Citation: | Armas D, Matias IR, Lopez-Gonzalez MC et al. Generation of lossy mode resonances (LMR) using perovskite nanofilms. Opto-Electron Adv 7, 230072 (2024). doi: 10.29026/oea.2024.230072 |
[1] | Del Villar I, Arregui FJ, Zamarreño CR et al. Optical sensors based on lossy-mode resonances. Sens Actuators B Chem 240, 174–185 (2017). doi: 10.1016/J.SNB.2016.08.126 |
[2] | Arregui FJ, Del Villar I, Zamarreño CR et al. Giant sensitivity of optical fiber sensors by means of lossy mode resonance. Sens Actuators B Chem 232, 660–665 (2016). doi: 10.1016/J.SNB.2016.04.015 |
[3] | Ozcariz A, Zamarreño CR, Zubiate P et al. Is there a frontier in sensitivity with lossy mode resonance (LMR) based refractometers. Sci Rep 7, 10280 (2017). doi: 10.1038/s41598-017-11145-9 |
[4] | Del Villar I, Zamarreño CR, Hernaez M et al. Lossy mode resonance generation with indium-tin-oxide-coated optical fibers for sensing applications. J Lightwave Technol 28, 111–117 (2010). doi: 10.1109/JLT.2009.2036580 |
[5] | Zubiate P, Zamarreño CR, Del Villar I et al. High sensitive refractometers based on lossy mode resonances (LMRs) supported by ITO coated D-shaped optical fibers. Opt Express 23, 8045–8050 (2015). doi: 10.1364/OE.23.008045 |
[6] | Usha SP, Gupta BD. Performance analysis of zinc oxide-implemented lossy mode resonance-based optical fiber refractive index sensor utilizing thin film/nanostructure. Appl Opt 56, 5716–5725 (2017). doi: 10.1364/AO.56.005716 |
[7] | Benítez M, Zubiate P, Del Villar I et al. Lossy mode resonance based microfluidic platform developed on planar waveguide for biosensing applications. Biosensors 12, 403 (2022). doi: 10.3390/BIOS12060403 |
[8] | Del Villar I, Zamarreño CR, Sanchez P et al. Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers. J Opt 12, 095503 (2010). doi: 10.1088/2040-8978/12/9/095503 |
[9] | Ozcariz A, Piña-Azamar D A, Zamarreño CR et al. Aluminum doped zinc oxide (AZO) coated optical fiber LMR refractometers—an experimental demonstration. Sens Actuators B Chem 281, 698–704 (2019). doi: 10.1016/j.snb.2018.10.158 |
[10] | Ozcariz A, Dominik M, Smietana M et al. Lossy mode resonance optical sensors based on indium-gallium-zinc oxide thin film. Sens Actuators A Phys 290, 20–27 (2019). doi: 10.1016/J.SNA.2019.03.010 |
[11] | Kosiel K, Koba M, Masiewicz M et al. Tailoring properties of lossy-mode resonance optical fiber sensors with atomic layer deposition technique. Opt Laser Technol 102, 213–221 (2018). doi: 10.1016/j.optlastec.2018.01.002 |
[12] | Zubiate P, Zamarreño CR, Del Villar I et al. D-shape optical fiber pH sensor based on lossy mode resonances (LMRs). In 2015 IEEE SENSORS 1–4 (IEEE, 2015);http://doi.org/10.1109/ICSENS.2015.7370421. |
[13] | Sudas DP, Zakharov LY, Jitov VA et al. Silicon oxynitride thin film coating to lossy mode resonance fiber-optic refractometer. Sensors 22, 3665 (2022). doi: 10.3390/s22103665 |
[14] | Bohorquez DL, Del Villar I, Corres JM et al. Generation of lossy mode resonances in a broadband range with multilayer coated coverslips optimized for humidity sensing. Sens Actuators B Chem 325, 128795 (2020). doi: 10.1016/J.SNB.2020.128795 |
[15] | Elosua C, Arregui FJ, Zamarreño CR et al. Volatile organic compounds optical fiber sensor based on lossy mode resonances. Sens Actuators B Chem 173, 523–529 (2012). doi: 10.1016/J.SNB.2012.07.048 |
[16] | Śmietana M, Koba M, Sezemsky P et al. Simultaneous optical and electrochemical label-free biosensing with ITO-coated lossy-mode resonance sensor. Biosens Bioelectron 154, 112050 (2020). doi: 10.1016/J.BIOS.2020.112050 |
[17] | Chiavaioli F, Zubiate P, Del Villar I et al. Femtomolar detection by nanocoated fiber label-free biosensors. ACS Sens 3, 936–943 (2018). doi: 10.1021/ACSSENSORS.7B00918 |
[18] | Zubiate P, Urrutia A, Zamarreño CR et al. Fiber-based early diagnosis of venous thromboembolic disease by label-free D-dimer detection. Biosens Bioelectron X 2, 100026 (2019). doi: 10.1016/J.BIOSX.2019.100026 |
