Citation: | Rao YJ. The cornerstone of fiber-optic distributed vibration/acoustic sensing: Ф-OTDR. Opto-Electron Adv 6, 230063 (2023). doi: 10.29026/oea.2023.230063 |
[1] | Taylor HF, Lee CE. Apparatus and method for fiber optic intrusion sensing. U. S. Patent, 5194847 (1993). |
[2] | Xie KL, Rao YJ, Ran ZL. Distributed optical fiber sensing system based of Rayleigh scattering light φ-OTDR using single-mode fiber laser with high power and narrow linewidth. Acta Opt Sin 28, 569–572 (2008). doi: 10.3788/AOS20082803.0569 |
[3] | Liu T, Li H, He T, Fan CZ, Yan ZJ et al. Ultra-high resolution strain sensor network assisted with an LS-SVM based hysteresis model. Opto-Electron Adv 4, 200037 (2021). doi: 10.29026/oea.2021.200037 |
[4] | Rao YJ, Wang ZN, Wu HJ, Ran ZL, Han B. Recent advances in phase-sensitive optical time domain reflectometry (Ф-OTDR). Photonic Sens 11, 1–30 (2021). doi: 10.1007/s13320-021-0619-4 |
[5] | Liu SQ, Yu FH, Hong R, Xu WJ, Shao LY et al. Advances in phase-sensitive optical time-domain reflectometry. Opto-Electron Adv 5, 200078 (2022). doi: 10.29026/oea.2022.200078 |
[6] | Liu SQ, Shao LY, Yu FH, Lin WH, Xiao DR et al. Accelerating the phase demodulation process for heterodyne Φ-OTDR using spatial phase shifting. Opt Lett 48, 1048–1051 (2023). doi: 10.1364/OL.482219 |
[7] | Peng F, Wu H, Jia XH, Rao YJ, Wang ZN et al. Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines. Opt Express 22, 13804–13810 (2014). doi: 10.1364/OE.22.013804 |
[8] | Wang ZN, Zeng JJ, Li J, Fan MQ, Wu H et al. Ultra-long phase-sensitive OTDR with hybrid distributed amplification. Opt Lett 39, 5866–5869 (2014). doi: 10.1364/OL.39.005866 |
[9] | Wang D, Zou J, Wang Y, Jin BQ, Bai Q et al. Distributed optical fiber low-frequency vibration detecting using cross-correlation spectrum analysis. J Lightwave Technol 38, 6664–6670 (2020). doi: 10.1109/JLT.2020.3016117 |
[10] | Yuan Q, Wang F, Liu T, Liu Y, Zhang YX et al. Compensating for influence of laser-frequency-drift in phase-sensitive OTDR with twice differential method. Opt Express 27, 3664–3671 (2019). doi: 10.1364/OE.27.003664 |
[11] | Yuan Q, Wang F, Liu T, Zhang YX, Zhang XP. Using an auxiliary Mach–Zehnder interferometer to compensate for the influence of laser-frequency-drift in Φ-OTDR. IEEE Photonics J 11, 7100209 (2019). |
[12] | Liu SQ, Shao LY, Yu FH, Xu WJ, Vai MI et al. Quantitative demodulation of distributed low-frequency vibration based on phase-shifted dual-pulse phase-sensitive OTDR with direct detection. Opt Express 30, 10096–10109 (2022). doi: 10.1364/OE.453060 |
[13] | Zhang C, Zou NM, Song JY, Tong S, Yao YY et al. Digital signal processing and application of Φ-OTDR system. Opto-Electron Eng 50, 220088 (2023). doi: 10.12086/oee.2023.220088 |
[14] | Yu FH, Liu SQ, Shao LY, Xu WJ, Xiao DR et al. Ultra-low sampling resolution technique for heterodyne phase-OTDR based distributed acoustic sensing. Opt Lett 47, 3379–3382 (2022). doi: 10.1364/OL.456925 |
[15] | Yu FH, Shao LY, Liu SQ, Xu WJ, Xiao DR et al. Data reduction in phase-sensitive OTDR with ultra-low sampling resolution and undersampling techniques. Sensors 22, 6386 (2022). doi: 10.3390/s22176386 |
[16] | Xu WJ, Yu FH, Liu SQ, Xiao DR, Hu J et al. Real-time multi-class disturbance detection for Φ-OTDR based on YOLO algorithm. Sensors 22, 1994 (2022). doi: 10.3390/s22051994 |
[17] | https://eee.sustech.edu.cn/?p=6109 |
[18] | http://ie-school.sustech.edu.cn/page/content?id=610 |
[19] | Rao YJ, Ran ZL, Xie KL. Method for enhancing performance of fiber-optic distributed sensing system with subcarrier wave technique. CN Patent, CN100538311C (2009). |
[20] | Rao YJ, Ran ZL, Li JZ. Fiber-optic disturbance detection method and apparatus. CN Patent, ZL101488805B (2012). |
Back cover of Volume 3, Issue 5 of OEA in 2022.
Setup of DAS-Φ-OTDR system with different demodulation methods5.