Liu YC, Xu K, Fan XH et al. Dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates. Opto-Electron Adv 7, 230108 (2024). doi: 10.29026/oea.2024.230108
Citation: Liu YC, Xu K, Fan XH et al. Dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates. Opto-Electron Adv 7, 230108 (2024). doi: 10.29026/oea.2024.230108

Article Open Access

Dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates

More Information
  • Interactive holography offers unmatched levels of immersion and user engagement in the field of future display. Despite of the substantial progress has been made in dynamic meta-holography, the realization of real-time, highly smooth interactive holography remains a significant challenge due to the computational and display frame rate limitations. In this study, we introduced a dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates. To our knowledge, this is the first reported practical dynamic interactive metasurface holographic system. We spatially divided the metasurface device into multiple distinct channels, each projecting a reconstructed sub-pattern. The switching states of these channels were mapped to bitwise operations on a set of bit values, which avoids complex hologram computations, enabling an ultra-high computational frame rate. Our approach achieves a computational frame rate of 800 kHz and a display frame rate of 23 kHz on a low-power Raspberry Pi computational platform. According to this methodology, we demonstrated an interactive dynamic holographic Tetris game system that allows interactive gameplay, color display, and on-the-fly hologram creation. Our technology presents an inspiration for advanced dynamic meta-holography, which is promising for a broad range of applications including advanced human-computer interaction, real-time 3D visualization, and next-generation virtual and augmented reality systems.
  • 加载中
  • [1] Xu K, Wang XE, Fan XH et al. Meta-holography: from concept to realization. Opto-Electron Eng 49, 220183 (2022). doi: 10.12086/oee.2022.220183

    CrossRef Google Scholar

    [2] Horimai H, Tan XD. Holographic information storage system: today and future. IEEE Trans Magn 43, 943–947 (2007). doi: 10.1109/TMAG.2006.888528

    CrossRef Google Scholar

    [3] Gao H, Fan XH, Xiong W et al. Recent advances in optical dynamic meta-holography. Opto-Electron Adv 4, 210030 (2021). doi: 10.29026/oea.2021.210030

    CrossRef Google Scholar

    [4] Xiong JH, Hsiang EL, He ZQ et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci Appl 10, 216 (2021). doi: 10.1038/s41377-021-00658-8

    CrossRef Google Scholar

    [5] Fang XY, Ren HR, Gu M. Orbital angular momentum holography for high-security encryption. Nat Photonics 14, 102–108 (2020). doi: 10.1038/s41566-019-0560-x

    CrossRef Google Scholar

    [6] Li JX, Kamin S, Zheng GX et al. Addressable metasurfaces for dynamic holography and optical information encryption. Sci Adv 4, eaar6768 (2018). doi: 10.1126/sciadv.aar6768

    CrossRef Google Scholar

    [7] Wu JC, Liu KX, Sui X et al. High-speed computer-generated holography using an autoencoder-based deep neural network. Opt Lett 46, 2908–2911 (2021). doi: 10.1364/OL.425485

    CrossRef Google Scholar

    [8] González H, Martínez-León L, Soldevila F et al. High sampling rate single-pixel digital holography system employing a DMD and phase-encoded patterns. Opt Express 26, 20342–20350 (2018). doi: 10.1364/OE.26.020342

    CrossRef Google Scholar

    [9] Gao H, Wang YX, Fan XH et al. Dynamic 3D meta-holography in visible range with large frame number and high frame rate. Sci Adv 6, eaba8595 (2020). doi: 10.1126/sciadv.aba8595

    CrossRef Google Scholar

    [10] Yu NF, Genevet P, Kats MA et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [11] Ni YB, Chen S, Wang YJ et al. Metasurface for structured light projection over 120° field of view. Nano Lett 20, 6719–6724 (2020). doi: 10.1021/acs.nanolett.0c02586

    CrossRef Google Scholar

    [12] Mu YH, Zheng MY, Qi JR et al. A large field-of-view metasurface for complex-amplitude hologram breaking numerical aperture limitation. Nanophotonics 9, 4749–4759 (2020). doi: 10.1515/nanoph-2020-0448

    CrossRef Google Scholar

    [13] Zhang YX, Pu MB, Jin JJ et al. Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization. Opto-Electron Adv 5, 220058 (2022). doi: 10.29026/oea.2022.220058

    CrossRef Google Scholar

    [14] Guo XY, Zhong JZ, Li BJ et al. Full-color holographic display and encryption with full-polarization degree of freedom. Adv Mater 34, 2103192 (2022). doi: 10.1002/adma.202103192

    CrossRef Google Scholar

    [15] Wang H, Ruan QF, Wang HT et al. Full color and grayscale painting with 3D printed low-index nanopillars. Nano Lett 21, 4721–4729 (2021). doi: 10.1021/acs.nanolett.1c00979

    CrossRef Google Scholar

    [16] Dong FL, Chu WG. Multichannel-independent information encoding with optical metasurfaces. Adv Mater 31, 1804921 (2019). doi: 10.1002/adma.201804921

    CrossRef Google Scholar

    [17] Zhao RZ, Huang LL, Wang YT. Recent advances in multi-dimensional metasurfaces holographic technologies. PhotoniX 1, 20 (2020). doi: 10.1186/s43074-020-00020-y

    CrossRef Google Scholar

    [18] Zhang M, Pu MB, Zhang F et al. Plasmonic metasurfaces for switchable photonic spin–orbit interactions based on phase change materials. Adv Sci 5, 1800835 (2018). doi: 10.1002/advs.201800835

    CrossRef Google Scholar

    [19] Choi C, Mun SE, Sung J et al. Hybrid state engineering of phase-change metasurface for all-optical cryptography. Adv Funct Mater 31, 2007210 (2021). doi: 10.1002/adfm.202007210

    CrossRef Google Scholar

    [20] Zeng C, Lu H, Mao D et al. Graphene-empowered dynamic metasurfaces and metadevices. Opto-Electron Adv 5, 200098 (2022). doi: 10.29026/oea.2022.200098

    CrossRef Google Scholar

    [21] Wan CW, Li Z, Wan S et al. Electric-driven meta-optic dynamics for simultaneous near-/far-field multiplexing display. Adv Funct Mater 32, 2110592 (2022). doi: 10.1002/adfm.202110592

    CrossRef Google Scholar

    [22] Nemati A, Wang Q, Ang NSS et al. Ultra-high extinction-ratio light modulation by electrically tunable metasurface using dual epsilon-near-zero resonances. Opto-Electron Adv 4, 200088 (2021). doi: 10.29026/oea.2021.200088

    CrossRef Google Scholar

    [23] Li TY, Wei QS, Reineke B et al. Reconfigurable metasurface hologram by utilizing addressable dynamic pixels. Opt Express 27, 21153–21162 (2019). doi: 10.1364/OE.27.021153

    CrossRef Google Scholar

    [24] Malek SC, Ee HS, Agarwal R. Strain multiplexed metasurface holograms on a stretchable substrate. Nano Lett 17, 3641–3645 (2017). doi: 10.1021/acs.nanolett.7b00807

    CrossRef Google Scholar

    [25] Yang R, Wan S, Shi YY et al. Immersive tuning the guided waves for multifunctional on-chip metaoptics. Laser Photonics Rev 16, 2200127 (2022). doi: 10.1002/lpor.202200127

    CrossRef Google Scholar

    [26] Jang J, Lee GY, Sung J et al. Independent multichannel wavefront modulation for angle multiplexed meta-holograms. Adv Opt Mater 9, 2100678 (2021). doi: 10.1002/adom.202100678

    CrossRef Google Scholar

    [27] Balthasar Mueller JP, Rubin NA, Devlin RC et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett 118, 113901 (2017). doi: 10.1103/PhysRevLett.118.113901

    CrossRef Google Scholar

    [28] Li ZL, Chen C, Guan ZQ et al. Three-channel metasurfaces for simultaneous meta-holography and meta-nanoprinting: a single-cell design approach. Laser Photonics Rev 14, 2000032 (2020). doi: 10.1002/lpor.202000032

    CrossRef Google Scholar

    [29] Ren HR, Fang XY, Jang J et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat Nanotechnol 15, 948–955 (2020). doi: 10.1038/s41565-020-0768-4

    CrossRef Google Scholar

    [30] Masuda N, Ito T, Tanaka T et al. Computer generated holography using a graphics processing unit. Opt Express 14, 603–608 (2006). doi: 10.1364/OPEX.14.000603

    CrossRef Google Scholar

    [31] Yamamoto Y, Nakayama H, Takada N et al. Large-scale electroholography by HORN-8 from a point-cloud model with 400, 000 points. Opt Express 26, 34259–34265 (2018). doi: 10.1364/OE.26.034259

    CrossRef Google Scholar

    [32] Gerchberg RW. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972).

    Google Scholar

    [33] Li X, Chen QM, Zhang X et al. Time-sequential color code division multiplexing holographic display with metasurface. Opto-Electron Adv 6, 220060 (2023). doi: 10.29026/oea.2023.220060

    CrossRef Google Scholar

    [34] Yamada S, Kakue T, Shimobaba T et al. Interactive holographic display based on finger gestures. Sci Rep 8, 2010 (2018). doi: 10.1038/s41598-018-20454-6

    CrossRef Google Scholar

  • Supplementary information for Dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates
    Supplementary movies
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(3109) PDF downloads(548) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint