Citation: | Li KY, Wang YM, Pi DP et al. Multi-dimensional multiplexing optical secret sharing framework with cascaded liquid crystal holograms. Opto-Electron Adv 7, 230121 (2024). doi: 10.29026/oea.2024.230121 |
[1] | Shamir A. How to share a secret. Commun ACM 22, 612–613 (1979). doi: 10.1145/359168.359176 |
[2] | Blakley GR. Safeguarding cryptographic keys. In 1979 International Workshop on Managing Requirements Knowledge 313–318 (IEEE, 1979);http://doi.org/10.1109/MARK.1979.8817296. |
[3] | Qu GY, Yang WH, Song QH et al. Reprogrammable meta-hologram for optical encryption. Nat Commun 11, 5484 (2020). doi: 10.1038/s41467-020-19312-9 |
[4] | Ren HR, Fang XY, Jang J et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat Nanotechnol 15, 948–955 (2020). doi: 10.1038/s41565-020-0768-4 |
[5] | Li ZF, Premaratne M, Zhu WR. Advanced encryption method realized by secret shared phase encoding scheme using a multi-wavelength metasurface. Nanophotonics 9, 3687–3696 (2020). doi: 10.1515/nanoph-2020-0298 |
[6] | Fang XY, Ren HR, Gu M. Orbital angular momentum holography for high-security encryption. Nat Photonics 14, 102–108 (2020). doi: 10.1038/s41566-019-0560-x |
[7] | Yang H, He P, Ou K et al. Angular momentum holography via a minimalist metasurface for optical nested encryption. Light Sci Appl 12, 79 (2023). doi: 10.1038/s41377-023-01125-2 |
[8] | Ouyang M, Yu HY, Pan DP et al. Optical encryption in spatial frequencies of light fields with metasurfaces. Optica 9, 1022–1028 (2022). doi: 10.1364/OPTICA.463888 |
[9] | Luo XH, Hu YQ, Li X et al. Integrated metasurfaces with microprints and helicity-multiplexed holograms for real-time optical encryption. Adv Opt Mater 8, 1902020 (2020). doi: 10.1002/adom.201902020 |
[10] | Fang XY, Yang HC, Yao WZ et al. High-dimensional orbital angular momentum multiplexing nonlinear holography. Adv Photonics 3, 015001 (2021). |
[11] | Zheng PX, Dai Q, Li ZL et al. Metasurface-based key for computational imaging encryption. Sci Adv 7, eabg0363 (2021). doi: 10.1126/sciadv.abg0363 |
[12] | Tang YT, Intaravanne Y, Deng JH et al. Nonlinear vectorial metasurface for optical encryption. Phys Rev Appl 12, 024028 (2019). doi: 10.1103/PhysRevApplied.12.024028 |
[13] | Fang XY, Ren HR, Li KY et al. Nanophotonic manipulation of optical angular momentum for high-dimensional information optics. Adv Opt Photonics 13, 772–833 (2021). doi: 10.1364/AOP.414320 |
[14] | Wang K, Liang J, Chen R et al. Geometry-programmable perovskite microlaser patterns for two-dimensional optical encryption. Nano Lett 21, 6792–6799 (2021). doi: 10.1021/acs.nanolett.1c01423 |
[15] | Jiao SM, Gao Y, Lei T et al. Known-plaintext attack to optical encryption systems with space and polarization encoding. Opt Express 28, 8085–8097 (2020). doi: 10.1364/OE.387505 |
[16] | Meng WJ, Hua YL, Cheng K et al. 100 Hertz frame-rate switching three-dimensional orbital angular momentum multiplexing holography via cross convolution. Opto-Electron Sci 1, 220004 (2022). doi: 10.29026/oes.2022.220004 |
[17] | Zhang F, Guo YH, Pu MB et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat Commun 14, 1946 (2023). doi: 10.1038/s41467-023-37510-z |
[18] | Choi C, Mun SE, Sung J et al. Hybrid state engineering of phase‐change metasurface for all‐optical cryptography. Adv Funct Mater 31, 2007210 (2021). doi: 10.1002/adfm.202007210 |
[19] | Deng ZL, Tu QA, Wang YJ et al. Vectorial compound metapixels for arbitrary nonorthogonal polarization steganography. Adv Mater 33, 2103472 (2021). doi: 10.1002/adma.202103472 |
[20] | Lu DJ, Liao MH, He WQ et al. Experimental optical secret sharing via an iterative phase retrieval algorithm. Opt Lasers Eng 126, 105904 (2020). doi: 10.1016/j.optlaseng.2019.105904 |
[21] | Liu XR, Meng XF, Wang YR et al. Optical multilevel authentication based on singular value decomposition ghost imaging and secret sharing cryptography. Opt Lasers Eng 137, 106370 (2021). doi: 10.1016/j.optlaseng.2020.106370 |
[22] | Jiao SM, Feng J, Gao Y et al. Visual cryptography in single-pixel imaging. Opt Express 28, 7301–7313 (2020). doi: 10.1364/OE.383240 |
[23] | Shi YS, Yang XB. Optical hiding with visual cryptography. J Opt 19, 115703 (2017). doi: 10.1088/2040-8986/aa895e |
[24] | Dong YB, Luan HT, Lin DJ et al. Laser-induced graphene hologram reconfiguration for countersurveillance multisecret sharing. Laser Photonics Rev 17, 2200805 (2023). doi: 10.1002/lpor.202200805 |