[19] | Dominguez I, Del Villar I, Fuentes O et al. Interdigital concept in photonic sensors based on an array of lossy mode resonances. Sci Rep 11, 13228 (2021). doi: 10.1038/s41598-021-92765-0 |
[20] | Dominguez I, Del Villar I, Fuentes O et al. Dually nanocoated planar waveguides towards multi-parameter sensing. Sci Rep 11, 3669 (2021). doi: 10.1038/s41598-021-83324-8 |
[21] | Del Villar I, Hernaez M, Zamarreño CR et al. Design rules for lossy mode resonance based sensors. Appl Opt 51, 4298–4307 (2012). doi: 10.1364/AO.51.004298 |
[22] | Zhao WM, Wang Q. Analytical solutions to fundamental questions for lossy mode resonance. Laser Photon Rev 17, 2200554 (2023). doi: 10.1002/LPOR.202200554 |
[23] | Wu LM, Xiang YJ, Qin YW. Lossy-mode-resonance sensor based on perovskite nanomaterial with high sensitivity. Opt Express 29, 17602–17612 (2021). doi: 10.1364/OE.426409 |
[24] | Yadollahzadeh S, Aghbolaghi R, Parvizi R. Perovskite-based lossy-mode resonance sensor in visible light spectrum: comparison and optimization of optical enhancements. Phys B Condens Matter 640, 414048 (2022). doi: 10.1016/j.physb.2022.414048 |
[25] | Fakharuddin A, Gangishetty MK, Abdi-Jalebi M et al. Perovskite light-emitting diodes. Nat Electron 5, 203–216 (2022). doi: 10.1038/s41928-022-00745-7 |
[26] | Li CL, Wang HL, Wang F et al. Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging. Light Sci Appl 9, 31 (2020). doi: 10.1038/s41377-020-0264-5 |
[27] | Deumel S, Van Breemen A, Gelinck G et al. High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites. Nat Electron 4, 681–688 (2021). doi: 10.1038/s41928-021-00644-3 |
[28] | Xu W, Li FM, Cai ZX et al. An ultrasensitive and reversible fluorescence sensor of humidity using perovskite CH3NH3PbBr3. J Mater Chem C 4, 9651–9655 (2016). doi: 10.1039/C6TC01075J |
[29] | Green MA, Ho-Baillie A, Snaith HJ. The emergence of perovskite solar cells. Nat Photonics 8, 506–514 (2014). doi: 10.1038/nphoton.2014.134 |
[30] | Rubin M. Optical properties of soda lime silica glasses. Sol Energy Mater 12, 275–288 (1985). doi: 10.1016/0165-1633(85)90052-8 |
[31] | Yeh P, Yariv A, Hong CS. Electromagnetic propagation in periodic stratified media. I. General theory. J Opt Soc Am 67, 423–438 (1977). doi: 10.1364/JOSA.67.000423 |
[32] | Sharma AK, Gupta BD. On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers. Opt Commun 245, 159–169 (2005). doi: 10.1016/J.OPTCOM.2004.10.013 |
[33] | da Silva Filho JMC, Marques FC. Growth of perovskite nanorods from PbS quantum dots. MRS Adv 3, 1843–1848 (2018). doi: 10.1557/adv.2018.188 |
[34] | Wu KW, Bera A, Ma C et al. Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. Phys Chem Chem Phys 16, 22476–22481 (2014). doi: 10.1039/C4CP03573A |
[35] | Gil-Escrig L, Momblona C, La-Placa MG et al. Vacuum deposited triple-cation mixed-halide perovskite solar cells. Adv Energy Mater 8, 1703506 (2018). doi: 10.1002/aenm.201703506 |
[36] | Del Villar I, Zamarreño CR, Hernaez M et al. Generation of lossy mode resonances with absorbing thin-films. J Lightwave Technol 28, 3351–3357 (2010). |
Experimental setup used to characterize the sample and cross-section detail of perovskite coating on the coverslips.
SEM image of the cross section of a coverslips coated with perovskite film: (a) The mean value of the thickness measured on different portions from sample was 114 nm. (b) The mean value of the thickness of the sample 2 was 276 nm. (c) The mean value of the thickness of the sample 3 was 648 nm. (d) XRD pattern of perovskite. (e) Complex refractive index real part (Re N or n) and imaginary part of extinction coefficient (Im N or k) of perovskite obtained from spectroscopic ellipsometry.
Evolution of calculated LMRs in the transmission spectrums vs. coating thickness and overlay of the experimental LMRs minimums.
Theoretical and experimental transmission spectra of perovskite thin films with different thicknesses on planar waveguides: (a) 114 nm, (b) 276 nm, (c) 648 nm.