Zhang XH, Chen QM, Tang DL et al. Broadband high-efficiency dielectric metalenses based on quasi-continuous nanostrips. Opto-Electron Adv 7, 230126 (2024). doi: 10.29026/oea.2024.230126
Citation: Zhang XH, Chen QM, Tang DL et al. Broadband high-efficiency dielectric metalenses based on quasi-continuous nanostrips. Opto-Electron Adv 7, 230126 (2024). doi: 10.29026/oea.2024.230126

Article Open Access

Broadband high-efficiency dielectric metalenses based on quasi-continuous nanostrips

More Information
  • Benefiting from the abrupt phase changes within subwavelength thicknesses, metasurfaces have been widely applied for lightweight and compact optical systems. Simultaneous broadband and high-efficiency characteristics are highly attractive for the practical implementation of metasurfaces. However, current metasurface devices mostly adopt discrete micro/nano structures, which rarely realize both merits simultaneously. In this paper, dielectric metasurfaces composed of quasi-continuous nanostrips are proposed to overcome this limitation. Via quasi-continuous nanostrips metasurface, a normal focusing metalens and a superoscillatory lens overcoming the diffraction limit are designed and experimentally demonstrated. The quasi-continuous metadevices can operate in a broadband wavelength ranging from 450 nm to 1000 nm and keep a high power efficiency. The average efficiency of the fabricated metalens reaches 54.24%, showing a significant improvement compared to the previously reported metalenses with the same thickness. The proposed methodology can be easily extended to design other metadevices with the advantages of broadband and high-efficiency in practical optical systems.
  • 加载中
  • [1] Chen MK, Liu XY, Sun YN, Tsai DP. Artificial intelligence in meta-optics. Chem Rev 122, 15356–15413 (2022). doi: 10.1021/acs.chemrev.2c00012

    CrossRef Google Scholar

    [2] Chen MK, Liu XY, Wu YF, Zhang JC, Yuan JQ et al. A meta-device for intelligent depth perception. Adv Mater 35, 2107465 (2023). doi: 10.1002/adma.202107465

    CrossRef Google Scholar

    [3] Cao T, Lian M, Chen XY, Mao LB, Liu K et al. Multi-cycle reconfigurable THz extraordinary optical transmission using chalcogenide metamaterials. Opto-Electron Sci 1, 210010 (2022). doi: 10.29026/oes.2022.210010

    CrossRef Google Scholar

    [4] Krasikov S, Tranter A, Bogdanov A, Kivshar Y. Intelligent metaphotonics empowered by machine learning. Opto-Electron Adv 5, 210147 (2022). doi: 10.29026/oea.2022.210147

    CrossRef Google Scholar

    [5] Chen WT, Yang KY, Wang CM, Huang YW, Sun G et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett 14, 225–230 (2014). doi: 10.1021/nl403811d

    CrossRef Google Scholar

    [6] Zhang YX, Pu MB, Jin JJ, Lu XJ, Guo YH et al. Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization. Opto-Electron Adv 5, 220058 (2022). doi: 10.29026/oea.2022.220058

    CrossRef Google Scholar

    [7] Khorasaninejad M, Shi Z, Zhu AY, Chen WT, Sanjeev V et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett 17, 1819–1824 (2017). doi: 10.1021/acs.nanolett.6b05137

    CrossRef Google Scholar

    [8] Yu NF, Genevet P, Kats MA, Aieta F, Tetienne JP et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [9] Wang YJ, Chen QM, Yang WH, Ji ZH, Jin LM et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat Commun 12, 5560 (2021). doi: 10.1038/s41467-021-25797-9

    CrossRef Google Scholar

    [10] Zeng C, Lu H, Mao D, Du YQ, Hua H et al. Graphene-empowered dynamic metasurfaces and metadevices. Opto-Electron Adv 5, 200098 (2022). doi: 10.29026/oea.2022.200098

    CrossRef Google Scholar

    [11] Zhao MX, Chen MK, Zhuang ZP, Zhang YW, Chen A et al. Phase characterisation of metalenses. Light:Sci Appl 10, 52 (2021). doi: 10.1038/s41377-021-00492-y

    CrossRef Google Scholar

    [12] Li JT, Wang GC, Yue Z, Liu JY, Li J et al. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization. Opto-Electron Adv 5, 210062 (2022). doi: 10.29026/oea.2022.210062

    CrossRef Google Scholar

    [13] Gao H, Fan XH, Wang YX, Liu YC, Wang XG et al. Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction. Opto-Electron Sci 2, 220026 (2023). doi: 10.29026/oes.2023.220026

    CrossRef Google Scholar

    [14] Wang SM, Wu PC, Su VC, Lai YC, Chen MK et al. A broadband achromatic metalens in the visible. Nat Nanotechnol 13, 227–232 (2018). doi: 10.1038/s41565-017-0052-4

    CrossRef Google Scholar

    [15] Shrestha S, Overvig AC, Lu M, Stein A, Yu NF. Broadband achromatic dielectric metalenses. Light:Sci Appl 7, 85 (2018). doi: 10.1038/s41377-018-0078-x

    CrossRef Google Scholar

    [16] Markovich H, Shishkin II, Hendler N, Ginzburg P. Optical manipulation along an optical axis with a polarization sensitive meta-lens. Nano Lett 18, 5024–5029 (2018). doi: 10.1021/acs.nanolett.8b01844

    CrossRef Google Scholar

    [17] Chen WT, Zhu AY, Sisler J, Bharwani Z, Capasso F. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat Commun 10, 355 (2019). doi: 10.1038/s41467-019-08305-y

    CrossRef Google Scholar

    [18] Chen XZ, Huang LL, Mühlenbernd H, Li GX, Bai BF et al. Dual-polarity plasmonic metalens for visible light. Nat Commun 3, 1198 (2012). doi: 10.1038/ncomms2207

    CrossRef Google Scholar

    [19] Li Z, Zhang T, Wang YQ, Kong WJ, Zhang J et al. Achromatic broadband super-resolution imaging by super-oscillatory metasurface. Laser Photon Rev 12, 1800064 (2018). doi: 10.1002/lpor.201800064

    CrossRef Google Scholar

    [20] Tang DL, Wang CT, Zhao ZY, Wang YQ, Pu MB et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser Photon Rev 9, 713–719 (2015). doi: 10.1002/lpor.201500182

    CrossRef Google Scholar

    [21] Zhang Q, Dong FL, Li HX, Wang ZX, Liang GF et al. High-numerical-aperture dielectric metalens for super-resolution focusing of oblique incident light. Adv Opt Mater 8, 1901885 (2020). doi: 10.1002/adom.201901885

    CrossRef Google Scholar

    [22] Luo XG, Pu MB, Li X, Ma XL. Broadband spin Hall effect of light in single nanoapertures. Light:Sci Appl 6, e16276 (2017). doi: 10.1038/lsa.2016.276

    CrossRef Google Scholar

    [23] Pu MB, Li X, Ma XL, Wang YQ, Zhao ZY et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv 1, e1500396 (2015). doi: 10.1126/sciadv.1500396

    CrossRef Google Scholar

    [24] Li ZW, Huang LR, Lu K, Sun YL, Min L. Continuous metasurface for high-performance anomalous reflection. Appl Phys Express 7, 112001 (2014). doi: 10.7567/APEX.7.112001

    CrossRef Google Scholar

    [25] Li ZY, Palacios E, Butun S, Aydin K. Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting. Nano Lett 15, 1615–1621 (2015). doi: 10.1021/nl5041572

    CrossRef Google Scholar

    [26] Wang DP, Hwang Y, Dai YM, Si GY, Wei SB et al. Broadband high-efficiency chiral splitters and holograms from dielectric nanoarc metasurfaces. Small 15, 1900483 (2019). doi: 10.1002/smll.201900483

    CrossRef Google Scholar

    [27] Zhang F, Pu MB, Li X, Ma XL, Guo YH et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces. Adv Mater 33, 2008157 (2021). doi: 10.1002/adma.202008157

    CrossRef Google Scholar

    [28] He Q, Sun SL, Xiao SY, Zhou L. High-efficiency metasurfaces: principles, realizations, and applications. Adv Opt Mater 6, 1800415 (2018). doi: 10.1002/adom.201800415

    CrossRef Google Scholar

    [29] Tang SW, Ding F. High-efficiency focused optical vortex generation with geometric gap-surface Plasmon metalenses. Appl Phys Lett 117, 011103 (2020). doi: 10.1063/5.0014822

    CrossRef Google Scholar

    [30] Alnakhli Z, Lin RH, Liao CH, Labban AE, Li XH. Reflective metalens with an enhanced off-axis focusing performance. Opt Express 30, 34117–34128 (2022). doi: 10.1364/OE.468316

    CrossRef Google Scholar

    [31] Chen JY, Zhang FW, Li Q, Wu JP, Wu LJ. A high-efficiency dual-wavelength achromatic metalens based on Pancharatnam-Berry phase manipulation. Opt Express 26, 34919–34927 (2018). doi: 10.1364/OE.26.034919

    CrossRef Google Scholar

    [32] Chen WT, Zhu AY, Sanjeev V, Khorasaninejad M, Shi ZJ et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol 13, 220–226 (2018). doi: 10.1038/s41565-017-0034-6

    CrossRef Google Scholar

    [33] Groever B, Rubin NA, Mueller JPB, Devlin RC, Capasso F. High-efficiency chiral meta-lens. Sci Rep 8, 7240 (2018). doi: 10.1038/s41598-018-25675-3

    CrossRef Google Scholar

    [34] Tian SN, Guo HM, Hu JB, Zhuang SL. Dielectric longitudinal bifocal metalens with adjustable intensity and high focusing efficiency. Opt Express 27, 680–688 (2019). doi: 10.1364/OE.27.000680

