Citation: | Fanous MJ, Ozcan A. In-flow holographic tomography boosts lipid droplet quantification. Opto-Electron Adv 6, 230083 (2023). doi: 10.29026/oea.2023.230083 |
[1] | Pirone D, Sirico D, Miccio L, Bianco V, Mugnano M et al. 3D imaging lipidometry in single cell by in-flow holographic tomography. Opto-Electronic Adv 6, 220048 (2023). doi: 10.29026/oea.2023.220048 |
[2] | Olzmann JA, Carvalho P. Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol 20, 137–155 (2019). doi: 10.1038/s41580-018-0085-z |
[3] | Imai Y, Cousins RS, Liu SM, Phelps BM, Promes JA. Connecting pancreatic islet lipid metabolism with insulin secretion and the development of type 2 diabetes. Ann N Y Acad Sci 1461, 53–72 (2020). doi: 10.1111/nyas.14037 |
[4] | Cruz ALS, Barreto EDA, Fazolini NPB, Viola JPB, Bozza PT. Lipid droplets: platforms with multiple functions in cancer hallmarks. Cell Death Dis 11, 105 (2020). doi: 10.1038/s41419-020-2297-3 |
[5] | Dias SSG, Soares VC, Ferreira AC, Sacramento CQ, Fintelman-Rodrigues N et al. Lipid droplets fuel SARS-CoV-2 replication and production of inflammatory mediators. PLoS Pathog 16, e1009127 (2020). doi: 10.1371/journal.ppat.1009127 |
[6] | Martins AS, Martins IC, Santos NC. Methods for lipid droplet biophysical characterization in Flaviviridae infections. Front Microbiol 9, 1951 (2018). doi: 10.3389/fmicb.2018.01951 |
[7] | Bai BJ, Yang XL, Li YZ, Zhang YJ, Pillar N et al. Deep learning-enabled virtual histological staining of biological samples. Light Sci Appl 12, 57 (2023). doi: 10.1038/s41377-023-01104-7 |
[8] | Rivenson YJ, Yang XL, Li YZ, Zhang YJ, Pillar N et al. Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning. Nat Biomed Eng 3, 466–477 (2019). doi: 10.1038/s41551-019-0362-y |
[9] | Rivenson Y, Liu TR, Wei ZS, Zhang YB, De Haan K et al. PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning. Light Sci Appl 8, 23 (2019). doi: 10.1038/s41377-019-0129-y |
[10] | Choi W, Fang-Yen C, Badizadegan K, Oh S, Lue N et al. Tomographic phase microscopy. Nat Methods 4, 717–719 (2007). doi: 10.1038/nmeth1078 |
[11] | Sandoz PA, Tremblay C, van der Goot FG, Frechin M. Image-based analysis of living mammalian cells using label-free 3D refractive index maps reveals new organelle dynamics and dry mass flux. PLoS Biol 17, e3000553 (2019). doi: 10.1371/journal.pbio.3000553 |
[12] | Fanous MJ, He SH, Sengupta S, Tangella K, Sobh N et al. White blood cell detection, classification and analysis using phase imaging with computational specificity (PICS). Sci Rep 12, 20043 (2022). doi: 10.1038/s41598-022-21250-z |
[13] | Fanous MJ, Li YF, Kandel ME, Abdeen AA, Kilian KA et al. Effects of substrate patterning on cellular spheroid growth and dynamics measured by gradient light interference microscopy (GLIM). J Biophotonics 12, e201900178 (2019). doi: 10.1002/jbio.201900178 |
[14] | Li YF, Fanous MJ, Kilian KA, Popescu G. Quantitative phase imaging reveals matrix stiffness-dependent growth and migration of cancer cells. Sci Rep 9, 248 (2019). doi: 10.1038/s41598-018-36551-5 |
[15] | Isikman SO, Bishara W, Mavandadi S, Yu FW, Feng S et al. Lens-free optical tomographic microscope with a large imaging volume on a chip. Proc Natl Acad Sci USA 108, 7296–7301 (2011). doi: 10.1073/pnas.1015638108 |
[16] | Bishara W, Isikman SO, Ozcan A. Lensfree optofluidic microscopy and tomography. Ann Biomed Eng 40, 251–262 (2012). doi: 10.1007/s10439-011-0385-3 |
[17] | Fanous MJ, Popescu G. GANscan: continuous scanning microscopy using deep learning deblurring. Light Sci Appl 11, 265 (2022). doi: 10.1038/s41377-022-00952-z |
[18] | Chen XX, Wu TL, Gong ZY, Guo JH, Liu XS et al. Lipid droplets as endogenous intracellular microlenses. Light Sci Appl 10, 242 (2021). doi: 10.1038/s41377-021-00687-3 |
(a) TPM QPM of an ovarian cancer cell containing LDs, scale bar 5 μm. (b) Derived RI distribution of a similar cell. (c) A 3D rendering of the individual LDs based on an RI threshold.