Citation: | Masharin MA, Khmelevskaia D, Kondratiev VI et al. Polariton lasing in Mie-resonant perovskite nanocavity. Opto-Electron Adv 7, 230148 (2024). doi: 10.29026/oea.2024.230148 |
[1] | Tatum JA, Gazula D, Graham L et al. VCSEL-based interconnects for current and future data centers. J Light Technol 33, 727–732 (2015). doi: 10.1109/JLT.2014.2370633 |
[2] | Smit M, van der Tol J, Hill M. Moore's law in photonics. Laser Photonics Rev 6, 1–13 (2012). doi: 10.1002/lpor.201100001 |
[3] | Agrell E, Karlsson M, Chraplyvy AR et al. Roadmap of optical communications. J Opt 18, 063002 (2016). doi: 10.1088/2040-8978/18/6/063002 |
[4] | Ma RM, Ota S, Li YM et al. Explosives detection in a lasing plasmon nanocavity. Nat Nanotechnol 9, 600–604 (2014). doi: 10.1038/nnano.2014.135 |
[5] | Ma RM, Oulton RF. Applications of nanolasers. Nat Nanotechnol 14, 12–22 (2019). doi: 10.1038/s41565-018-0320-y |
[6] | Liang Y, Li C, Huang YZ et al. Plasmonic nanolasers in on-chip light sources: prospects and challenges. ACS Nano 14, 14375–14390 (2020). doi: 10.1021/acsnano.0c07011 |
[7] | McCall SL, Levi AFJ, Slusher RE et al. Whispering-gallery mode microdisk lasers. Appl Phys Lett 60, 289–291 (1992). doi: 10.1063/1.106688 |
[8] | Painter O, Lee RK, Scherer A et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999). doi: 10.1126/science.284.5421.1819 |
[9] | Johnson JC, Yan HQ, Schaller RD et al. Single nanowire lasers. J Phys Chem B 105, 11387–11390 (2001). doi: 10.1021/jp012304t |
[10] | Azzam SI, Kildishev AV, Ma RM et al. Ten years of spasers and plasmonic nanolasers. Light Sci Appl 9, 90 (2020). doi: 10.1038/s41377-020-0319-7 |
[11] | Hill MT, Gather MC. Advances in small lasers. Nat Photonics 8, 908–918 (2014). doi: 10.1038/nphoton.2014.239 |
[12] | Ha ST, Fu YH, Emani NK et al. Directional lasing in resonant semiconductor nanoantenna arrays. Nat Nanotechnol 13, 1042–1047 (2018). doi: 10.1038/s41565-018-0245-5 |
[13] | Kodigala A, Lepetit T, Gu Q et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017). doi: 10.1038/nature20799 |
[14] | Mylnikov V, Ha ST, Pan ZY et al. Lasing action in single subwavelength particles supporting supercavity modes. ACS Nano 14, 7338–7346 (2020). doi: 10.1021/acsnano.0c02730 |
[15] | Wu MF, Ding L, Sabatini RP et al. Bound state in the continuum in nanoantenna-coupled slab waveguide enables low-threshold quantum-dot lasing. Nano Lett 21, 9754–9760 (2021). doi: 10.1021/acs.nanolett.1c03696 |
[16] | Tripathi A, Kim HR, Tonkaev P et al. Lasing action from anapole metasurfaces. Nano Lett 21, 6563–6568 (2021). doi: 10.1021/acs.nanolett.1c01857 |
[17] | Hwang MS, Lee HC, Kim KH et al. Ultralow-threshold laser using super-bound states in the continuum. Nat Commun 12, 4135 (2021). doi: 10.1038/s41467-021-24502-0 |
[18] | Sung J, Shin D, Cho H et al. Room-temperature continuous-wave indirect-bandgap transition lasing in an ultra-thin WS2 disk. Nat Photonics 16, 792–797 (2022). doi: 10.1038/s41566-022-01085-w |
[19] | Nezhad MP, Simic A, Bondarenko O et al. Room-temperature subwavelength metallo-dielectric lasers. Nat Photonics 4, 395–399 (2010). doi: 10.1038/nphoton.2010.88 |
[20] | Khajavikhan M, Simic A, Katz M et al. Thresholdless nanoscale coaxial lasers. Nature 482, 204–207 (2012). doi: 10.1038/nature10840 |
[21] | Ding K, Ning CZ. Metallic subwavelength-cavity semiconductor nanolasers. Light Sci Appl 1, e20 (2012). doi: 10.1038/lsa.2012.20 |
[22] | Polushkin AS, Tiguntseva EY, Pushkarev AP et al. Single-particle perovskite lasers: from material properties to cavity design. Nanophotonics 9, 599–610 (2020). doi: 10.1515/nanoph-2019-0443 |
[23] | Byrnes T, Kim NY, Yamamoto Y. Exciton-polariton condensates. Nat Phys 10, 803–813 (2014). doi: 10.1038/nphys3143 |
[24] |
Imamo |
[25] | Kasprzak J, Richard M, Kundermann S et al. Bose-Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006). doi: 10.1038/nature05131 |