    CrossRef Google Scholar

    [35] Lin Y, Dong YG, Sun T, Zhao YM, Wang M et al. High-efficiency optical sparse aperture metalens based on GaN nanobrick array. Adv Opt Mater 10, 2102756 (2022). doi: 10.1002/adom.202102756

    CrossRef Google Scholar

    [36] Fan CY, Lin CP, Su GDJ. Ultrawide-angle and high-efficiency metalens in hexagonal arrangement. Sci Rep 10, 15677 (2020). doi: 10.1038/s41598-020-72668-2

    CrossRef Google Scholar

    [37] Zhu YC, Liu SY, Chang Y, Wang YX, Zhou S et al. Broadband polarization-insensitive metalens with excellent achromaticity and high efficiency for the entire visible spectrum. Appl Phys Lett 122, 201702 (2023). doi: 10.1063/5.0152474

    CrossRef Google Scholar

    [38] Yoon G, Kim K, Kim SU, Han S, Lee H et al. Printable nanocomposite metalens for high-contrast near-infrared imaging. ACS Nano 15, 698–706 (2021). doi: 10.1021/acsnano.0c06968

    CrossRef Google Scholar

    [39] Zhu YC, Yuan GM, Chang Y, Zhou S, Wu CF et al. Ultra-broadband achromatic metalens with high performance for the entire visible and near-infrared spectrum. Results Phys 50, 106591 (2023). doi: 10.1016/j.rinp.2023.106591

    CrossRef Google Scholar

    [40] Sun P, Zhang MD, Dong FL, Feng LF, Chu WG. Broadband achromatic polarization insensitive metalens over 950 nm bandwidth in the visible and near-infrared. Chin Opt Lett 20, 013601 (2022). doi: 10.3788/COL202220.013601

    CrossRef Google Scholar

    [41] Zhang XH, Liang GF, Feng DQ, Zhou L, Guo YC. Ultra-broadband metasurface holography via quasi-continuous nano-slits. J Phys D:Appl Phys 53, 104002 (2020). doi: 10.1088/1361-6463/ab5e44

    CrossRef Google Scholar

    [42] Guo YH, Pu MB, Zhao ZY, Wang YQ, Jin JJ et al. Merging geometric phase and Plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photonics 3, 2022–2029 (2016). doi: 10.1021/acsphotonics.6b00564

    CrossRef Google Scholar

    [43] Zhang XH, Tang DL, Zhou L, Liang GF, Feng DQ et al. A quasi-continuous all-dielectric metasurface for broadband and high-efficiency holographic images. J Phys D:Appl Phys 53, 465105 (2020). doi: 10.1088/1361-6463/abaa70

    CrossRef Google Scholar

    [44] Huang LL, Chen XZ, Mühlenbernd H, Zhang H, Chen SM et al. Three-dimensional optical holography using a plasmonic metasurface. Nat Commun 4, 2808 (2013). doi: 10.1038/ncomms3808

    CrossRef Google Scholar

    [45] Di Francia GT. Super-gain antennas and optical resolving power. Nuovo Cim 9, 426–438 (1952). doi: 10.1007/BF02903413

    CrossRef Google Scholar

    [46] Liu HT, Yan YB, Tan QF, Jin GF. Theories for the design of diffractive superresolution elements and limits of optical superresolution. J Opt Soc Am A 19, 2185–2193 (2002). doi: 10.1364/JOSAA.19.002185

    CrossRef Google Scholar

    [47] Lin DM, Fan PY, Hasman E, Brongersma ML. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014). doi: 10.1126/science.1253213

    CrossRef Google Scholar

    [48] Wang YQ, Pu MB, Zhang ZJ, Li X, Ma XL et al. Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection. Sci Rep 5, 17733 (2015). doi: 10.1038/srep17733

    CrossRef Google Scholar

    [49] Zhang F, Pu MB, Li X, Gao P, Ma XL et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions. Adv Funct Mater 27, 1704295 (2017). doi: 10.1002/adfm.201704295

    CrossRef Google Scholar

    [50] Balthasar Mueller JP, Rubin NA, Devlin RC, Groever B, Capasso F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett 118, 113901 (2017). doi: 10.1103/PhysRevLett.118.113901

    CrossRef Google Scholar

    [51] Devlin RC, Ambrosio A, Rubin NA, Mueller JPB, Capasso F. Arbitrary spin-to–orbital angular momentum conversion of light. Science 358, 896–901 (2017). doi: 10.1126/science.aao5392

    CrossRef Google Scholar

    [52] Zhang F, Guo YH, Pu MB, Chen LW, Xu MF et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat Commun 14, 1946 (2023). doi: 10.1038/s41467-023-37510-z

    CrossRef Google Scholar

  • Supplementary information for Broadband high-efficiency dielectric metalenses based on quasi-continuous nanostrips
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(3865) PDF downloads(1352) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint