Citation: | Zhang XH, Chen QM, Tang DL et al. Broadband high-efficiency dielectric metalenses based on quasi-continuous nanostrips. Opto-Electron Adv 7, 230126 (2024). doi: 10.29026/oea.2024.230126 |
[1] | Chen MK, Liu XY, Sun YN, Tsai DP. Artificial intelligence in meta-optics. Chem Rev 122, 15356–15413 (2022). doi: 10.1021/acs.chemrev.2c00012 |
[2] | Chen MK, Liu XY, Wu YF, Zhang JC, Yuan JQ et al. A meta-device for intelligent depth perception. Adv Mater 35, 2107465 (2023). doi: 10.1002/adma.202107465 |
[3] | Cao T, Lian M, Chen XY, Mao LB, Liu K et al. Multi-cycle reconfigurable THz extraordinary optical transmission using chalcogenide metamaterials. Opto-Electron Sci 1, 210010 (2022). doi: 10.29026/oes.2022.210010 |
[4] | Krasikov S, Tranter A, Bogdanov A, Kivshar Y. Intelligent metaphotonics empowered by machine learning. Opto-Electron Adv 5, 210147 (2022). doi: 10.29026/oea.2022.210147 |
[5] | Chen WT, Yang KY, Wang CM, Huang YW, Sun G et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett 14, 225–230 (2014). doi: 10.1021/nl403811d |
[6] | Zhang YX, Pu MB, Jin JJ, Lu XJ, Guo YH et al. Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization. Opto-Electron Adv 5, 220058 (2022). doi: 10.29026/oea.2022.220058 |
[7] | Khorasaninejad M, Shi Z, Zhu AY, Chen WT, Sanjeev V et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett 17, 1819–1824 (2017). doi: 10.1021/acs.nanolett.6b05137 |
[8] | Yu NF, Genevet P, Kats MA, Aieta F, Tetienne JP et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713 |
[9] | Wang YJ, Chen QM, Yang WH, Ji ZH, Jin LM et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat Commun 12, 5560 (2021). doi: 10.1038/s41467-021-25797-9 |
[10] | Zeng C, Lu H, Mao D, Du YQ, Hua H et al. Graphene-empowered dynamic metasurfaces and metadevices. Opto-Electron Adv 5, 200098 (2022). doi: 10.29026/oea.2022.200098 |
[11] | Zhao MX, Chen MK, Zhuang ZP, Zhang YW, Chen A et al. Phase characterisation of metalenses. Light:Sci Appl 10, 52 (2021). doi: 10.1038/s41377-021-00492-y |
[12] | Li JT, Wang GC, Yue Z, Liu JY, Li J et al. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization. Opto-Electron Adv 5, 210062 (2022). doi: 10.29026/oea.2022.210062 |
[13] | Gao H, Fan XH, Wang YX, Liu YC, Wang XG et al. Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction. Opto-Electron Sci 2, 220026 (2023). doi: 10.29026/oes.2023.220026 |
[14] | Wang SM, Wu PC, Su VC, Lai YC, Chen MK et al. A broadband achromatic metalens in the visible. Nat Nanotechnol 13, 227–232 (2018). doi: 10.1038/s41565-017-0052-4 |
[15] | Shrestha S, Overvig AC, Lu M, Stein A, Yu NF. Broadband achromatic dielectric metalenses. Light:Sci Appl 7, 85 (2018). doi: 10.1038/s41377-018-0078-x |
[16] | Markovich H, Shishkin II, Hendler N, Ginzburg P. Optical manipulation along an optical axis with a polarization sensitive meta-lens. Nano Lett 18, 5024–5029 (2018). doi: 10.1021/acs.nanolett.8b01844 |
[17] | Chen WT, Zhu AY, Sisler J, Bharwani Z, Capasso F. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat Commun 10, 355 (2019). doi: 10.1038/s41467-019-08305-y |
[18] | Chen XZ, Huang LL, Mühlenbernd H, Li GX, Bai BF et al. Dual-polarity plasmonic metalens for visible light. Nat Commun 3, 1198 (2012). doi: 10.1038/ncomms2207 |
[19] | Li Z, Zhang T, Wang YQ, Kong WJ, Zhang J et al. Achromatic broadband super-resolution imaging by super-oscillatory metasurface. Laser Photon Rev 12, 1800064 (2018). doi: 10.1002/lpor.201800064 |
[20] | Tang DL, Wang CT, Zhao ZY, Wang YQ, Pu MB et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser Photon Rev 9, 713–719 (2015). doi: 10.1002/lpor.201500182 |
[21] | Zhang Q, Dong FL, Li HX, Wang ZX, Liang GF et al. High-numerical-aperture dielectric metalens for super-resolution focusing of oblique incident light. Adv Opt Mater 8, 1901885 (2020). doi: 10.1002/adom.201901885 |
[22] | Luo XG, Pu MB, Li X, Ma XL. Broadband spin Hall effect of light in single nanoapertures. Light:Sci Appl 6, e16276 (2017). doi: 10.1038/lsa.2016.276 |