[26] | Deng H, Weihs G, Snoke D et al. Polariton lasing vs. photon lasing in a semiconductor microcavity. Proc Natl Acad Sci USA 100, 15318–15323 (2003). doi: 10.1073/pnas.2634328100 |
[27] | Di Stasio F, Christodoulou S, Huo NJ et al. Near-unity photoluminescence quantum yield in CsPbBr3 nanocrystal solid-state films via postsynthesis treatment with lead bromide. Chem Mater 29, 7663–7667 (2017). doi: 10.1021/acs.chemmater.7b02834 |
[28] | Kang J, Wang LW. High defect tolerance in lead halide perovskite CsPbBr3. J Phys Chem Lett 8, 489–493 (2017). doi: 10.1021/acs.jpclett.6b02800 |
[29] | Protesescu L, Yakunin S, Bodnarchuk MI et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett 15, 3692–3696 (2015). doi: 10.1021/nl5048779 |
[30] | Baranowski M, Plochocka P. Excitons in metal-halide perovskites. Adv Energy Mater 10, 1903659 (2020). doi: 10.1002/aenm.201903659 |
[31] | Ermolaev G, Pushkarev AP, Zhizhchenko A et al. Giant and tunable excitonic optical anisotropy in single-crystal halide perovskites. Nano Lett 23, 2570–2577 (2023). doi: 10.1021/acs.nanolett.2c04792 |
[32] | Tatarinov DA, Anoshkin SS, Tsibizov IV et al. High-quality CsPbBr3 perovskite films with modal gain above 10 000 cm-1 at room temperature. Adv Opt Mater 11, 2202407 (2023). doi: 10.1002/adom.202202407 |
[33] | Huang C, Zhang C, Xiao SM et al. Ultrafast control of vortex microlasers. Science 367, 1018–1021 (2020). doi: 10.1126/science.aba4597 |
[34] | Evans TJS, Schlaus A, Fu YP et al. Continuous-wave lasing in cesium lead bromide perovskite nanowires. Adv Opt Mater 6, 1700982 (2018). doi: 10.1002/adom.201700982 |
[35] | Tao RJ, Peng K, Haeberlé L et al. Halide perovskites enable polaritonic XY spin hamiltonian at room temperature. Nat Mater 21, 761–766 (2022). doi: 10.1038/s41563-022-01276-4 |
[36] | Su R, Ghosh S, Wang J et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nat Phys 16, 301–306 (2020). doi: 10.1038/s41567-019-0764-5 |
[37] | Su R, Fieramosca A, Zhang Q et al. Perovskite semiconductors for room-temperature exciton-polaritonics. Nat Mater 20, 1315–1324 (2021). doi: 10.1038/s41563-021-01035-x |
[38] | Wu JQ, Ghosh S, Su R et al. Nonlinear parametric scattering of exciton polaritons in perovskite microcavities. Nano Lett 21, 3120–3126 (2021). doi: 10.1021/acs.nanolett.1c00283 |
[39] | Feng JG, Wang J, Fieramosca A et al. All-optical switching based on interacting exciton polaritons in self-assembled perovskite microwires. Sci Adv 7, eabj6627 (2021). doi: 10.1126/sciadv.abj6627 |
[40] | Li Y, Ma XK, Zhai XK et al. Manipulating polariton condensates by Rashba-Dresselhaus coupling at room temperature. Nat Commun 13, 3785 (2022). doi: 10.1038/s41467-022-31529-4 |
[41] | Zhao Z, Zhong MY, Zhou WC et al. Simultaneous triplet exciton-phonon and exciton-photon photoluminescence in the individual weak confinement CsPbBr3 micro/nanowires. J Phys Chem C 123, 25349–25358 (2019). doi: 10.1021/acs.jpcc.9b06643 |
[42] | Sich M, Krizhanovskii DN, Skolnick MS et al. Observation of bright polariton solitons in a semiconductor microcavity. Nat Photonics 6, 50–55 (2012). doi: 10.1038/nphoton.2011.267 |
[43] | Shang QY, Li ML, Zhao LY et al. Role of the exciton-polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser. Nano Lett 20, 6636–6643 (2020). doi: 10.1021/acs.nanolett.0c02462 |
[44] | Wang SJ, Raziman TV, Murai S et al. Collective mie exciton-polaritons in an atomically thin semiconductor. J Phys Chem C 124, 19196–19203 (2020). doi: 10.1021/acs.jpcc.0c02592 |
[45] | Deng H, Haug H, Yamamoto Y. Exciton-polariton Bose-Einstein condensation. Rev Mod Phys 82, 1489–1537 (2010). doi: 10.1103/RevModPhys.82.1489 |
[46] | Shan HY, Iorsh I, Han B et al. Brightening of a dark monolayer semiconductor via strong light-matter coupling in a cavity. Nat Commun 13, 3001 (2022). doi: 10.1038/s41467-022-30645-5 |
[47] | Zhou XZ, Zhang ZY. Electron-phonon coupling in CsPbBr3. AIP Adv 10, 125015 (2020). doi: 10.1063/5.0017149 |
[48] | Chen ST, Nurmikko A. Excitonic gain and laser emission from mixed-cation halide perovskite thin films. Optica 5, 1141–1149 (2018). doi: 10.1364/OPTICA.5.001141 |
[49] | Kavokin A, Baumberg JJ, Malpuech G et al. Microcavities 2nd ed (Oxford University Press, Oxford, 2017). |
[50] | Piermarocchi C, Tassone F, Savona V et al. Nonequilibrium dynamics of free quantum-well excitons in time-resolved photoluminescence. Phys Rev B 53, 15834–15841 (1996). doi: 10.1103/PhysRevB.53.15834 |
[51] | Tassone F, Yamamoto Y. Exciton-exciton scattering dynamics in a semiconductor microcavity and stimulated scattering into polaritons. Phys Rev B 59, 10830–10842 (1999). doi: 10.1103/PhysRevB.59.10830 |
[52] | Saba M, Quochi F, Mura A et al. Excited state properties of hybrid perovskites. Acc Chem Res 49, 166–173 (2016). doi: 10.1021/acs.accounts.5b00445 |
[53] | Ryu H, Byun HR, McCall KM et al. Role of the A-site cation in low-temperature optical behaviors of APbBr3 (A = Cs, CH3NH3). J Am Chem Soc 143, 2340–2347 (2021). doi: 10.1021/jacs.0c11980 |
[54] | Enomoto S, Tagami T, Ueda Y et al. Drastic transitions of excited state and coupling regime in all-inorganic perovskite microcavities characterized by exciton/Plasmon hybrid natures. Light Sci Appl 11, 8 (2022). doi: 10.1038/s41377-021-00701-8 |
[55] | Klimov VI, Mikhailovsky AA, Xu S et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000). doi: 10.1126/science.290.5490.314 |
[56] | Hofmann MR, Gerhardt N, Wagner AM et al. Emission dynamics and optical gain of 1.3-/spl mu/m (GaIn)(NAs)/GaAs lasers. IEEE J Quantum Electron 38, 213–221 (2002). doi: 10.1109/3.980275 |
[57] | Geiregat P, Maes J, Chen K et al. Using bulk-like nanocrystals to probe intrinsic optical gain characteristics of inorganic lead halide perovskites. ACS Nano 12, 10178–10188 (2018). doi: 10.1021/acsnano.8b05092 |
[58] | Hopfield JJ. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys Rev 112, 1555–1567 (1958). doi: 10.1103/PhysRev.112.1555 |
[59] | Khmelevskaia D, Markina D, Tonkaev P et al. Excitonic versus free-carrier contributions to the nonlinearly excited photoluminescence in CsPbBr3 perovskites. ACS Photonics 9, 179–189 (2021). |
[60] | Masharin MA, Shahnazaryan VA, Iorsh IV et al. Room-temperature polaron-mediated polariton nonlinearity in MAPbBr3 perovskites. ACS Photonics 10, 691–698 (2023). |
[61] | Pushkarev AP, Korolev VI, Markina DI et al. A few-minute synthesis of CsPbBr3 nanolasers with a high quality factor by spraying at ambient conditions. ACS Appl Mater Interfaces 11, 1040–1048 (2019). doi: 10.1021/acsami.8b17396 |
[62] | Markovich DL, Ginzburg P, Samusev AK et al. Magnetic dipole radiation tailored by substrates: numerical investigation. Opt Express 22, 10693–10702 (2014). doi: 10.1364/OE.22.010693 |
[63] | Nevet A, Berkovitch N, Hayat A et al. Plasmonic nanoantennas for broad-band enhancement of two-photon emission from semiconductors. Nano Lett 10, 1848–1852 (2010). doi: 10.1021/nl1005806 |
[64] | Sinev I, Iorsh I, Bogdanov A et al. Polarization control over electric and magnetic dipole resonances of dielectric nanoparticles on metallic films. Laser Photonics Rev 10, 799–806 (2016). doi: 10.1002/lpor.201600055 |
[65] | Bajoni D, Senellart P, Wertz E et al. Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities. Phys Rev Lett 100, 047401 (2008). doi: 10.1103/PhysRevLett.100.047401 |
[66] | Gao T, Eldridge PS, Liew TCH et al. Polariton condensate transistor switch. Phys Rev B 85, 235102 (2012). doi: 10.1103/PhysRevB.85.235102 |
[67] | Ardizzone V, Riminucci F, Zanotti S et al. Polariton Bose-Einstein condensate from a bound state in the continuum. Nature 605, 447–452 (2022). doi: 10.1038/s41586-022-04583-7 |
[68] | Schlaus AP, Spencer MS, Miyata K et al. How lasing happens in CsPbBr3 perovskite nanowires. Nat Commun 10, 265 (2019). doi: 10.1038/s41467-018-07972-7 |
[69] | Masharin MA, Shahnazaryan VA, Benimetskiy FA et al. Polaron-enhanced polariton nonlinearity in lead halide perovskites. Nano Lett 22, 9092–9099 (2022). doi: 10.1021/acs.nanolett.2c03524 |
[70] | Jiang L, Liu RM, Su RL et al. Continuous wave pumped single-mode nanolasers in inorganic perovskites with robust stability and high quantum yield. Nanoscale 10, 13565–13571 (2018). doi: 10.1039/C8NR03830A |
[71] | Tang B, Dong HX, Sun LX et al. Single-mode lasers based on cesium lead halide perovskite submicron spheres. ACS Nano 11, 10681–10688 (2017). doi: 10.1021/acsnano.7b04496 |
[72] | Zhu HM, Fu YP, Meng F et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater 14, 636–642 (2015). doi: 10.1038/nmat4271 |
[73] | Cho S, Yang Y, Soljačić M et al. Submicrometer perovskite plasmonic lasers at room temperature. Sci Adv 7, eabf3362 (2021). doi: 10.1126/sciadv.abf3362 |
[74] | Liu ZZ, Yang J, Du J et al. Robust subwavelength single-mode perovskite nanocuboid laser. ACS Nano 12, 5923–5931 (2018). doi: 10.1021/acsnano.8b02143 |
[75] | Tiguntseva E, Koshelev K, Furasova A et al. Room-temperature lasing from Mie-resonant nonplasmonic nanoparticles. ACS Nano 14, 8149–8156 (2020). doi: 10.1021/acsnano.0c01468 |
[76] | Yu HC, Ren KK, Wu Q et al. Organic-inorganic perovskite plasmonic nanowire lasers with a low threshold and a good thermal stability. Nanoscale 8, 19536–19540 (2016). doi: 10.1039/C6NR06891J |
[77] | Liao Q, Hu K, Zhang HH et al. Perovskite microdisk microlasers self-assembled from solution. Adv Mater 27, 3405–3410 (2015). doi: 10.1002/adma.201500449 |
[78] | Xifré-Pérez E, Shi L, Tuzer U et al. Mirror-image-induced magnetic modes. ACS Nano 7, 664–668 (2013). doi: 10.1021/nn304855t |
[79] | Zhan ZB, Lei Y. Sub-100-nm nanoparticle arrays with perfect ordering and tunable and uniform dimensions fabricated by combining nanoimprinting with ultrathin alumina membrane technique. ACS Nano 8, 3862–3868 (2014). doi: 10.1021/nn500713h |
[80] | Xiang JX, Wang YX, Wu YP et al. Superplastic nanomolding of highly ordered metallic sub-micrometer pillars arrays for surface enhanced Raman scattering. Adv Mater Technol 7, 2100891 (2022). doi: 10.1002/admt.202100891 |
[81] | Jeon NJ, Noh JH, Kim YC et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater 13, 897–903 (2014). doi: 10.1038/nmat4014 |
[82] | Permyakov DV, Kondratiev VI, Pidgayko DA et al. Probing optical losses and dispersion of fully guided waves through critical evanescent coupling. JETP Lett 113, 780–786 (2021). doi: 10.1134/S0021364021120031 |
[83] | McPeak KM, Jayanti SV, Kress SJP et al. Plasmonic films can easily be better: rules and recipes. ACS Photonics 2, 326–333 (2015). doi: 10.1021/ph5004237 |
[84] | Boidin R, Halenkovič T, Nazabal V et al. Pulsed laser deposited alumina thin films. Ceram Int 42, 1177–1182 (2016). doi: 10.1016/j.ceramint.2015.09.048 |
Supplementary information for Polariton lasing in Mie-resonant perovskite nanocavity |
![]() |
The concept of the stimulated polariton emission in low-dimensional perovskite photon cavities. (a) Illustration of studied perovskite structures: thin film (2D), nanowire (1D) and nanocube (0D). (b) Scheme of the linear PL regime, estimated photon cavity modes (grey dashed lines) strongly coupled with exciton resonance (red dashed lines) resulting in exciton-polariton formation (green lines) for each of the structures. Green dashed lines show unobserved, but theoretically predicted polariton state. Dashed blue lines in the lower plot show the existing phonon energies, counted from the second Mie-polariton state. Uncoupled Mie-polariton states are beyond the given energy range. Waveguide mode in 2D perovskite film results in a