applications. Small Methods 6, 2101228 (2022). doi: 10.1002/smtd.202101228 |
[56] | Bawart M, Bregenzer N, Bernet S et al. Dynamic beam-steering by a pair of rotating diffractive elements. Opt Commun 460, 125071 (2020). doi: 10.1016/j.optcom.2019.125071 |
[57] | Wu YK, Yang WH, Fan YB et al. TiO2 metasurfaces: from visible planar photonics to photochemistry. Sci Adv 5, eaax0939 (2019). doi: 10.1126/sciadv.aax0939 |
[58] | Sun S, Yang WH, Zhang C et al. Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces. ACS Nano 12, 2151–2159 (2018). doi: 10.1021/acsnano.7b07121 |
[59] | Che YH, Wang XT, Song QH et al. Tunable optical metasurfaces enabled by multiple modulation mechanisms. Nanophotonics 9, 4407–4431 (2020). doi: 10.1515/nanoph-2020-0311 |
Supplementary information for Miniature tunable Airy beam optical meta-device |
Schematic of all-dielectric meta-device for generating dynamic Airy beam.
Characteristic of the meta-device. (a) The optical characteristics of the nanoantenna. The phase can encompass a complete 2π cycle as the diameter transitions from 50 nm to 113 nm, achieving an efficiency exceeding 90% for all the selected nanoantennas. The inset depicts the schematic of the nanoantenna. (b, e) The phase profiles of the first (b) and the second (e) metasurface. (c, f) The optical images of the fabricated metasurfaces according to the phase profile in (b) and (e), respectively. (d, g) The measured phase profiles of the fabricated metasurfaces. Scalar bars: 200 µm. The phase profile is measured using MetronLens from Ideaoptics Co., Ltd, Shanghai. (h) Scanning electron microscope (SEM) images of the meta-device. Scale bar: 100 μm. (i) Tiled-view (blue square) zoomed-in SEM image of meta-atoms of the metasurface. Scale bar: 0.5 μm.
The simulated and experimental results of the meta-devices. (a) The phase obtained upon the superposition of the two metasurfaces when the rotation angles of the two metasurfaces are both zero. (b) The simulated results when the rotation angle is set as shown in (a). The left column shows the Airy beam intensity in the propagation direction, and the dashed line shows the focal plane. The intensity distribution of the focal plane is shown in the upper right. The lower right shows the intensity distribution of the line that crosses the focal spot indicated by the dashed line in the upper right. (c) The experimental results according to those shown in (b). (d) The phase obtained upon superposition of the two metasurfaces when the rotation angles are -π/2 and π/2, respectively. (e) The simulated results when the rotation angle is set as shown in (d). The left column shows the Airy beam intensity in the propagation direction, and the dashed line shows the focal plane. The intensity distribution of the focal plane is shown in the upper right. The Lower right shows the intensity distribution of the line that crosses the focal spot indicated by the dashed line in the upper right. (f) The experimental results according to those shown in (b).
The experimental results of the meta-devices. (a) Different focal spots of the Airy beam when varying the rotation angles of the metasurfaces. The theoretically achievable zone is marked between the two dotted circles. (b) The intensity distributions of the focal plane selected from Fig. 4(a) are indicated by squares of different colors. Scalar bar: 20 µm.