[23] | Pu MB, Li X, Ma XL, Wang YQ, Zhao ZY et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv 1, e1500396 (2015). doi: 10.1126/sciadv.1500396 |
[24] | Li ZW, Huang LR, Lu K, Sun YL, Min L. Continuous metasurface for high-performance anomalous reflection. Appl Phys Express 7, 112001 (2014). doi: 10.7567/APEX.7.112001 |
[25] | Li ZY, Palacios E, Butun S, Aydin K. Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting. Nano Lett 15, 1615–1621 (2015). doi: 10.1021/nl5041572 |
[26] | Wang DP, Hwang Y, Dai YM, Si GY, Wei SB et al. Broadband high-efficiency chiral splitters and holograms from dielectric nanoarc metasurfaces. Small 15, 1900483 (2019). doi: 10.1002/smll.201900483 |
[27] | Zhang F, Pu MB, Li X, Ma XL, Guo YH et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces. Adv Mater 33, 2008157 (2021). doi: 10.1002/adma.202008157 |
[28] | He Q, Sun SL, Xiao SY, Zhou L. High-efficiency metasurfaces: principles, realizations, and applications. Adv Opt Mater 6, 1800415 (2018). doi: 10.1002/adom.201800415 |
[29] | Tang SW, Ding F. High-efficiency focused optical vortex generation with geometric gap-surface Plasmon metalenses. Appl Phys Lett 117, 011103 (2020). doi: 10.1063/5.0014822 |
[30] | Alnakhli Z, Lin RH, Liao CH, Labban AE, Li XH. Reflective metalens with an enhanced off-axis focusing performance. Opt Express 30, 34117–34128 (2022). doi: 10.1364/OE.468316 |
[31] | Chen JY, Zhang FW, Li Q, Wu JP, Wu LJ. A high-efficiency dual-wavelength achromatic metalens based on Pancharatnam-Berry phase manipulation. Opt Express 26, 34919–34927 (2018). doi: 10.1364/OE.26.034919 |
[32] | Chen WT, Zhu AY, Sanjeev V, Khorasaninejad M, Shi ZJ et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol 13, 220–226 (2018). doi: 10.1038/s41565-017-0034-6 |
[33] | Groever B, Rubin NA, Mueller JPB, Devlin RC, Capasso F. High-efficiency chiral meta-lens. Sci Rep 8, 7240 (2018). doi: 10.1038/s41598-018-25675-3 |
[34] | Tian SN, Guo HM, Hu JB, Zhuang SL. Dielectric longitudinal bifocal metalens with adjustable intensity and high focusing efficiency. Opt Express 27, 680–688 (2019). doi: 10.1364/OE.27.000680 |
[35] | Lin Y, Dong YG, Sun T, Zhao YM, Wang M et al. High-efficiency optical sparse aperture metalens based on GaN nanobrick array. Adv Opt Mater 10, 2102756 (2022). doi: 10.1002/adom.202102756 |
[36] | Fan CY, Lin CP, Su GDJ. Ultrawide-angle and high-efficiency metalens in hexagonal arrangement. Sci Rep 10, 15677 (2020). doi: 10.1038/s41598-020-72668-2 |
[37] | Zhu YC, Liu SY, Chang Y, Wang YX, Zhou S et al. Broadband polarization-insensitive metalens with excellent achromaticity and high efficiency for the entire visible spectrum. Appl Phys Lett 122, 201702 (2023). doi: 10.1063/5.0152474 |
[38] | Yoon G, Kim K, Kim SU, Han S, Lee H et al. Printable nanocomposite metalens for high-contrast near-infrared imaging. ACS Nano 15, 698–706 (2021). doi: 10.1021/acsnano.0c06968 |
[39] | Zhu YC, Yuan GM, Chang Y, Zhou S, Wu CF et al. Ultra-broadband achromatic metalens with high performance for the entire visible and near-infrared spectrum. Results Phys 50, 106591 (2023). doi: 10.1016/j.rinp.2023.106591 |
[40] | Sun P, Zhang MD, Dong FL, Feng LF, Chu WG. Broadband achromatic polarization insensitive metalens over 950 nm bandwidth in the visible and near-infrared. Chin Opt Lett 20, 013601 (2022). doi: 10.3788/COL202220.013601 |
[41] | Zhang XH, Liang GF, Feng DQ, Zhou L, Guo YC. Ultra-broadband metasurface holography via quasi-continuous nano-slits. J Phys D:Appl Phys 53, 104002 (2020). doi: 10.1088/1361-6463/ab5e44 |
[42] | Guo YH, Pu MB, Zhao ZY, Wang YQ, Jin JJ et al. Merging geometric phase and Plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photonics 3, 2022–2029 (2016). doi: 10.1021/acsphotonics.6b00564 |
[43] | Zhang XH, Tang DL, Zhou L, Liang GF, Feng DQ et al. A quasi-continuous all-dielectric metasurface for broadband and high-efficiency holographic images. J Phys D:Appl Phys 53, 465105 (2020). doi: 10.1088/1361-6463/abaa70 |