[25] | Li BL, Su H, Meng WJ et al. Orbital angular momentum holographic multicasting for switchable and secure wireless optical communication links. Opt Express 31, 23106–23114 (2023). doi: 10.1364/OE.494844 |
[26] | Tang DL, Shao ZL, Xie X et al. Flat multifunctional liquid crystal elements through multi-dimensional information multiplexing. Opto-Electron Adv 6, 220063 (2023). doi: 10.29026/oea.2023.220063 |
[27] | Li X, Chen QM, Zhang X et al. Time-sequential color code division multiplexing holographic display with metasurface. Opto-Electron Adv 6, 220060 (2023). doi: 10.29026/oea.2023.220060 |
[28] | Pi DP, Liu J, Wang YT. Review of computer-generated hologram algorithms for color dynamic holographic three-dimensional display. Light Sci Appl 11, 231 (2022). doi: 10.1038/s41377-022-00916-3 |
[29] | Georgi P, Wei QS, Sain B et al. Optical secret sharing with cascaded metasurface holography. Sci Adv 7, eabf9718 (2021). doi: 10.1126/sciadv.abf9718 |
[30] | Wei QS, Huang LL, Zhao RZ et al. Rotational multiplexing method based on cascaded metasurface holography. Adv Opt Mater 10, 2102166 (2022). doi: 10.1002/adom.202102166 |
[31] | Fu R, Chen KX, Li ZL et al. Metasurface-based nanoprinting: principle, design and advances. Opto-Electron Sci 1, 220011 (2022). doi: 10.29026/oes.2022.220011 |
[32] | Zhao H, Wang XK, Liu ST et al. Highly efficient vectorial field manipulation using a transmitted tri-layer metasurface in the terahertz band. Opto-Electron Adv 6, 220012 (2023). doi: 10.29026/oea.2023.220012 |
[33] | Chen P, Wei BY, Hu W et al. Liquid‐crystal‐mediated geometric phase: from transmissive to broadband reflective planar optics. Adv Mater 32, 1903665 (2020). doi: 10.1002/adma.201903665 |
[34] | Liu SJ, Zhu L, Zhang YH et al. Bi‐chiral nanostructures featuring dynamic optical rotatory dispersion for polychromatic light multiplexing. Adv Mater 35, 2301714 (2023). doi: 10.1002/adma.202301714 |
[35] | Zhu L, Xu CT, Chen P et al. Pancharatnam–Berry phase reversal via opposite-chirality-coexisted superstructures. Light Sci Appl 11, 135 (2022). doi: 10.1038/s41377-022-00835-3 |
[36] | Chen P, Ma LL, Hu W et al. Chirality invertible superstructure mediated active planar optics. Nat Commun 10, 2518 (2019). doi: 10.1038/s41467-019-10538-w |
[37] | Chen KX, Xu CT, Zhou Z et al. Multifunctional liquid crystal device for grayscale pattern display and holography with tunable spectral‐response. Laser Photonics Rev 16, 2100591 (2022). doi: 10.1002/lpor.202100591 |
[38] | Chen P, Shen ZX, Xu CT et al. Simultaneous realization of dynamic and hybrid multiplexed holography via light-activated chiral superstructures. Laser Photonics Rev 16, 2200011 (2022). doi: 10.1002/lpor.202200011 |
Supplementary information for Multi-dimensional multiplexing optical secret sharing framework with cascaded liquid crystal holograms |
Illustration diagram of the multi-dimensional multiplexing optical secret sharing framework based on the cascaded LC holograms. (a) A neural network is adapted to inversely design the phase distribution of the LC holograms and the secret images can be decrypted when the circular polarization light illuminates on the distance-adjustable cascaded LC holograms with appropriate external voltage. (b) The different secret keys and the corresponding decrypted holographic images.
Design principle of multi-dimensional multiplexing optical holographic secret sharing framework. The polarization states of the incident light, the imposed external voltage and the moving distance between the two LC holograms are the input parameters of the ANN model. The difference between the reconstructed images and the ideal images is defined as the loss function. Through the back-propagation optimization process, the phase distributions of the two LC holograms are calculated.
The experimental setup and the diffraction efficiency of the LC holograms. (a) Optical setup for multi-multiplexing optical holographic secret sharing framework. The grayscale images in the top-left and bottom-right corner are the simulated phase distribution of share 1 and share 2. The reddish-brown images in the zoom-in view are the corresponding polarized micrograph of the fabricated LC holograms. Q-wave plate, quarter-wave plate. (b) The diffraction efficiency of the LC holograms with different external voltage.
The experimental demonstration of the designed optical secret sharing framework. (a) The authentication images decrypted from user 1 and user 2. (b) The operator images decrypted by the secret keys and the final secret images retrieved from the second decryption.