guided polariton; Quantized Fabry-Perot (F-P) states originating from waveguide mode in 1D nanowires resulting in F-P polariton resonances; Mie resonances supported in 0D nanocubes results in Mie-polaritons. Red circles represent excitons in the systems, and green circles correspond to exciton-polaritons. (c) Scheme of the stimulated polariton relaxation appeared in the different systems with increasing the pump fluence F2 > F1 which leads to the onset of ASE in 2D thin films, multimode lasing in 1D nanowire structure, and few-mode lasing in 0D nanocubes. (d) Scheme of the polariton interaction at higher pump fluences F3>F2. Polaritons in 2D and 1D relax at lower energy, and in 0D they accumulate at the ground level, which blueshifts with increase of pump fluence. (e) Measured normalized emission spectra at pump fluences F1, F2, F3 from each of the perovskite structures. The colors of the spectra correspond to the fluences of F1, F2, F3 respectively in (b–d).
Measurements of the stimulated emission of perovskite thin film, nanowire, and nanocuboid. (a) SEM image of the studied perovskite thin film. (b–d) Angle-resolved emission spectra of the thin film, obtained under a non-resonant fs pump at 6 K for pump fluences of 1, 60, and 500 μJ/cm2, which correspond to the linear PL, polariton ASE, and red-broadened polariton ASE, respectively. (e) Angle-resolved reflection spectra of the guided guided mode, measured at room temperature below the light cone. The dashed orange line shows the estimated uncoupled photon mode, the dashed red line shows the estimated exciton level and the solid green line shows the fitted polariton mode. (f) SEM image of the studied perovskite nanowhisker with a length of around 5 μm. (g–j) Angle-resolved emission measurements of the nanowire for pump fluences of 1, 40, and 850 μJ/cm2, respectively. The data shows the dynamics of polariton multimode lasing emission. (j) The group refractive index of the studied nanowire as a function of the energy, estimated from the FSR of lasing peaks (See SI for the details). (k) SEM image of the studied perovskite nanocuboid. (l–n) Angle-resolved emission measurements of the nanocuboid for pump fluences of 1, 27, and 250 μJ/cm2, respectively. (o) The estimated spectral position of the mode as a function of the inverted volume.
Lasing emission measurements of perovskite nanocuboids with different sizes. (a–c) SEM images of studied perovskite nanocuboids with different geometry. The physical volume of the cuboids is 0.37, 0.02, and 0.007 μm3 respectively. (d–f) Emission spectra as a function of the pump fluence obtained at 6 K for respective samples are shown below in (a–c). Intensive peaks in the spectra correspond to the lasing emission. Dashed blue lines in (f) correspond to phonon energies shifted from the spectral center of the lasing mode. (g–j) The intensity of the lasing peaks, shown in (d–f) as a function of the pump fluence. Dashed lines in (h) correspond to the results of the theoretical model of the polariton lasing and phonon relaxation in perovskite nanocuboid based on Eq. (1).
Analysis of the Mie-mode observed in the smallest perovskite nanocuboid. (a–c) Identification of the laser mode in cuboid with the smallest physical volume V = 0.007 μm3 (0.04
Comparison of the smallest perovskite polariton nanolaser with previous reports. (a) Reported perovskite laser designs (nanowire, microsphere, and cuboids) having small normalized volumes, V/λ3, with lasing wavelength over the whole VIS range at room (filled marker) and cryogenic (empty marker) temperatures. (b) Normalized volume versus year showing the status of green light emitting perovskite nanolasers miniaturization. Data were adapted from the following references: I70; II71; III72; IV73; V74; VI75; VII76; VIII77. The red arrow indicates progress achieved in this work.