[44] | Huang LL, Chen XZ, Mühlenbernd H, Zhang H, Chen SM et al. Three-dimensional optical holography using a plasmonic metasurface. Nat Commun 4, 2808 (2013). doi: 10.1038/ncomms3808 |
[45] | Di Francia GT. Super-gain antennas and optical resolving power. Nuovo Cim 9, 426–438 (1952). doi: 10.1007/BF02903413 |
[46] | Liu HT, Yan YB, Tan QF, Jin GF. Theories for the design of diffractive superresolution elements and limits of optical superresolution. J Opt Soc Am A 19, 2185–2193 (2002). doi: 10.1364/JOSAA.19.002185 |
[47] | Lin DM, Fan PY, Hasman E, Brongersma ML. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014). doi: 10.1126/science.1253213 |
[48] | Wang YQ, Pu MB, Zhang ZJ, Li X, Ma XL et al. Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection. Sci Rep 5, 17733 (2015). doi: 10.1038/srep17733 |
[49] | Zhang F, Pu MB, Li X, Gao P, Ma XL et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions. Adv Funct Mater 27, 1704295 (2017). doi: 10.1002/adfm.201704295 |
[50] | Balthasar Mueller JP, Rubin NA, Devlin RC, Groever B, Capasso F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett 118, 113901 (2017). doi: 10.1103/PhysRevLett.118.113901 |
[51] | Devlin RC, Ambrosio A, Rubin NA, Mueller JPB, Capasso F. Arbitrary spin-to–orbital angular momentum conversion of light. Science 358, 896–901 (2017). doi: 10.1126/science.aao5392 |
[52] | Zhang F, Guo YH, Pu MB, Chen LW, Xu MF et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat Commun 14, 1946 (2023). doi: 10.1038/s41467-023-37510-z |
Supplementary information for Broadband high-efficiency dielectric metalenses based on quasi-continuous nanostrips |
Schematic illustration of the broadband high-efficiency metalens composed of quasi-continuous nanostrips.
(a) The structure and phase distribution of the designed metalens. The inset shown in the low panel is the phase distribution along the white dotted line. (b) The higher magnified image of the quasi-continuous metalens and the correlative scale bar is 3 μm. (c) SEM image of part of the fabricated metalens sample. scale bar: 3 μm.
(a) Experimental setup for measuring the quasi-continuous metalens. Abbreviations for the optical components: LP, linear polarizer; QWP, quarter waveplate; CCD, charge coupled device. (b) Measured cross-polarized intensity distributions along the propagation direction at the wavelength of 632.8 nm. The up and down panels correspond to x-z plane and y-z plane, respectively. (c–i) The intensity profiles on the focal plane for different wavelengths incidence. The position of the focal plane and the incident wavelengths have been marked. The curves on the upper and right sides depict the intensity distributions along x-axis and y-axis, respectively. All intensities have been normalized.
(a) The phase distribution and the designed quasi-continuous structure of the superoscillatory lens. (b) The lens phase profile (up panel) and binary super-oscillation phase (down panel) along the radial direction. π-phase-jump at positions r1=0.175R, r2=0.406R and r3=0.645R. (c) The SEM image of the fabricated superoscillatory lens. (d) The measured cross-polarized intensity distributions along z-axis at the wavelength of 632.8 nm. (e–k) The intensity distributions on the focus plane for different wavelengths incidence. The curves on the upper and right sides represent the intensity distributions along x-axis and y-axis, respectively. The incident wavelengths and the measured focus plane are labelled in the figures.
The power efficiency in the simulation and experiments. The simulated results for P (period) [the distance between adjacent nanostrips] changing from 160 nm to 300 nm are shown in the blue region. The red diamonds and the black squares are the experimental efficiencies for metalens and superoscillatory lens, respectively, which have been marked in the figure.